jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sí, pero no están todos los que son

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ya lo dijo aquel Presidente de la Sociedad Española de Matemáticos: “Las distintas ramas de la Ciencia crecen del árbol en el que una rama será la Física, otra la Química, la Filosofía, la Astrofísica, la Medicina, ..

Alguien preguntó: ¿Qué pasa con las matemáticas?

Bueno, las Matemáticas son las raíces del árbol, sin ellas las ramas del árbol no crecerían.

“Las ramas de la ciencia, disciplinas científicas, o simplemente ciencias, se suelen dividir en tres grupos: ciencias formales, ciencias naturales, y ciencias humanas o ciencias sociales. Estas conforman las ciencias básicas, sobre las que se apoyan las ciencias aplicadas como la ingeniería y la medicina.”

Las ramas de la ciencia, disciplinas científicas, o simplemente ciencias, se suelen dividir en tres grupos: ciencias formales, ciencias naturales, y ciencias humanas o ciencias sociales. Estas conforman las ciencias básicas, sobre las que se apoyan las ciencias aplicadas como la ingeniería y la medicina.

El origen de las matemáticas se sitúa en muchos lugares pero… Yo me quedaría con la India, allí se inventó el cero

¡El Universo! Lleno de sucesos misteriosos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                Detectan el choque entre un agujero negro y un misterioso objeto astrofísico

Detectan el choque entre un agujero negro y un misterioso objeto astrofísico

Cuando hablamos de un agujero negro estamos hablando de un objeto con un campo gravitacional tan intenso que su velocidad de escape supera la velocidad de la luz. Los agujeros negros se forman cuando las estrellas masivas colapsan al final de sus vidas. Un objeto que se colapsa se convierte en un agujero negro cuando su radio se hace menor que un tamaño crítico, conocido como radio de Schwarzschild, y la luz no puede escapar de él.

 

Cartografían la región alrededor del horizonte de sucesos de un agujero negro | National Geographic

 

La superficie que tiene este radio crítico se denomina horizonte de sucesos, y marca la frontera dentro de la cual esta atrapada toda la información. De esta forma, los acontecimientos dentro del agujero negro no pueden ser observados desde fuera. La teoría muestra que tanto el espacio como el tiempo se distorsionan dentro del horizonte de sucesos y que los objetos colapsan a un único punto del agujero, que se llama singularidad, situada en el propio centro del agujero negro. Los agujeros negros pueden tener cualquier masa.

 

                                       NASA presenta gifs hipnóticos de la rotación de un agujero negro

NASA presenta gifs hipnóticos de la rotación de un agujero negro

Pueden existir agujeros negros supermasivos con cientos de miles de masas solares, verdaderos montruos, en los centros de las galaxias activas. En el otro extremo, miniagujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del Big Bang.

 

 

Resultado de imagen de Estrellas que agotan el combustible nuclear y explosionanResultado de imagen de Estrellas que agotan el combustible nuclear y explosionanResultado de imagen de Aquí un púlsar atrae a una enana roja

 

El proceso comienza al final de la vida de las estrellas que, dependiendo de sus masas, serán enanas blancas, estrella de neutrones, o, en último lugar, Agujeros Negros, los más masivos y densos. Se habla ahora de la existencia de las estrellas de Quarks que, de existir, estarían en el punto intermedio entre las de neutrones y los agujeros negros.

Nunca se ha observado directamente un agujero negro. Kart Schwarzschild (1.837 – 1.916), dedujo la existencia de agujeros negros a partir de las ecuaciones de Einstein de la relatividad general de 1.915 que, al ser estudiadas en 1.916, un año después de la publicación, encontró en estas ecuaciones que existían tales objetos supermasivos.

Antes, en la explicación sobre las estrellas, queriendo dejarlo para este momento, deje de explicar lo que hace el equilibrio en la vida de una estrella. La estrella está formada por una inmensa nube de gas y polvo que a veces tiene varios años luz de diámetro. Cuando dicho gas (sus moléculas) se va juntando se produce un rozamiento que ioniza los átomos de la nube de hidrógeno que se juntan y se juntan cada vez más, formando un remolino central que gira atrayendo al gas circundante, que poco a poco va formando una inmensa bola. En el núcleo, la fricción es muy grande y las moléculas apretadas al máximo por la fuerza de gravedad, por fin produce una temperatura de varios millones de grados K que es la causante de la fusión de los protones que forman esos átomos de hidrógeno. La reacción que se produce es una reacción en cadena; comienza la fusión que durará todo el tiempo de vida de la estrella. Así nacen las estrellas cuyas vidas están supeditadas al tiempo que tarde en ser consumido su combustible nuclear, el hidrógeno que mediante la fusión es convertido en helio.

 

La estrella más grande nunca vista | Ciencia

Resultado de imagen de Estrellas supermasivas azuladas

 

Es estas regiones comienza la historia de lo que muchos millones de años más tarde, será un agujero negro. Estrellas nuevas supermasivas, azuladas y de intensa radiación ultravioleta (como esa que vemos abajo a la derecha), un día lejano en el tiempo llegará a su final y se convertirá en supernova, lanzando las capas exteriores de su masa al espacio interestelar y, el resto de la estrella, quedando libre de la fuerza de radiación que producía la fusión nuclear, quedará a merced de la fuerza de Gravedad que, haciendo su trabajo, la comprimirá hasta extremos insospechados convirtiéndola en un Agujero Negro. Si la masa es más pequeña (2 – 3 masas solares) será una estrella de neutrones, ya que, al ser comprimido los protones y electrones allí presentes, se fusionaran para convertirse en neutrones que, al sentirse estrechamente empaquetados, se degenerarán e impedirán que la masa de la estrella siga comprimiéndose.

 

Las estrellas más grandes conocidasUY Scuti: así es las estrella más grande conocida

 

Las estrellas muy grandes, conocidas como supermasivas, son devoradoras de hidrógeno y sus vidas son mucho más cortas que el de las estrellas normales. Una vez que se produce la fusión termonuclear, se ha creado el equilibrio de la estrella; veamos como. La inmensa masa que se juntado para formar la estrella genera una gran cantidad de fuerza de gravedad que tiende a comprimir la estrella bajo su propio peso. La fusión termonuclear generada en el núcleo de la estrella, hace que la estrella tienda a expandirse. En esta situación, la fusión que expande y la gravedad que contrae, como son fuerzas similares, se contrarresta la una a la otra y así la estrella continua brillando en equilibrio perfecto.

 

 

Resultado de imagen de Implosión de una estrella agotado su combustible nuclear de fusión

Implosión de una estrella cuando agota todo el combustible nuclear de fusión

Pero, ¿Qué ocurre cuando se consume todo el hidrógeno?

 

Nunca habíamos visto algo así”: Agujero negro arroja material años después de triturar una estrella - La Tercera

Observan un fenómeno extraño: Agujero negro eyecta material años después de tragarlo

Pues que la fuerza de fusión deja de empujar hacia fuera y la gravedad continúa (ya sin nada que lo impida) hasta conseguir que la masa de la estrella implosiones, es decir, caiga sobre sí misma contrayéndose más y más hasta llegar a tener una densidad enorme y un radio mucho más pequeño que el original. El resultado final dependerá de la masa inicial y conforme a ella se produce la transición de fase hacia una u otra clase de estrella.

Según sean estrellas medianas como nuestro Sol, grandes o muy grandes, lo que antes era una estrella, cuando finaliza el derrumbe o implosión, cuando la estrella es aplastada sobre sí misma por su propio peso, tendremos una estrella enana blanca, una estrella de neutrones o un agujero negro.

 

Resultado de imagen de nebulosa planetaria NGC 2440

 

Como si fuera una mariposa, esta estrella enana blanca comienza su vida envolviéndose en un capullo. Sin embargo, en esta analogía, la estrella sería más bien la oruga y el capullo de gas expulsado la etapa verdaderamente llamativa y hermosa. La nebulosa planetaria NGC 2440 contiene una de las enanas blancas conocidas más calientes. La enana blanca se ve como un punto brillante cerca del centro de la fotografía. Eventualmente, nuestro Sol se convertirá en una “mariposa enana blanca”, pero no en los próximos 5 mil millones de años. Las estrellas conocidas como “enanas blancas” pueden tener diámetros de sólo una centésima del Sol. Son muy densas a pesar de su pequeño tamaño.

Sí, en el Universo son muchas las cosas que existen para nuestro asombro y, no pocas veces, nuestras mentes tienen que hacer un alto en el camino, para pensar profundamente, hasta llegar a comprender lo que allí existe y como llegó a poder formarse.

 

Resultado de imagen de Cygnus X-1.el agujero negro del centro de la Galaxia

 

Alrededor del agujero negro puede formarse un disco de acreción cuando cae materia sobre él desde una estrella cercana que, para su mal, se atreve a traspasar el horizonte de sucesos. Es tan enorme la fuerza de gravedad que genera el agujero negroque, en tal circunstancias, literalmente hablando se come a esa estrella compañera próxima. En ese proceso, el agujero negro produce energía predominantemente en longitudes de onda de rayos X a medida que la materia está siendo engullida hacia la singularidad. De hecho, estos rayos X pueden ser detectados por satélites en órbita. Se ha localizado una enorme fuente de rayos X en el centro mismo de nuestra galaxia. En realidad han sido varias las fuentes localizadas allí, a unos 30.000 años luz de nosotros. Son serios candidatos a agujeros negros, siendo el más famoso Cygnus X-1.

 

Archivo:Accretion disk.jpg

 

Esta es una de las representaciones artísticas que nos hacen de Signus X-1. Es un ejemplo clásico de una Binaria de Rayos X, un sistema binario formado por un objeto compacto, que puede ser un agujero negro o una estrella de neutrones, y la estrella supergigante azul azul HDE 226868 de magnitud aparente 8,9. Como en toda binaria de rayos X, no es el agujero negro el que emite los rayos X, sino la materia que está a punto de caer en él. Esta materia (gas de plasma) forma un disco de acreción que orbita alrededor del agujero negro y alcanza temperaturas de millones de Kelvin que, quizás un día lejano aún en el futuro, podamos aprovechar como fuente de energía inagotable.

 

Resultado de imagen de En los núcleos de las galaxias

 

En los núcleos de las galaxias se han detectado las radiaciones que son propias de la existencia allí de grandes agujeros negros que se tragan toda la materia circundante de gas y polvo e incluso de estrellas vecinas. El espacio a su alrededor se curva y el tiempo se distorsiona.

Existen varias formas teóricamente posibles de agujeros negros.

  • Un agujero negro sin rotación ni carga eléctrica (Schwarzschild).
  • Un agujero negro sin rotación con carga eléctrica (Reissner-Nordström).

En la práctica es más fácil que los agujeros negros estén rotando y que no tengan carga eléctrica, forma conocida como agujero negro de Kerr. Los agujeros negros no son totalmente negros; la teoría sugiere que pueden emitir energía en forma de radiación Hawking.

 

 

La estrella supermasiva, cuando se convierte en un agujero negro se contrae tanto que realmente desaparece de la vista, de ahí su nombre de “agujero negro”. Su enorme densidad genera una fuerza gravitatoria tan descomunal que la velocidad de escape supera a la de la luz, por tal motivo, ni la luz puede escapar de él. En la singularidad, dejan de existir el tiempo y el espacio; podríamos decir que el agujero negro está fuera, apartado de nuestro universo, pero en realidad deja sentir sus efectos ya que, como antes dije, se pueden detectar las radiaciones de rayos X que emite cuando engulle materia de cualquier objeto estelar que se le aproxime más allá del punto límite que se conoce como horizonte de sucesos.

Con la explicación anterior he querido significar que, de acuerdo con la relatividad de Einstein, cabe la posibilidad de que una masa redujera sin límite su tamaño y se autoconfinara en un espacio infinitamente pequeño y que, alrededor de esta, se forme una frontera gravitacional a la que se ha dado el nombre de horizonte de sucesos. He dicho al principio de este apartado que en 1.916, fue Schwarzschild el que marca el límite de este horizonte de sucesos para cualquier cuerpo celeste, magnitud conocida como radio de Schwarzschild que se denota por: 

 

Resultado de imagen de el radio de Schwarzschild

 

Siguiendo la fórmula de arriba de la imagen: M es la masa del agujero negroG es la constante gravitacional de Newton, y c2es la velocidad de la luz elevada al cuadrado. Así, el radio de Schwarzschil para el Sol que tiene un diámetro de 1.392.530 Km, sería de sólo tres kilómetros, mientras que el de la Tierra es de 1 cm: si un cuerpo con la masa de la Tierra se comprimiera hasta el extremo de convertirse en una singularidad, la esfera formada por su horizonte de sucesos tendría el modesto tamaño de una bolita o canica de niños. Por otro lado, para una estrella de unas 10 masas solares el radio de Schwarzschild es de unos 30 kilómetros. Que para nuestro Sol, como he dicho antes, se quedaría en sólo tres kilómetros, tal es su grado de encogimiento sobre sí mismo.

Por otra parte, los acontecimientos que ocurren fuera del horizonte de sucesos en un agujero negro, tienen un comportamiento como cualquier otro objeto cósmico de acuerdo a la masa que presente. Por ejemplo, si nuestro Sol se transformara en un agujero negro, la Tierra seguiría con los mismos patrones orbitales que antes de dicha conversión del Sol en agujero negro.

 

 

Resultado de imagen de La singularidad del agujero negro

 

Ahora bien, y en función de la fórmula anteriormente descrita, el horizonte de sucesos se incrementa en la medida que crece la masa del agujero a medida que atrae masa hacia él y se la traga introduciéndola en la singularidad. Las evidencias observacionales nos invitan a pensar que en muchos centros de galaxias se han formado ya inmensos agujeros negrossupermasivos que han acumulado tanta masa (absorciones de materia interestelar y estrellas) que su tamaño másico estaría bordeando el millón de masas solares, pero su radio de Schwarzschil no supera ni las 20 UA (unidad astronómica = 150 millones de Km), mucho menor que nuestro sistema solar.

 

 

Resultado de imagen de La singularidad del agujero negro

 

 

La singularidad es el pico de abajo que llega a desaparecer de la vista, la densidad adquirida por la materia es tan inmensamente grande que, parece como si hubiera entrado en otro mundo. Sin embargo, su infinita fuerza de gravedad se deja sentir y atrae a todos aquellos objetos que, en las cercanias de sus dominios, osen traspasar el horixonte de sucesos, es decir, la línea de irás y no volverás.

Comprender lo que es una singularidad puede resultar muy difícil para una persona alejada de la ciencia en sí.

Es un asunto bastante complejo el de la singularidad en sí misma, y para los lectores más alejados de los quehaceres de la física, será casi imposible aceptarla. En el pasado, no fue fácil su aceptación, a pesar de las conclusiones radicales que expuso Kart Schwarzschild en su trabajo inspirado en la teoría y ecuaciones de Einstein. De hecho, hasta el mismo Einstein dudó de la existencia de tales monstruos cosmológicos. Incluso durante largo tiempo, la comunidad científica lo consideró como una curiosidad teórica. Tuvieron que transcurrir 50 años de conocimientos experimentales y observaciones astronómicas para empezar a creer, sin ningún atisbo de duda, que los agujeros negros existían realmente.

 

Resultado de imagen de La singularidad del agujero negro

 

Sí, es posible que una vez que hayamos representado la singularidad mediante las matemáticas de la relatividad general, la única otra manera de hacerlo sea en el interior de nuestras mentes, imaginando lo que puede ser. Claro que, también la imagen pueda estar refiriéndose a que, nuestras mentes también son singularidades de la materia que han llegado a ser conscientes.

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión. La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir. Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.

 

Resultado de imagen de Un pulsar atrae a una enana roja

 

                      Aquí un púlsar atrae a una enana roja

 

Estrellas de Neutrones que, con sus campos magnéticos influyen en todo el espacio circundante y, sus pulsos luminosos cuando se dejan ver como púlsares, son como los faros del cielo que avisan a seres de mundos lejanos, que maravillas como esa están ahí.

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Oppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.

 

Resultado de imagen de En los alrededores de un agujero negro

 

Alrededor de un agujero negro, y, en objetos cercanos a él, se pueden ver efectos extraordinarios que finalizan con su desaparición dentro del Agujero Negro que, los engulle y cada vez se hace más y más poderoso. Algunos son verdaderos monstruos del Universo y llegan a poseer miles de millones de masas solares. ¿Os imaginais dar un paseo por sus cercanias?

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Malher (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros, las cuestiones que de ellas se derivan y otras consecuencias de densidad, energía, gravedad, ondas gravitacionales, etc, que son deducidas a partir de estos fenómenos del cosmos.

 

 

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca la singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

  • debe ser una superficie nula donde es pareja, generada por geodésicas nulas;
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espaciotiempo como el espaciotiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de Einstein y, como un tema que se relaciona con la entropía en los agujeros negros.

 

Resultado de imagen de El espacio se distorsiona en un agujero negroResultado de imagen de El espacio se distorsiona en un agujero negro

 

El espacio se distorsiona en presencia de grandes masas. ¿Qué transformaciones no sufrirá en presencia de un Agujero Negro?

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de una singularidad como un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque esta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape

 

foto

 

Cada cuerpo, según su masa, exige una velocidad para poder escapar de él. La Tierra exige 11 km/s

 

Para el caso de fotones u objeto sin masa, tales como neutrinos, se sustituye la velocidad de escape por la de la luz c2.

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. El objeto que escapa puede ser cualquier cosa, desde una molécula de gas a una nave espacial. Como antes he reflejado está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo del que pretende escapar (del núcleo). Un objeto que se mueva a velocidad menor a la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica.

 

 

Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

 

Objeto Velocidad de escape
La Tierra ………….11,18 Km/s
El Sol ………….617,3 Km/s
Júpiter ……………59,6 Km/s
Saturno ……………35,6 Km/s
Venus ………….10,36 Km/s
Agujero negro ….+ de 299.000 Km/s

 

Ponernos a comentar sobre objetos y fenómenos que en el Universo están presentes, puede llegar a sar fascinante. A medida que nos sumergimos en las complejidades de las cosas, los procesos mediante los cuáles cambian para convertirse en otras diferentes de las que en un principio eran, los ritmos y energías, las fuerzas fundamentales que actúan sobre ellos… ¡Es una maravilla!

emilio silvera

Nuestro sueño de ir a otros mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

               Ilustración de la estrella enana ultrafría TRAPPIST-1 y de sus tres planetas. (ESO)

          Ilustración de la estrella enana ultra-fría TRAPPIST-1 y de sus tres planetas. (ESO)

 

                             Resultado de imagen de TRAPPIST-1

                  El sistema de TRAPPIST-1 puede tener hasta 3 planetas habitables

En la actualidad nos parece cosa cotidiana el anuncio de las Agencias Espaciales de EE. UU. y de Europa cuando anuncian el descubrimiento de nuevos planetas que, alumbrados por alguna estrella y situados a la distancia adecuada, podría tener las condiciones para la Vida. NO hace mucho podíamos leer en las noticias:

“Tres planetas potencialmente habitables que orbitan alrededor de una estrella enana ultrafria (TRAPPIST-1) a tan sólo 40 años luz de la Tierra, fueron descubiertos por un un equipo internacional de astrónomos desde el Observatorio La Silla, 470 kilómetros al norte de Santiago de Chile.”

 

voyager 1

 

Claro que todos esos descubrimientos sólo nos podrán ser válidos para dentro de muchas décadas o siglos, ya que, nuestras tecnologías están en pañales para poder realizar viajes del calibre requerido en expediciones a otros mundos situados fuera del Sistema solar.

Acordémonos de que la NASA tardó un año en averiguar que la Voyager 1 había salido del Sistema solar, y, lo anunció hace relativamente poco tiempo, cuando el lanzamiento del Ingenio espacial data del año 1977 y ha tardado cerca de 40 años en sumergirse en la región exterior a la que no llegan las partículas del Sol.

 

 

Cuando pasen unos 5.000 millones de años, nuestro Sol, agotado el combustible nuclear de fusión, se convertirá en una Gigante roja (proceso que durará unos 600 millones de años) que engullirá a los planetas interiores, y, entonces, la vida, dejará de existir tal como la conocemos. Cuando  alcance su tamaño máximo, que se estima será casi 260 veces mayor y su luminosidad que llegará a 2 700 veces más de la que tiene hoy.

Nuestro Sol, cada segundo, fusiona 4.654.600 Toneladas de Hidrógeno, en 4.650.000 Toneladas de Helio y, las 4.600 Toneladas que en la transmutación se “pierden”, son lanzadas al Espacio Interestelar en forma de luz y de calor. Una pequeña fracción de esa luz y de ese calor (2.000 millonésimas), llega a nuestro planeta para que la Vida sea posible y se produzca el ciclo de la fotosíntesis entre otros beneficiosos fenómenos naturales.

 

             Descubren el planeta habitable más cercano a la Tierra

 

Simulación de Proxima b en la órbita de su estrella, la enana roja Proxima Centauri (ESO/M. Kornmesser)

El empeño que tenemos de seguir oteando el Espacio Exterior y vigilando estrellas que, parecidas a nuestro Sol, puedan contener planetas en órbita que sean idóneos para la Vida, no es gratuito, ya que, aunque aún falta mucho tiempo, si conseguimos continuar por aquí, el suceso llegará y necesitaremos otros lugares en los que asentar colonias humanas.

 

Hallan tres planetas que pueden ser habitables alrededor de una estrella enana y fríaDescubren tercer posible planeta que orbita la estrella más cercana al Sol

                           Planetas habitables en estrellas cercanas

 

Claro que, por muchos motivos, las cosas no serán nada fáciles y, no todos los mundos tienen las condiciones de la Tierra. Aunque puedan ser habitables sus variables pueden ser inmensas, y, habrá que adaptarse a nuevas condiciones naturales distintas de las de la Tierra.

 

                          Imagen relacionada

 

Plantas con dos soles y con varias “lunas”, con unas condiciones climáticas distintas a las de la Tierra, con estrella que al no ser de la misma clase que nuestro Sol (G2V amarillo), nos enviarán una luz distinta que cambiará el color de las plantas y los paisajes…

Ciberestética: Paisajes de imaginación digitalizadosDos mundos, planetas, montañas, cielo azul, lago, Fondo de pantalla HD | Peakpx

 

Claro que, llegado ese momento, no tendremos otra salida, habrá que adaptarse a lo que podamos encontrar y que sirva para sustentar nuestras vidas. De los muchos planetas que para entonces tendremos a nuestra disposición, unos serán más idóneos que otros pero… ¡Nos olvidamos de lo más importante! CÓMO LLEGAR HASTA ELLOS.

 

                 Descubren dos nuevas supertierras y una tercera candidata en una estrella vecina al sistema solar

 

 Imagen distribuida por el Observatorio Europeo Austral (ESO) el 24 de agosto de 2016 que muestra una recreación artística del cielo en torno a la estrella Alpha Centauri AB, y la enana roja Proxima Centauri, la estrella más cercana al Sistema Solar (Observatorio Europeo Austral/AFP

El rumor era cierto. Próxima Centauri, la estrella más cercana al Sol, alberga un planeta. Un mundo que además, se parece a la Tierra y está situado a una distancia de su estrella que en teoría, le permitiría tener agua líquida, un requisito necesario aunque no suficiente para que pudiera albergar algún tipo de vida.

Próxima b, como ha sido bautizado, se convierte por tanto en el planeta más cercano a la Tierra encontrado fuera del Sistema Solar. En el catálogo de exoplanetas (como se denominan los planetas fuera de nuestro sistema) hay más de 2.000 mundos de características y tamaños muy diversos, pero hasta ahora no se había encontrado ninguno tan cercano.

 

Proxima Centauri: la estrella más cercana |

                  Imagen de Próxima Centauri, tomada por el telescopio espacial Hubble (NASA

Esta es la estrella que orbita ese posible planeta habitable y, se encuentra fuera del Sistema solar a 4,2 años luz de nosotros y una distancia de 4,2 años-luz es equivalente a casi 40 billones de kilómetros, un 4 seguido de 13 ceros. Comparemos esto con cifras asociadas a la actividad humana en el espacio hasta la fecha. La máxima distancia de la Tierra a la que los humanos han volado se alcanzó en abril de 1970 cuando la tripulación del Apolo 13 pasó por detrás de la Luna a una altitud de 254 km sobre su superficie, lo que la situó a 400.171 km de la Tierra. Esto es apenas 1,33 segundos-luz de distancia, la máxima a la que ha estado el ser humano hasta el día de hoy. Los ingenios no tripulados, sí alcanzaron distancias más largas pero, eso no nos valdría. Además, fijaos que el Voyager-1 ha tardado 40 años en salir del Sistema solar. ¿Qué nave se necesitaría para hacer un viaje con garantías a Próxima CEntauri.

El calculo realizado con la velocidad que pueden alcanzar nuestras “naves” actuales de unos 50/60.000 Km/h, podríamos ir a Próxima Centauri en un viaje que duraría 30.000 años. ¿Cuántas generaciones tendrían que pasar hasta llegar allí. Además, habrá que contar con los imprevistos (que los habría), con las carencias de la nave no preparada para ese viaje y pondría en peligro la integridad de los viajeros. Cuando oímos decir que vamos a ir a Marte (mucho más cerca) en unos años… ¡Me entra la risa!

 

                       

                      Estrellas más cercanas al Sol con distancias expresadas en años-luz

Con estos datos en la mano nos podemos desilusionar un poco, ya que, llegamos a comprender que, en ese ámbito de los Viajes Espaciales, estamos aún muy lejos de poder decir que dominamos la técnica de ir a otros planetas, ya que, no podríamos garantizar la seguridad física de los viajeros. Ahora estamos comenzando a vislumbrar ese futuro (aún muy lejos) en el que nuestros descendientes puedan visitar los planetas más cercanos de manera habitual.

 

Capturafff

Cuando hablamos acerca de por qué es tan difícil ir a Marte, tal vez el ambicioso próximo objetivo a conquistar en nuestro sistema solar, vemos que las dificultades para posar allí seres humanos derivaban principalmente de la distancia a ese planeta. Y, sin embargo, cuando trasladamos a unidades de tiempo-luz los 55 millones de km de distancia más cercana o los 400 millones de km de distancia más lejana a la que la Tierra puede estar del planeta en su recorrido orbital alrededor del Sol, estas distancias resultan ser equivalentes a 3 minutos-luz y a 22 minutos-luz respectivamente, comparables a los 8,3 minutos-luz que nos separan de nuestra propia estrella. Ciertamente, estas distancias palidecen ante la de Próxima b a pesar de ser el exoplaneta más cercano a nosotros.

 

Sonda Voyager 1. Fuente: NASA/JPL-Caltech.

A día de hoy, la sonda Voyager 1, lanzada al espacio en 1977, es el artefacto humano que más se ha alejado de nuestro sistema solar. La Voyager 1 entró en el espacio interestelar en agosto del 2012 y en la actualidad se encuentra mucho más lejos que Plutón, a algo más de 20 mil millones de kilómetros del Sol, una distancia absolutamente increíble, pero que es de tan solo casi 19 horas-luz, una distancia que sigue siendo imperceptible frente a los 4,2 años-luz que nos separan de nuestra estrella más cercana fuera del Sistema Solar y de su planeta.

                            Alfa Centauri. ¿Qué esconde el sistema estelar más cercano a nosotros? - YouTube

 

Alpha Centauri situada a 4,3 años luz de nosotros nos obligaría a recorrer 41,3 billones de kilómetros de distancia para poder llegar hasta ella. Y, si tenemos en cuenta las velocidades máximas que pueden alcanzar nuestras navez actuales… ¿Cuándo llegaríamos hasta el planeta más cercano que orbita Próxima Centauri y que, posiblemente, sea habitable?

 

https://genesisnanotech.files.wordpress.com/2014/11/star_trek_space_station.jpg

 

Inmensas Naves surcarán los Espacios Siderales en ese futuro que nunca podremos conocer. Tan grandes como ciudades y en las que, dotadas de toda clase de adelantos: Hospitales, Escuelas, lugares de cultivo hidrophónico, Laboratorios de todo tipo y, en definitiva, irán dotadas de todo aquello que los “habitantes aventureros” pudieran necesitar. No digamos de las tecnologías de a bordo que, como los materiales inteligentes capaces de repararse así mismo en caso de una colisión con micro-meteoritos, la gravedad simulada terrestre… ¡Y un sin fin de adelantos que ahora, ni podemos imaginar! Esas serán las naves que podrán llevar a nuestros descendientes a otros planetas antes de que el Sol, agotado, se despida para siempre antes de convertirse en una Gigante roja primero y en una enana blanca después que se situará en el centro de una bonita Nebulosa Planetaria.

emilio silvera

Caprichos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

        File:Orion Arm.JPG

 

El concepto de vecindad es relativo e indefinido. Su valor puede variar según sean las distintas medidas de celeridad de los medios habituales de comunicación y según sea la extensión dentro de la cual sirva de medida de relación.

 

                              Resultado de imagen de La Luna como vecina de la Tierra

 

Con el empleo de la expresión “vecina” va siempre implícita o sugerida la idea de que existe una región que no es vecina. La vecina persistente de la Tierra es la Luna; los cometas son sólo visitantes ocasionales. Podemos considerar vecinas del Sol a las estrellas situadas a una distancia comprendida entre los cincuenta y cien años-luz, dejando excluidos a los miles de millones de estrellas de la Vía Láctea. Los planetas y los cometas no son vecinos del Sol, sino miembros de su familia, y los bólidos serían una especie de parásitos cósmicos.

Pero mi intención al comenzar este comentario, era el de exponer aquí alguno de los muchos caprichos cósmicos que en el Universo podemos contemplar y, en este caso concreto, me he decidido por contaros lo siguiente:

R LEPORI

 

                                               

 

“Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”. R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelaciónde Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind. A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbonooxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.”

 

                          Resultado de imagen de Rigel

 

Como nos dice más arriba la enciclopedia, cerca de la famosa estrella Rigel (Beta Orionis), la débil constelación de Lupus (la Liebre) es escenario cada catorce meses de un prodigio de la evolución estelar: R Leporis, la estrella carmesí, cobra vida y regala a los astrónomos toda su belleza al encender en la oscuridad del cielo el resplandor de color rojo más acentuado que puede observarse a través de un telescopio. La encontró el astrónomo inglés John Russell Hind en el año 1845 y dijo de ella, estupefacto, que era como una “gota de sangre”. Desde aquel día, el espectáculo celeste se repite periódicamente cada año y dos meses, cuando R Leporis abandona la oscuridad y resplandece como un candil en un área del firmamento casi vacía de estrellas que contrasta con el fulgor de los soles azules que forman la constelación de Orión.

 

El color de las estrellas « La bitácora de Galileo » Astronomía elemental

                                                                      Estrella Carmesí

R Leporis es una estrella de Carbono y constituye uno de esos caprichos cósmicos a los que antes me refería y que han permitido al hombre percibir la magia de los cielos y buscar en ellos la belleza de sus orígenes. La ausencia de colores intensos de las que adolece el firmamento se rompe aquí para deleite del observador nocturno, que asistía a un acontecimiento de la Naturaleza extensivo a miles de millones de estrellas y que en el siglo XVII asombró al científico alemán Johannes Hevelius.

                           

 

A diferencia del Sol y de las estrellas de su clase, que permanecen estables, el brillo de una gran parte de la población estelar es variable, y en algunos casos su ciclo hace oscilar espectacularmente su intensidad lumínica ante nuestros ojos. En R Leporis, más que sus cambios de brillo, la faceta más hermosa es su tonalidad roja, una de las más intensas que puede observarse en todo el cielo, pero otras variables tienen un ciclo que las hace apagarse y encenderse como si fueran faros en la Vía Láctea. Ese es el caso de Mira, a la que Hevelius llamó “la estrella maravillosa” después de que apareciera en el cielo como por arte de magia.

 

Mira (estrella) - Wikipedia, la enciclopedia libre

A 400 años luz de nosotros, su nombre Mira (en latín, “maravillosa, asombrosa”), Es una estrella variable de la Constelación de Cetus (la Ballena).

Mira es el nombre propio que Hevelius le puso a esta estrella, cuya denominación original en el catálogo de Johann Bayer, basado en el alfabeto griego, era Omicrón Ceti, es decir, la estrella omicrón de la constelación de Cetus, la Ballena. Su variabilidad fue descubierta en 1596 por David Fabricius, pero Hevelius se sintió tan atraído por ella que le dedicó un libro, que tituló Historia de la estrella maravillosa. Realmente lo es; el brillo de Mira disminuye hasta la magnitud 11, invisible a ojo desnudo y sólo observable con telescopio como un débil punto de luz, pero al cabo de un tiempo su gigantesca máquina nuclear la hincha vertiginosamente y se convierte en una estrella de segunda magnitud, alcanzando un brillo notable, similar al de la estrella polar. Por eso, cuando está en la parte inferior del ciclo, Mira no puede verse sin ayuda óptica, pero después surge entre las demás estrellas de su constelación, como si se hubiera encendido de repente.

 

                                              http://upload.wikimedia.org/wikipedia/commons/e/e8/Mira_1997.jpg

                         Imagen de Mira obtenida con el Telescopio Espacial Hubble

Mira pertenece a la clase espectral M, la misma que Antares y Betelgeuse. Las tres son estrellas muy frías en comparación con el Sol, ya que su temperatura es del orden de los 3000 grados. Sin embargo, Mira, Betelgeuse y Antares son decenas de miles de veces más luminosas que el Sol, puesto que figuran entre las estrellas más grandes conocidas, alcanzando diámetros de unos ochocientos millones de kilómetros, equivalentes a la distancia a la que se halla Júpiter del Sol. Estas tres gigantes, sin embargo, comparten sus atributos relativos a la clase espectral con las estrellas representativas del polo opuesto: las enanas rojas, como la estrella de Barnard y Próxima Centauri.

 

 

              Las estrellas más cercanas a nuestro Sol. Alpha Centauri a 4,3 años luz 

Todas se muestran ante nosotros con el bello color rojizo, pero la gigante Betelgeuse es una estrella inestable a la que los astrónomos consideran una de las mejores candidatas de la Vía Láctea para estallar en cualquier momento en forma de supernova; puede ocurrir mañana o dentro de mil años, pero Betelgeuse está destinada a un final cataclísmico que se observará alguna vez. En cambio Barnard y Próxima, dos diminutos soles rojos, viven en la eternidad, al ser tan frías y pequeñas podrían permanecer en sus condiciones actuales en torno a doscientos mil millones de años, de acuerdo con la teoría aceptada de la evolución estelar para este tipo de bajo consumo de material nuclear.

 

      Al-Battani - Wikipedia, la enciclopedia libre

                Astrónomo árabe Al-Battani

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

 

                              Mano de Luna: Aldebarán. Antares. Rigel. Altair.

El Sol al lado de las otras estrellas, es sólo un pequeño punto que casi no podemos ver

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la Historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Alguno de estos días, tendremos que hablar de Eta Carinae, otra variable irregular hiper-gigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, es probablemente la estrella más masiva de la Galaxia.

 

 

La fascinante historia de 'Eta Carinae', la estrella que explotó en 1838 y se convirtió en la segunda más brillante de la galaxia

                                     Eta Carinae rodeada de gas y polvo por la Nebula

El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida se masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

emilio silvera