Sep
7
Sí, es mucho…, ¡lo que no sabemos!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Como siempre nos pasa cuando no sabemos alguna cosa, nuestra imaginación se desboca y plantea mil y una solución de lo que podría ser. , nos ocurre con el Universo y los secretos que aún no hemos podido desvelar. Construimos modelos que nos den una satisfactoria explicación o al menos aceptable, buscamos remedio -no pocas veces poniendo “parches”- para cuestiones que no podemos explicar, y nos inventamos escenarios y situaciones que, tampoco sabemos si alguna vez podremos comprobar: materia oscura, agujeros de gusano, universos paralelos… (Que finalmente pueden estar ahí pero, que por el momento no sabemos encontrar, con el Gravitón, si existe, nos ha pasado eso).
Cuando oímos la palabra hiperespacio todos pensamos en un lugar por encima, alto, más allá del “espacio normal” de tres dimensiones en el que nos movemos en nuestra vida cotidiana. Y, las ideas se pueden mezclar para confundirnos más, con espacios vectoriales lineales que pueden tener un infinito de dimensiones, como si fuera un espacio de Hilbert. Es como un túnel situado fuera de este mundo nuestro que nos puede llevar hacia regiones lejanas en la galaxia o, incluso, en otras galaxias y hasta en otro universo, sin tener que recorrer el espacio que de esos lejanos lugares nos separa.
Entendemos el Hiperespacio como un camino abierto para viajar más rápido que la luz. Pero… ¿Cómo abrir esa ventana?
Michio Kaku, un físico que nos habla de dimensiones extra y de hiperespacio, en una de sus obras comienza diciendo:
“¿Existen dimensiones superiores? ¿Están los mundos invisibles más allá de nuestro alcance, más allá de las leyes corrientes de la física? Aunque las dimensiones superiores hayan sido históricamente cosa de charlatanes, místicos y de escritores de ciencia ficción, muchos físicos teóricos creen ahora, no solo que las dimensiones superiores existen, sino que además pueden llegar a explicar algunos de los más profundos secretos de la naturaleza. Aunque queremos aclarar que no existen evidencias experimentales de la existencia de dimensiones superiores, en principio, pueden llegar a resolver el problema esencial de la física: la unificación de todo el conocimiento físico a un nivel fundamental.”
Hemos mirado por todo el Universo y, añadiendo el tiempo como otra dimensión, vemos que es tetradimensional, no podemos ver dimensiones
Michio Kaku, que en sus escritos nos dice que ve el futuro, nos cuenta:
“Mi propia fascinación con las dimensiones superiores comenzó durante mi infancia. En uno de mis felices recuerdos de la infancia permanecía agachado junto al estanque del Jardín del Te Japonés de San Francisco, contemplando hipnotizado las carpas de colores nadando suavemente bajo los nenúfares. En esos momentos de calma, me hacia una tonta que solo un niño podría hacerse: ¿Como ven las carpas en aquel estanque el mundo que les rodea ?. Habiendo pasando su vida entera dentro de aquel estanque, las carpas creerían que su universo consiste de agua y de nenúfares; solo vagamente conscientes de la posibilidad que un mundo extraño existiese por encima de la superficie.
La Carpa Japonesa
Mi mundo escapaba a su comprensión. Me intrigaba que pudiese estar a solo unos centímetros de las carpas y que al mismo tiempo estuviésemos separados por un abismo. Concluí que si hubiese algún científico entre las carpas se mofaría de cualquier pez que propusiese que un mundo paralelo podría existir por encima de los nenúfares. Un mundo invisible allá del estanque no tendría sentido para la ciencia.”
Claro que, esas explicaciones de Michio Kaku, no nos explican a los humanos, lo que es el universo hiperdimensional que sería para las carpas este mismo universo nuestro. El nos lleva a la de que, al igual que le ocurre a las carpas de su estanque, tengamos a nuestro alrededor “otras dimensiones” que no somos capaces de ver. Pero yo me sigo preguntando:
¿Dónde, pues, ha de hallarse el universo hiper-dimensional de la simetría perfecta? Ciertamente, no aquí y ahora; el mundo en que vivimos está lleno de simetrías rotas, y sólo tiene cuatro dimensiones, tres espaciales y una temporal. La imaginación que nunca descansa, nos lleva a una idea en la cosmología, la cual nos dice que el universo super-simétrico, si existió, pertenece al pasado. Como nos decían los autores de la Teoría Kaluza-Klein, esas otras dimensiones se quedaron compactadas cuando el universo se desarrolló y, aunque son parámetros necesarios para las grandes teorías de cuerdas y supercuerdas… ¡No las vemos por ninguna parte!
Hace tiempo ya que buscamos esas otras dimensiones pero,,, ¿Dónde están?
La implicación de eso es que el universo tuvo que comenzar en un estado de perfección simétrica, desde el que evolucionó a este otro universo menos simétrico que conocemos y en el que vivimos. Si es así, la de la simetría perfecta sería la del secreto del origen del universo, y la atención de sus acólitos puede volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica. Alguna vez hemos podido comentar aquí de aquella simetría primera, cuando todas las fuerzas de la naturaleza estaban unidas en una sola fuerza y, a medida que el universo se enfrió en los infiernos del Big Bang, aquella simetría se rompió, y se desgajó en las cuatro fuerzas que ahora conocemos y, algunos dicen que, se formaron las cuatro dimensiones que podemos ver y, otras, quedaron confinadas en el límite Planck. La simetría quedó rota para siempre.
Así que las teorías se han embarcado a la de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
Recordemos que: “En griego, lasimetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría para los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético .”
De esa manera, como digo más arriba, buscar “la simplicidad primigenia” y, para ello, hacemos cábalas con dimensiones más altas que nos devuelva una simetría superior que nos lo explique todo y donde todo quepa sin que surjan los indeseables infinitos que aparecen cuando tratamos de juntar la Mecánica cuántica con la Relatividad general, es decir, cuando queremos unificar el “universo” de lo infinitesimal con el “universo” de lo muy grande.
Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos parte de ese Universo de simetría.
Los planetas son esféricos y, por ejemplo, simetría de rotación. Lo que quiere indicar es que poseen una característica -en este caso, su circular- que permanece invariante en la transformación producida cuando la Naturaleza los hace rotar. Las esferas pueden hacerse rotar en cualquier eje y en cualquier grado sin que cambie su “personalidad” , lo cual hace que sea más simétrica.
La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la Belleza
Sí, a nuestro alrededor podemos contemplar la simetría que en el Universo quedó rota. Así las cosas, nuestra imaginación que es libre de “volar” hacia espacios desconocidos y hacia escenarios imposibles, también puede, no sólo escenificar el Hiperespacio, sino que, llevando la fascinación aún más lejos, ¿Quién sabe? (como tantas veces hemos comentado), si los teóricos no habrán dado en el y, con su intuición “infinita”, haber podido vislumbrar que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas en un “universo hiper-dimensional” que no podemos ver pero que, está ahí.
¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!
Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío. Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo deca-dimensional era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. pues, el universo estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.
Lo cierto es que, estemos en el universo que podamos estar, lo que no podemos negar es que es… ¡bello!
Los físicos, en su incansable de respuestas, nos llevan a “cosas” como la “super-gravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿Qué es la super-gravedad? Meternos en esos berenjenales matemáticos sería algo engorroso y (para muchos) aburrido.
El italiano Sergio Ferrara, el estadounidense Daniel Freedman y el holandés Peter van Nieuwenhuizen fueron distinguidos este martes con el Premio Especial Breakthrough de Física Fundamental, conocido como el “Oscar de la Ciencia” y considerado tan prestigioso como el Nobel.
La super-gravedad resuelve los aparentes conflictos entre dos las teorías más fundamentales de la física: la mecánica cuántica -que describe el mundo microscópico de átomos y partículas- y la relatividad general de Einstein, que describe la fuerza de la gravedad y su impacto a escalas cósmicas
¿Qué pasa entonces con la super-gravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la . ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta de las leyes de la física? ¿Se podría conseguir eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.
Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, , sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.
En las explosiones de Supernovas está presente la Gravedad
Si la Gravedad llegara a ser una interacción fuerte, sería un verdadero desastre. No se puede ni imaginar lo que haría, en ese caso, la gravedad, tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.
Todo lo que conocemos acerca de la naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la naturaleza de la fuerza gravitatoria funciona espléndidamente, parte de un principio muy fundamental, uno que practicamente tiene que ser correcto: la gravedad es una propiedad del y el tiempo mismos. El y el Tiempo están “curvados” decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La fuerza Gravitatoria es la responsable de semejante rugosidad en el espacio-tiempo.
Hasta aquí, al menos sí hemos podido comprender. Sin embargo, cuando nos sumergimos en el océano profundo del hiperespacio y del universo extra-dimensional… ¡las cosas cambian! Estamos perdidos y, nuestras mentes no encuentran esa luz que ilumine el entendimiento para , de una vez por todas, todo eso puede estar ahí o, simplemte, son falsos escenarios que nuestras mentes imaginan para huir de la cruda realidad.
Claro que, por otra parte, como nos pasó con la paradoja del gato de Schrödinger que, al principio era tan extraña que uno podía recordar la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.
¡Lo que no sea capaz de nuestrsa imaginación! Y, a pesar de su “infinita riqueza, la Naturaleza la supera y contiene y ocurren cosas inimaginables.
Algunos, como Alejandro Jodorowsky piensan que:
“Si tenemos un cuerpo imaginario, es también necesario que nos demos cuenta que tenemos una mente imaginaria. Tenemos pensamientos inconscientes, percepciones olfativas, audiciones, tactos, visiones, sabores mucho más desarrollados que los que creemos “reales”. Vemos más de lo que creemos ver, oímos más de lo que creemos oír, gustamos más de lo que creemos gustar, olfateamos más de lo que creemos olfatear, percibimos con el tacto mucho más de lo que creemos percibir, pensamos más de lo que creemos pensar. No sentimos por completo nuestras sensaciones, tenemos pensamientos de los que no nos damos cuenta, vivimos dentro de limites perceptivos, provocados desde que nacemos por nuestra familia y luego por la sociedad. Nos sumergen en prejucios y concepciones anquilosadas de la realidad y de nosotros mismos. Debemos aprender a pensar con libertad, (no digo con “inteligencia”, digo con “libertad”). El mágico consiste en disolver los límites de nuestra inteligencia y de nuestras percepciones. Estos limites nos encierran en calabozos irreales que nos impiden a la conciencia suprema.”
Si realmente eso es, estaríamos limitados por nuestras propias concepciones del mundo. Sin embargo, ahí están los físicos teóricos que se salen del “régimen” establecido y, sus mentes generan e imagina mundos y universos que, siendo muy dispares de este nuestro que creemos real, podrían ser, los auténticos mundos y los auténticos paisajes que la Naturaleza trata de mostrarnos y que, nosotros, nos empecinamos en no ver.
Antes, para conocer el mundo, teníamos que hacer grandes viajes, realizar grandes aventureras de las que nunca sabíamos cómo podríamos salir. El riesgo y la ventura era el pan de cada día para aquellos que querían descubrir otras tierras, otros pueblos y culturas. Hoy día, las cosas han cambiado. No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Y, cualquier joven, sentado tranquilamente en su casa, con un potente , puede realizar “aventuras” que antes, eran imposibles.
Sentado cómodamente ante este sencillo conjunto de inventos tecnológicos, cualquier joven bien , puede construir e inventar “mundos” de inimaginable belleza. Y, lo que parecía un sueño, podrían recrear el de las galaxias, una colisión entre dos agujeros negros, e incluso, una explosión supernova.
Algunas veces me sorprendo al constatar que, algunas llegan a tu mente sin haberlas llamado en ese preciso momento. Son preguntas que te hacías hace mucho tiempo y que no tuvieron una respuesta adecuada. Sin embargo, la experiencia, el ir acumulando y algún que otro saber, finalmente determina esa llegada del por qué de las cosas. Todo, sin que nos demos , queda registrado en nuestras mentes y, en el momento oportuno… ¡surge como por arte de magia aquello que queríamos saber! Ciertos parámetros mentales retienen esas cuestiones complejas y, finalmente, la mente consigue llegar a la resolución deseada y correcta que aparece ante nuestros ojos y nos producen, a pesar de todo, algo de asombro de que podamos haber llegado tan lejos en la comprensión de la Naturaleza.
Cien mil neuronas, tántas como estrellas tiene nuestra Galaxia. Conexiones sin fin
¿Cuántas veces no habré puesto aquí imágenes como la de arriba que quiere significar las conexiones del cerebro que generan los pensamientos? Y, la cuestión es, que esas conexiones no se limitan a estar ahí en ese ámbito reducido que llamamos cerebro, sino que, utilizando ese otro “ente” inmaterial y que llamamos mente y que también nos mantiene conexionados con el Universo, del que, al fin y al cabo, formamos parte.
Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos. Sabemos que si variara la carga del electrón y la masa del protón en una diezmillonésima parte, las cosas serían totalmente diferentes, es decir, nosotros, no estaríamos aquí para comentar todas estas cuestiones.
Sin embargo, y a pesar de todo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros” con distintas percepciones y sentidos, pudiera ser un mundo muy distinto al que nosotros percibimos y, “ellos” podrían “ver” cosas que nosotros no vemos.
Vivímos en nuestra propia realidad, la que forja nuestra mente a través de los sentidos y la experiencia. Incluso entre nosotros mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de , sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.
No, no será nada despejar las incognitas presentes en esta inmensa complejidad que llamamos Universo. Pero, firmemente creo que las dimensiones extra están en nuestras Mentes, donde todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.
¡Qué complicado resulta ser todo!
emilio silvera
Sep
7
Debemos estar informados
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Es verdaderamente penoso que, desde los Gobiernos y los grandes Grupos de poder, se pretenda manipular las Mentes de la Gente que, preocupados por sus pequeños problemas: No llegamos a final de mes, la ristra de recibos mensuales, el niño que no estudia, el novio de la niña que no acaba de gustarnos, la hipoteca, el viejo coche…
Llegamos cansados a casa y, ponemos la TV que nos cuentan las mismas cosas una y otra vez y, al no tener información de otras fuentes… Nos creemos lo que nos cuentan, y, eso hace que no estemos informados de lo que verdaderamente ocurre.
La Sociedad actual está planificada para que unos pocos lo tengan todo y, el resto, lo pase bastante agobiado y escaso de medios. Los políticos no fan los servicios que deberían, miran más para ellos mismos que para el pueblo que representan, y, no digamos de lo que hacen los ricos, lo único que quieren es ser cada vez más ricos a costa del esfuerzo de los demás.
Es una pena lo que está pasando, vivir en el mundo que hemos construido es bastante difícil y penoso, y, si no ponemos remedio pronto… ¡Todo se irá al garete!
Da vergüenza ajena oír las propuestas, las leyes y lo que hacen estos políticos que, la mayor parte de las veces, retuercen la Ley tratando de que diga lo contrario de lo que pretendía el legislador.
Emilio Silvera
Sep
7
Velocidades inimaginables
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Una molécula es la porción mínima de una sustancia que conserva sus propiedades químicas y físicas. Cada molécula es un sistema constituido por un conjunto átomos organizados y enlazados. Estos átomos pueden ser de un mismo elemento o de elementos diferentes, en cuyo caso se denominan compuestos.
La agregación de proteínas está relacionada con más de 40 enfermedades humanas. A pesar de que este fenómeno es potencialmente dañino para la célula, la gran mayoría de proteínas presentan secuencias que las predisponen a agregar. La razón detrás de esta aparente contradicción es que la presencia de estas regiones implica una serie de ventajas estructurales y funcionales, siempre que se mantengan bajo control.
Transporte de sustancias
¿Qué es la materia? Llamamos materia a todo aquello que ocupa un lugar determinado en el universo o espacio, posee una cantidad determinada de energía y está sujeto a interacciones y cambios en el tiempo, que pueden ser medidos con algún instrumento de medición.
La materia está hecha de átomos
En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos).
El núcleo es una parte de 100.000 del átomo y el 99% de su masa
Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas sub-nucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.
Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿Cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.
Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.
Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético. Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:
E = mc2
Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividadtuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividadtambién sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz. El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.
Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista.
Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.
Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.
Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.
Tensor métrico
Leyendo el material enviado por un amigo al que pidió ayuda, Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.
No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas.
El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).
El electrón es poseedor de una carga eléctrica negativa; y, al girar el electrón sobre su propio eje genera un campo magnético que denominamos espín.
La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.
Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.
La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.
En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin mas.
La Gravedad mantiene unido los planetas alrededor del Sol
También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).
La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisenberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.
- La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
- La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
- Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.
La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.
La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.
Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.
Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.
La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.
La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros, o lo que es lo mismo, 0’000000000000001 metros.
La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.
La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.
Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.
Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.
Nombre | Símbolo | Masa (MeV) | Carga | Espín | Vida media (s) |
Fotón | γ | 0 | 0 | 1 | ∞ |
Leptones (L = 1, B = 0) | |||||
Electrón | e– | 0’5109990 | – | ½ | ∞ |
Muón | μ– | 105’6584 | – | ½ | 2’1970 × 10-6 |
Tau | τ | ||||
Neutrino electrónico | νe | ~ 0 | 0 | ½ | ~ ∞ |
Neutrino muónico | νμ | ~ 0 | 0 | ½ | ~ ∞ |
Neutrino tauónico | ντ | ~ 0 | 0 | ½ | ~ ∞ |
Mesones (L = 0, B = 0) | |||||
Pión + | π+ | 139’570 | 2’603 × 10-8 | ||
Pión – | π– | 139’570 | 2’603 × 10-8 | ||
Pión 0 | π0 | 134’976 | 0’84 × 10-16 | ||
Kaón + | k+ | 493’68 | 1’237 × 10-8 | ||
Kaón – | k– | 493’68 | 1’237 × 10-8 | ||
Kaón largo | kL | 497’7 | 5’17 × 10-8 | ||
Kaón corto | kS | 497’7 | 0’893 × 10-10 | ||
Eta | η | 547’5 | 0 | 0 | 5’5 × 10-19 |
Bariones (L = 0, B = 1) | |||||
Protón | p | 938’2723 | + | ½ | ∞ |
Neutrón | n | 939’5656 | 0 | ½ | 887 |
Lambda | Λ | 1.115’68 | 0 | ½ | 2’63 × 10-10 |
Sigma + | Σ+ | 1.189’4 | + | ½ | 0’80 × 10-10 |
Sigma – | Σ– | 1.1974 | – | ½ | 7’4× 10-20 |
Sigma 0 | Σ0 | 0 | ½ | 1’48 × 10-10 | |
Ksi 0 | Ξ0 | 1.314’9 | 0 | ½ | 2’9 × 10-10 |
Ksi – | Ξ– | 1.321’3 | – | ½ | 1’64 × 10-10 |
Omega – | Ω– | 1.672’4 | – | 1½ | 0’82 × 10-10 |
Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π–, al igual que ocurre con k+ y k–. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.
Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isospín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.
En el “universo” cuántico ocurren cosas muy extrañas
Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.
Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planck, h, dividido por 2π. Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.
El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electronespudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita.
Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.
Las partículas con espín entero se llaman bosones, y las que tienen espín entero más un medio se llaman fermiones. Consultado los valores del espín en la tabla anterior podemos ver que los leptones y los bariones son fermiones, y que los mesones y los fotones son bosones. En muchos aspectos, los fermionesse comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden ocupar o estar en el mismo punto, y su movimiento está regido por ecuaciones tales que se evitan unos a otros. Curiosamente, no se necesita ninguna fuerza para conseguir esto. De hecho, las fuerzas entre los fermiones pueden ser atractivas o repulsivas, según las cargas. El fenómeno por el cual cada fermión tiene que estar en un estado diferente se conoce como el principio de exclusión de Pauli. Cada átomo está rodeado de una nube de electrones, que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra, dando como resultado una fuerza repulsiva. Cuando aplaudimos, nuestras manos no se atraviesan pasando la uno a través de la otra. Esto es debido al principio de exclusión de Pauli para los electrones de nuestras manos que, de hecho, los de la izquierda rechazan a los de la derecha.
En contraste con el característico individualismo de los fermiones, los bosones se comportan colectivamente y les gusta colocarse todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones.
Cuando hemos hablado de las fuerzas fundamentales que, de una u otra forma, interaccionan con la materia, también hemos explicado que la interacción débil es la responsable de que muchas partículas y también muchos núcleos atómicos exóticos sean inestables. La interacción débil puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi, en 1934, estableció una fórmula general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marschak, Murray Gell-Mann, Richard Feynman y otros. La fórmula mejorada funciona muy bien, pero se hizo evidente que no era adecuada en todas las circunstancias.
En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:
La interacción débil, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de …
- La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
- Comparada con las demás interacciones, ésta tiene un alcance muy corto.
- La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar tales sucesos.
- Los mediadores de la interacción débil, llamados W+, W– y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.
A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).
La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.
Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13 cm aproximadamente).
La interacción es fuerte. En realidad, la más fuerte de todas.
Lo dejaré aquí, en verdad, el Modelo Estándar de la Física, es feo, complejo e incompleto y, aunque hasta el momento es una buena herramienta con la que trabajar, la verdad es que, se necesita un nuevo modelo más avanzado y que incluya la Gravedad.
Veremos que nos trae de nuevo el LHC con experimentos que utilicen más energía, es decir, más de 14 TeV. Quieren buscar, entre otras cosas, las partículas que conforman la “materia oscura” (sin saber si esa clase de materia es realmente cierta).
emilio silvera
Sep
7
Tenemos limitaciones y somos frágiles
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Los fotones son absorbidos por cerca de 126 millones de células sensibles a la luz. Y nuestro cerebro traduce las diferentes energías y direcciones de los fotones en formas y colores que nos permiten ver el mundo en tecnicolor. Nuestra visión es sin duda maravillosa, pero no está exenta de limitaciones.
Un ojo humano sano tiene tres tipos de conos (las células fotosensibles situadas en la retina). Cada uno de ellos puede registrar cerca de 100 tonalidades. Por esta razón, la mayoría de los investigadores sostiene que podemos distinguir alrededor de un millón de colores.
Aun así, la percepción de los colores es una habilidad muy subjetiva que cambia de persona en persona, con lo cual establecer un número determinado es muy difícil. De todas las maneras, el ojo humano está muy limitado, sólo percibe los objetos de su macro-mundo, no puede vislumbrar aquellos otros objetos que, pertenecientes al mundo de lo micro, se escapan a su limitada visión.
¿Habéis tenido alguna vez la oportunidad de utilizar un microscopio para observar algo? Las cosas cambian mucho, como ocurre con estos objetos de nuestra vida cotidiana vistos al microscopio.
Un copo de nieve visto al microscopio.
Arena de playa
No, no es una pelota, es tiza
No tratan de construir una pirámide, es Sal común
Los glóbulos rojos
¡Es la punta de nuestros cabellos!
En una simple mota de polvo hay mucha más de lo que podemos ver a simple vista
Así es el grafito de la punta del lápiz
Aquí el polen que tanta guerra da a los alérgicos
No le deis más vuelta, es un simple poro por donde sudamos las personas
Alucinante lo que hace un microscopio electrónico de barrido, aquí vemos microfibras y microesferas de fibra textil.
Maravillas vegetales microscópicas
En este lugar se recogen los datos que envían los sentidos captados en el mundo exterior, se archivan y quedan a la espera de que sean requeridos, y, también, se utilizan para generar ideas y pensamientos.
Hemos sabido captar los latidos del corazón humano y, ahora, sabemos de ese órgano más que de nosotros mismos.
Con el microscopio electrónico podemos captar imágenes que no parecen de este mundo, y, simplemente se trata de ese otro “universo” de lo muy pequeño que convive con nosotros y no podemos ver con el ojo desnudo.
Sí, amigos míos, existen otros mundos pero están… ¡En este!
Para conocer nuestro porpio mundo y saber del Universo que nos acoge, hemos tenido que inventar ingenios que suplan nuestras carencias y nos lleven a la más lejana región de las partículas subatómicas…
“Esta es la primera vez que todos los átomos de una molécula son fotografiados,”
Grano de maíz
Los grandes telescopios nos llevaron hasta las galaxias lejanas
Así, con todo lo que anteriormente hemos visto, podemos decir que hemos llegado a conocer, de manera aceptable, el entorno cercano y lejano que nos rodea, y, sin embargo, a ninguno de esos dos extremos (de lo muy pequeño y de lo muy grande podemos ir. Cada uno de ellos tiene sus prohibiciones y nosotros, sólo desde lejos los podemos visitar.
Quizás algún día, muy lejos aún en el futuro, podamos al menos, hacer viajes a ese macro mundo de las galaxias, cuando separamos qué es, en realidad la energía y podamos “burlar” que no vencer, a la velocidad de la luz. Hasta que eso no llegue, seguiremos confinados en la Tierra conviviendo con “criaturas” que ni podemos ver.
emilio silvera
Sep
7
La estrella más cercana y un planeta ¿Habitable?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
No dejan de darle vuelas y más vueltas a Próxima Centauro y su planeta ¿habitable? Siguen haciendo cábalas para enviar allí alguna nave que explore las posibilidades de vida de aquel mundo situado a 4.3 años luz de nosotros. Es un sueño como otro cualquiera, ya que, si la “nave” viaja a unos 70.000 Km/h podríamos tardar más de 60.000 años en llegar, y, si eso es así (que lo es), ¿Qué sentido tiene el viaje?
Un viaje de este tipo, sin pasajeros ante la imposibilidad de tener naves adecuadas para ello, creo que solo serviría para gastar una fortuna con poca rentabilidad. Dentro de 60.000 años… ¿Quién andará por aquí? Y, además, los mensajes que nos mandaran desde allí tardarían años en llegar y otros tantos años en responder.