domingo, 26 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Por imaginar que no quede!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pero… ¿Es que alguien ha estado allí para poderlo contar?

El vacío superconductor – La máquina de Higgs-Kibble II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (12)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los experimentos del LHC unen fuerzas para analizar el bosón de Higgs | CPAN - Centro Nacional de Física de Partículas, Astropartículas y Nuclear

       Los experimentos del LHC unen fuerzas para analizar el bosón de Higgs

“Aproximadamente, solo en una de cada billón de colisiones del LHC se puede llegar a producir un bosón de Higgs. Este hallazgo ha tenido una importante contribución española: más de dos centenares de físicos e ingenieros españoles participan en los cuatro experimentos principales del LHC.”

Por su parte, el científico británico Peter Higgs, de 80 años, que dio su nombre a la llamada “partícula divina” en 1964, afirmó que cree que su Bosón sería hallado gracias al Gran Colisionador. “Creo que es bastante probable” dijo pocas horas después de que entrara en funcionamiento el gigantesco acelerador. Y, según parece, se está saliendo con la suya.

 

 

 

Mecanismo de Higgs - Wikipedia, la enciclopedia libre

     Mecanismo de Higgs

De todas las maneras,  estaría bien saber, a ciencia cierta, cómo es el campo de Higgs del que toman la masa todas las partículas, y conocer, mediante que sistema se transfieren la masa, o, si cuando las partículas entran en el campo de Higgs e inter-relacionan con él, es el efecto frenado el que les otorga la masa.

Claro que, esa, como otras conjeturas sobre los Océanos de Higgs y su dichosa Partícula “repartidora de masa”, no son más que conjeturas que, más adelante, debemos ir comprobando para poder escribirlas con letras de oro en el Libro de la Física, o, por el contrario, desecharlas como se ha hecho con tantas otras ideas y teorías frustradas que nunca llegaron a ninguna parte.

 

 

 

¡Los fotones de Yang-Mills adquieren su masa y el principio gauge se sigue cumpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente pensó que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs había sido puesto ahí “a propósito” y la “partícula de Higgs, en sí misma, no era una “partícula gauge”. Si se admitía esto, ¿por qué no introducir más partículas y campos arbitrarios? Estas ideas se consideraron como simples modelos con los que jugar, sin mucho significado fundamental al que ahora se quiere llegar con el LHC pretendiendo hacer bueno todo aquello y, al menos los físicos, insisten en que, el campo y la partícula están ahí…¡ya veremos en qué queda todo esto! Son muchos los cabos sueltos y las cosas sin explicar.

Bosón de Goldstone | Francis (th)E mule Science's News

Bosón de Goldstone | Francis (th)E mule Science’s News

“El Bosón de Goldstone es uno de los temas más complejos de la Física de Partículas, que consiste en explicar como es el mecanismo y el funcionamiento de la simetría de ciertas partículas que no tienen masa.”

“Teorema de Goldstone. El teorema de Goldstone indica que siempre que una simetría continua se rompe de forma espontánea, aparecen nuevas partículas escalares sin masa (o muy ligeras, si la simetría no es exacta), dentro del espectro de las posibles excitaciones.”

 

MÉTODOS AVANZADOS DE LA QUÍMICA CUÁNTICA Métodos perturbativos: MBPT Ignacio Nebot-Gil Universitat de València. - ppt descargar

En segundo lugar estaba lo que se llamó “teorema de Goldstone“. Ya se habían producido antes modelos de partículas con “rotura espontánea de simetría”, pero para la mayoría de esos modelos, Jeoffrey Goldstone habia probado que siempre contenían partículas sin masa y sin espín. Muchos investigadores, por lo tanto, pensaron que la teoría de Higgs también debía contener esa partícula de Goldstone, sin masa y que esto era un inconveniente porque entre las partículas conocidas no había ninguna partícula de Goldstone. Incluso el propio Goldstone había advertido que el Modelo de Higgs no satisfacía las condiciones para su demostración, así que no tenía que ser válido para este caso, pero todo el mundo estaba tan impresionado con las matemáticas del teorema que el Modelo de Huggs-Kibble no tuvo éxito durante mucho tiempo.

 

 

El bosón de Higgs pretende ser una parte integral de nuestra comprensión de la Naturaleza. Se trata de una partícula que es una excitación de lo que se llama el campo de Higgs. El campo de Higgs impregna todo el espacio y cuando algunas de las partículas fundamentales que viajan a través de este campo adquieren masa (al interaccionar con el Campo dónde, probablemente, ve frenada su marcha y su desplazamiento es más lento debido al medio por el que discurre su viaje). La cantidad de masa que adquieren depende de la fuerza en que interactúan con el campo de Higgs. Algunas partículas, como el electrón adquieren una pequeña masa, mientras que otras adquieren una masa mucho mayor.

 

Bosón de Higgs: historia, hallazgo y perspectivas

 

Y así, el teorema de Goldstone se utilizó como un “teorema de imposibilidad”: si el espacio vacío no es simétrico, entonces no se puede evitar la presencia de partículas sin masa y sin espín. Ahora sabemos que, en nuestro caso, la letra pequeña invalida el teorema; las partículas de Goldstone se hacen invisibles debido a la invariancia gauge y no son más que las “partículas fantasmas” que encontró Feynman en sus cálculos. Además, debemos recordar que el Mecanismo Higgs no es una auténtica rotura de simetría.

 

         AccComplex0700829

        Ingenios que quieren entrar en los campos de Higgs

Un aspecto peculiar de esto es que este campo de Higgs que impregna en todo el espacio es parte de lo que llamamos espacio vacío o el vacío. Es sólo su impacto sobre las partículas que viajan a través de él y el bosón de Higgs que podemos observar en el laboratorio. El bosón de Higgs vive por un lapso muy corto de tiempo, así que no lo observan directamente, sino que más bien se observa que las partículas se descompone en y tienen que inferir su existencia a partir de eso. En la teoría actual que tenemos para comprender la naturaleza podemos hacer afirmaciones precisas acerca de qué fracción del tiempo que se desintegra en dos fotones en comparación con dos quarks abajo.

Claro que, algunos, me piden más profundidad en las explicaciones y, no se conforman con pasar por encima de las cuestiones, hay que entrar más en materia y dejar sentados algunos de los parámetros matemáticos que en todo esto están presente, y, para ellos…

Los físicos han buscado al bosón de Higgs por cerca de 50 años porque su descubrimiento completaría el Modelo Estándar de la física de partículas. El bosón de Higgs y su campo asociado explican cómo la simetría electrodébil se rompió justo después del Big Bang, lo que le dio a ciertas partículas elementales la propiedad de la masa. Sin embargo del Modelo Estándar no predice la masa de Higgs, y varios programas experimentales en el LEP del CERN, en el Tevatron de Fermilab y ahora el LHC del CERN habían intentado medir la masa de la partícula.

 

 

En el seminario llevado a cabo hoy en CERN como preludio a la mayor conferencia de física de partículas de este año, el ICHEP2012 en Melbourne, los experimentos ATLAS y CMS presentaron sus resultados preliminares en la búsqueda del Bosón de Higgs. Ambos experimentos observaron una nueva partícula en la región de masa entre 125-126 GeV.

 

“Observamos en nuestros datos claras señales de una nueva partícula, al nivel de 5 sigma, en la región de masa alrededor de 126 GeV. El impresionante rendimiento del LHC y ATLAS y el gran esfuerzo de mucha gente nos trajo a esta excitante etapa”, dijo la presentadora del experimento ATLAS Fabiola Gianotti, “pero se necesita más tiempo para preparar estos resultados para su publicación”

“Los resultados son preliminares pero la señal 5 sigma alrededor de 125 Gev que estamos viendo es dramática. Ésta es de hecho una nueva partícula. Sabemos que tiene que ser un bosón y es el bosón más pesado que hemos encontrado hasta ahora,” dijo el presentador del experimento CMS Joe Incandela. “Las implicaciones son muy significantes y es precisamente por esta razón que debemos ser extremadamente diligentes en todos nuestros estudios.”

 

Qué es, en simples palabras, el bosón de Higgs, y qué probaría su descubrimiento? - Quora

                                      ¿Dónde aparece el Higgs en todo esto?

Pues pasemos a hablar de teoría cuántica de campos, en ese tendremos unas densidades lagrangianas que dependerán del campo de cada partícula, dependiendo de su spin será un lagrangiano o otro, por ejemplo para N (a = 1,….N) campos escalares(omito fórmula).

.Al buscar el mínimo del potencial (en realidad un extremal de la acción, pero para lo que nos interesa a nosotros serán mínimos) resulta que hay varios posibles (con el mismo valor) pero para que la energía se minimice hace falta fijar un vacío (debido a que el Hamiltoniano depende del potencial y de unos términos positivos que van con las derivadas del campo). Ahora bien, inicialmente nuestra acción podría tener una simetría gauge global, es decir que al efectuar una transformación de un grupo G=SU(n) sobre los campos la acción no cambia, al fijar el vacío la simetría se reduce a un subgrupo H y algunos campos obtienen masa (originalmente ninguno tiene masa), pues bien el teorema de Goldstone lo que dice es que dim(G) -dim(H) campos se quedan sin masa, estos son los bosones de Goldstone.

 

¿Y el higgs? 

Ya llegamos, en el apartado anterior hemos considerado transformaciones globales, pero por ejemplo en electromagnetismo tenemos transformaciones U(1) locales, así que hay que mirar lo que pasa en las transformaciones locales. Lo primero que pasa es que la derivada parcial no preserva los vectores (lo que hemos llamado antes  \psi_a) igual que pasa en relatividad general, al hacer una transformación que depende de las coordenadas la derivada ya no es covariante, así que hay que buscar una covariante para seguir con lo que sabemos (en este caso la transformación se debe a un grupo gauge arbitrario, que no tiene porque ser el de difeomorfismos como en relatividad general. En este contexto aparecen los campos gauge que jugaran un papel similar al de la conexión en relatividad general y en el caso del electromagnetismo el campo gauge es el potencial electromagnético). Ahora al ser transformaciones locales, aparecen campos gauge que por similitud con el electromagnetismo escribiremos el lagrangiano de Yang-Mills \int \mathrm{d}^3 x -\frac{1}{4} F^{\mu\nu a}F_{\mu\nu}^a igual que en el electromagnetismo F depende de los campos gauge, pero debido a que  SU(n) no es abeliano hay un termino extra que tiene que ver con las constantes de estructura del álgebra de Lie, F_{\mu \nu}^a = \partial_\mu A_\mu - \partial_\nu A_\mu +g f^{ajk} A_\mu^j A_\mu^k. Ahora ya viene lo bueno, aparte del lagrangiano de la partícula también tenemos el de Yang-Mills, resulta que debido a la simetría local:

  1. Los bosones de Goldstone desaparecen, es decir no son partículas físicas.
  2. dim(G)-dim(H) campos gauge obtienen masa

Pues eso es el efecto Higgs. Ahora para llegar ya al famoso bosón, en el modelo estándar no se pueden construir t´rrminos de masa para las partículas debido a que no se pueden acoplar adecuadamente para ese propósito los campos de Yang-Mills y las partículas, debido a las simetrías que deben satisfacer (en general el famoso SU(3)\times SU(2) \times U(1) aunque cada campo tendrá una simetría concreta) y ahí es donde entra el bosón de Higgs, ya que el modelo más sencillo para añadir masa es justamente ese, añadir un doblete de campos escalares complejos y al romper la simetría …….. Higgs !!!!

 

Interacción débil - Wikipedia, la enciclopedia libre

 

Dos prestigiosos investigadores habrían sugerido de forma independiente que se podían construir modelos realistas de partículas en los cuales, el sistema de Yang-Mills fuera responsable de la interacción débil y el mecanismo de Higgs-Kibble la causa de su corto alcance. Uno de ellos era el paquistaní Abdus Salam que estaba buscando modelos estéticos de partículas y pensó que la belleza de la idea de Yan-Mills era razón suficiente para intentar construir con ella un modelo de interacción débil. La partícula mediadora de la interacción débil tenía que ser un fotón de Yang-Mills y el mecanismo de Higgs-Kibble la única explicación aceptable para que esta partícula tuviera una cierta cantidad de masa en reposo.

 

 

Una simetría puede ser perfecta en el plano de las ecuaciones y resultar rota en el plano de las soluciones. Como decía Weinberg: «Aunque una teoría postule un alto grado de simetría, no es necesario que los estados de las partículas muestren la simetría. Nada me parece tan halagüeño en física como la idea de que una teoría puede tener un alto grado de simetría que se nos oculta en la vida ordinaria».

La teoría que unifica las interacciones electromagnéticas y débil se debe a Glashow, Salam y Weinberg que obtuvieron por ella el Premio Nobel de física de 1979. La dificultad esencial de esta teoría es que los bosones del estado inicial simétrico debían ser de masa nula (masa nula de los bosones de interacción origina una fuerza a gran distancia), mientras que se necesitan bosones intermedios (partículas que originan la fuerza) muy masivos para justificar la interacción débil (corto alcance) . El mecanismo de Higgs, permite resolver esa dificultad, mediante la ruptura espontánea de simetría hace masivos los bosones W y Z (interacción débil) y mantiene nula la masa del fotón (interacción electromagnética).

 

                                                                               

 

Los famosos diagramas de Feynaman, nos explican algunos mecanismos de los que se pueden producir (de hecho se producen) en ese misterioso campo de las partículas elementales cuando están presentes en cuertos lugares y se juntas con otros individuos de la especie.

Salam que estaba muy cerca de poder alcanzar la gloria…no llegaba a poder explicar y aplicar las reglas de Feynman y tuvo quer admitir que la teoría parecía estar llena de partículas fantasmas que estaban a punto de estropearlo todo. En estas, llegó el otro investigador, Steven Weinberg, que supo dar un paso más al formular con mucho más detalle un modelo sencillo en el cual indicaba con precisión los campos que existían y cómo podían interactuar. Pero se limitó a los leptones. Weinberg comprendió que, junto al fotón ordinario tenía que haber tres fotones de Yang-Mills pesados::

– Uno cargado positivamente.

– Otro cargado negativamente.

– Otro Neutro.

File:Elementary-particle-interactions-es.svg

 

                                                      El panorama completo

 

En lo que se refiere a los fotones cargados, todo el mundo estaba de acuerdo en que estos se necesitarían para describir la interacción débil: serían los famoso bosones vectoriales intermediarios, W+ y W. De acuerdo con Weinberg, sus masas tenían que ser mayores de 60.000 MeV. Pero solos, estos bosones, vectoriales cargados eran suficientes para explicar todos los procesos de interacción débil que conocían en aquella época.  Que aparte de ellos y del fotón ordinario, y, también se necesita otro componente neutro (Weinberg le llamó Zº) no era evidente en absoluto. Se encontró que la masa del Zº tenía que ser un poco mayor que la de los bosones cargados.

De todo aquello surgió una tería para las interacciones débiles en las cuales jugaban un papel dominante distintos diagramas de Feynman, de los que se podían plasmar un número infinito para mostrar, de manera gráfica, los sucesos que acontecían en aquellos fenómenos de la radiación producida en la interacción débil. Pasado el tiempo y mirado con una mejor perspectiva, es fácil comprender todo aquello pero, en aquellos momentos en que se estaba gestando, las cosas no resultaban tan fáciles.

 

Monografias.com

 

Después de todo aquello, se prestó más atención al mecanismo Higgs-Kibble y, algunos, como Veltman fueron muy escépticos con aquellas ideas, y, desde luego, no fue fácil converlo de que pudiéramos llamar vacío a algo lleno de partículas invisibles. ¿No delatarían dijo, su presencia por sus campos gravitatorios? La teoría puede ser formulada de tal manera que esos campos gravitatorios se compensen exactamente con otras partículas invibles o por una contribución misteriosa del propio espacio vacío.

Cómo consigue la Naturaleza enmascarar tan exacta y eficientemente esos factores de la gravedad que no podemos notar nada, es un misterio que continua siendo muy debatido hoy en día. Claro que, todo esto dejará de ser un misterio cuando un día (lejos aún en el futuro), podamos comprender la Gravedad Cuántica.

Miehntras todo esto sucede… ¡Dejemos volar nuestra imaginación! con ideas y teorías como la de los ¡Campos de Higgs! ¡Bosones que, generosos ellos, regalan masas a otras partículas! ¡Materia que no podemos ver pero que, de manera acérrima, nos empeñamos en que sí está! ¡Fluctuaciones de vacío que rasgan el espacio-tiempo, y, que de vez en cuando, hace surgir nuevos universos! ¡Universos paralelos que nacieron sin vida! ¡Ciclos eternos en el que las cosas se repetían una y otra vez hasta el infinito! ¡Nuevos Big Bangs después del nuestro! ¡Agujeros negros en nuestro universo y, blancos al otro lado, en otro universo. Aquí recoge materia y, allú, la expulsa por el contrario, un Agujero Blanco! ¡Agujeros de Gusano que nos podrían llevar a otras galaxias! ¡El sueño de vencer (mejor burlar) a la velocidad de la luz, ese muro que nos tiene confinados en nuestro pequeño mundo, el Sistema Solar!

emilio silvera

Conociendo los Aceleradores

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Algunas explicaciones de cómo funcionan los aceleradores

Desde el pasado pero, ¡siempre hacia el futuro ¡Que nunca conoceremos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Diamond Light Source synchrotron - Stock Image - C030/8680 - Science Photo LibraryPhotos - - Diamond Light SourceDiamond Light Source | World class scientific facilities are… | Flickr

Acelerador de partículas construido en las instalaciones del Diamond Ligth Source en Oxfordshire (Inglaterra). Llamado la Fuente luminosa de diamante, el Diamond synchrotron comenzó a funcionar en enero de 2007. La luz que puede generar este artefacto es 100 mil millones de veces más brillante que un rayo X estándar médico.

“Diamond es un sincrotrón de electrones y funciona a una energía de 3 GeV; Los electrones son producidos al calentar un cátodo sometido a un voltaje alto. La aceleración de los electrones tiene lugar en dos etapas: en primer lugar, un acelerador linear o LINAC imparte una energía de 1 GeV; desde el LINAC, los electrones pasan a un sincrotrón booster, donde adquieren la energía final antes de ser inyectados en el anillo de almacenamiento, un sincrotrón de 360 m de circunferencia, compuesto de 24 secciones y 48 imanes dipolares. Al circular alrededor del anillo los electrones pierden energía, emitida como radiación sincrotrón; para reponer la energía se utilizan cavidades de radiofrecuencia. Diamond es el primer sincrotrón en utilizar tubos de salida inductiva en vez de klistrones para alimentar las cavidades.”

 

Científicos dicen tener "pruebas contundentes" de una nueva fuerza en la naturaleza

                               Arriba el Acelerador de Partículas Fermilab

“Los científicos aseguran que el extraño comportamiento de los muones, unas partículas subatómicas, solo se puede explicar si una quinta fuerza de la naturaleza actúa sobre ellos.”

Un acelerador de partículas (como todos sabemos) es, a grandes rasgos, una máquina que mediante campos electromagnéticos acelera partículas hasta que alcanzan velocidades inimaginables. Luego, por ejemplo, hacen chocar estas partículas y así se consigue saber de qué está formada la materia en sus partes más diminutas (mucho más diminutas que un átomo). Eso es lo que hace el LHC.

 

Diamond used for 462 million year-old discovery - - Diamond Light SourceLos pergaminos que revolucionaron el estudio de la Biblia

 

Sin embargo, en el caso de este acelerador, los científicos esperaban usar la luz del Diamond synchrotron para “leer” los textos antiguos que han sufrido el daño significativo. Porque los potentes rayos X permitirán hacerlo sin ni siquiera abrir el libro. El synchrotron emite un rayo X tan poderoso que, al incidir en una voluta, permite producir una imagen de 3-D del texto.

La técnica ya había sido aplicada satisfactoriamente en textos escritos con la tinta de hierro, que los escribanos comenzaron a usar en el siglo XII. Algunas de las tintas hechas con extractos vegetales y sales de hierro utilizadas en el Siglo XII deterioran el tipo de pergamino utilizado, imposibilitando la lectura de documentos valiosos. Simplemente he querido incluir esta introducción para que os hagais una idea de hasta donde puede llegar nuestro ingenio.

 

Mano De Números Robot Que Muestra. Aislado En El Fondo Blanco. Ilustración 3d. Fotos, retratos, imágenes y fotografía de archivo libres de derecho. Image 61921239Una mano robótica reproduce fielmente los movimientos humanos | Computer Hoy

 

              (ilustración de una nano robot)

Si hablamos de nuevos inventos en los campos más diversos, nos podríamos sorprender de lo que se ha conseguido en los últimos años que, desde  una “mano robótica” capaz de realizar toda clase de movimientos, “El sexto sentido”, una interfaz gestual portable que permite la interacción entre los gestos y los movimientos naturales del cuerpo humano con una computadora,  o, un Implantes de retina, que devuelve la visión a pacientes con degeneración macular y ceguera mediante implantes microelectrónicos. Entre los últimos inventos destaca una variedad de plástico hecha con orina de cerdo y lentes de contacto biónicos. Se inventa un proceso capaz de cultivar parte de un corazón humano a partir de células madre, una máquina que puede imprimir una novela completa de 300 páginas en tan solo 3 minutos y por un costo ínfimo, una batería que funciona con cualquier solución azucarada y enzimas de digestión de glucosa capaz de extraer electrones que crean electricidad…

Calaméo - Los mejores inventos del siglo XXILos 10 inventos más importantes del siglo XXI

 CRISPR-Cas9

“Esta tecnología revolucionaria de edición de genes que permite a los científicos editar fácilmente genes específicos en organismos vivos, está representando una revolución en áreas como la medicina, la agricultura o la bioingeniería. La técnica CRISPR-Cas9 identificada como tijera genética por Jennifer Doudna y Emmanuelle Charpentier, ha sido objeto de numerosos estudios y pruebas. Su precisión y eficiencia lo han convertido en una herramienta valiosa para la investigación y la terapia genética. Ambas científicas recibieron el Nobel de Química en 2020 por la creación de esta técnica”

 

Grafeno: Uno de los más versátiles materiales - DesenfundaGrafeno, el material de Dios - distritooficina≫ Grafeno - ¿Qué es y para qué sirve?

 

 Grafeno

El grafeno es un material que se obtiene del grafito. Las cualidades principales que caracterizan a este material son dureza, elasticidad, flexibilidad, transparencia, ligereza, además de ser un buen transmisor tanto térmico como eléctrico.

“El grafeno, una sola capa de átomos de carbono dispuestos en una red hexagonal, conocida por su notable resistencia, flexibilidad y conductividad, fue descubierto y aislado por primera vez por los investigadores Konstantin Novoselov y Andre Geim en 2004. Las propiedades de este químico relacionado con el grafito, lo convierten en un material muy atractivo para su uso en electrónica, almacenamiento de energía y dispositivos médicos. Sus descubridores recibieron el Premio Nobel de Física en 2010.”

 

Rainmaker

Aqua Sciences, una empresa norteamericana de Florida, presentó en 2006 su Rainmaker (literalmente, hacedor de lluvia), una planta móvil capaz de extraer grandes cantidades de agua potable de la atmósfera.

 

Las nuevas tecnologías y los inventos que se están produciendo en el siglo XXI, harían abrir la boca por el asombro a los filósofos naturalistas del pasado que trataban de profundizar en el conocimiento de la Naturaleza. Ellos fueron los que pusieron las primeras piedras del Edificio que hoy, llamamos Ciencia.

Corazones e Hígados artificiales, el guante de braille para ciegos, o, yendo más allá…

Origen del corazón artificial | Inventor del corazón artificial |

 

Un “Diente telefónico”. Se trata de un minúsculo implante que se coloca en el diente molar y que mediante un complejo sistema de señales y vibraciones permite recibir llamadas telefónicas. Tejido artificial nanotecnológico, Parche hormonal anticonceptivo, o, esa invención que hace posible que con una pequeña gota nos permite descubrir si en una bebida se ha vertido alguna de las llamadas “drogas del depredador” como las GHB o la Ketamina. Estas drogas suelen utilizarse por violadores y secuestradores pues facilitan dicho crimen al desinhibir a la víctima.

 

motor a nanoescala by patricia hurtado

Crean un motor de nano-escala

Nanotecnología - Wikipedia, la enciclopedia libreLas rutas inimaginables de la nanotecnología

Nano tecnología de múltiples creaciones y el motor de nano escala que se sitúa en virus y los destruye

 

El “Motor a nano-escala”, lo suficientemente pequeño como para viajar en la espalda de un virus. Un dispositivo que administra medicamentos a través de ondas sonoras que sustituyen las inyecciones, siendo igual de efectivas. Plástico inteligente capaz de modificar su estructura ante la exposición de determinadas longitudes de onda. Un dispositivo móvil creado por Aqua Sciences que permite beber agua del aire. ¿Os imaginais lo que supondrá eso en la travesía de un desierto? INSCENTINEL inventa un sistema de entrenamiento para que abejas sean capaces de detectar bombas y explosivos.

La verdadera historia del primer paciente tratado con penicilina | Ciencia | EL PAÍS

  Las cosas no llegaron por arte de magia… ¡muchas ideas hicieron falta!

 

Horizontal

“Existen muchos tipos de microorganismos, y las bacterias son uno de ellos. Algunas son buenas, y nos ayudan a digerir la comida o a mantenernos sanos. Otras, sin embargo, pueden provocarnos enfermedades graves, como la lepra, la peste o la sífilis. No fue hasta principios del siglo XX, con el descubrimiento de la penicilina, que pudieron empezar a tratarse este tipo de enfermedades.”

 

Ahora miramos a nuestro alrededor y todo lo que vemos que ocurre nos parece lo normal, que las cosas son así. Sin embargo, habría que pensar -por ejemplo, en el ámbito de la física de partículas- que, el diluvio de estructuras sub-nucleares que desencadenó “el acelerador”  de partículas, fue tan sorprende como los objetos celestes que descubrió el telescopio de Galileo. Lo mismo que pasó con la revolución galileana, con la venida de los aceleradores de partículas, la Humanidad adquirió unos conocimientos nuevos e insospechados acerca de cómo era el mundo, la naturaleza de la materia.

El atomismo de Demócrito, biografía : Historia General

     Demócrito de Abdera el filósofo que ríe

Que en este caso de los aceleradores se refería al “espacio interior” en lugar de al “espacio exterior” no los hacía menos profundos ni menos importantes. El descubrimiento de los microbios y del universo biológico invisible por Pasteur fue un descubrimiento similar y, ya puestos, haremos notar que pocos se acuerdan ya de Demócrito, aquel filósofo sonriente que, tomó prestado de los antiguos hindúes, la idea del á-tomo, la expresión “más pequeña de la materia” que era “indivisible”.

 

El LHC tuvo un susto serio el pasado mes de julio. Los técnicos del CERN lo transformaron en un éxito

 

Ahora sabemos que Demócrito estaba equivocado y que el átomo, sí se puede dividir. Sin embargo, él señaló un camino y, junto a Empédocles, el que hablaba de “elementos” como agua, aire, fuego y tierra, para significar que eran los componentes, en la debida proporción de todo lo que existía…, junto a otros muchos, nos han traído hasta aquí. Así que, los inventos que antes se mencionaban, no han llegado porque sí, ha sido un largo camino, mucha curiosidad y mucho trabajo y, no lo olvidemos: ¡Observar, Imaginar y Experimentar!

 

SE HA DEMOSTRADO LA EXISTENCIA DEL PENTAQUARKEl CERN acaba de encontrar una nueva partícula subatómica: el pentaquark

El CERN acaba de encontrar una nueva partícula subatómica: el pentaquark

Nos dimos cuenta y estaba claro que la búsqueda de la menor de las partículas requería que se expandiese la capacidad del ojo humano: primero lupas, después microscopios y, finalmente… ¡Aceleradores! que, utilizando energías inimaginables ( 14 TeV), nos llevaría hasta las entrañas de la materia que tratamos de conocer.

Todos estos experimentos en los aceleradores han posibilitado muchos de los avances que hoy día conocemos en los distintos campos del saber humano. Generalmente, cuando se habla de aceleradores de partículas, todos piensan en el Bosón de Higgs y cosas por el estilo. Sin embargo, las realidades prácticas de dichos ingenios van mucho más allá.

 

CERN

 

“La “gran ciencia” (big science) genera tecnología, tecnología punta, genera industria, mucha industria, genera riqueza. Los grandes aceleradores de partículas, como el LHC del CERN, son ejemplos perfectos de ello. La tecnología de aceleradores de partículas ha permitido desarrollar dispositivos de implantación iónica que se utilizan para la fabricación de mejores semiconductores, para la fabricación prótesis de rodilla más duraderas, para la fabricación de neumáticos menos contaminantes, para el desarrollo de nuevas terapias contra el cáncer. Esto último gracias a que lo último de lo último en superimanes superconductores está en los grandes aceleradores. Esta tecnología ha permitido desarrollar y permitirá mejorar los potentes imanes necesarios en el diagnóstico clínico (como en resonancia magnética nuclear) y para terapias contra el cáncer basadas en haces de protones. Nos lo cuenta Elizabeth Clements, en “Particle physics benefits: Adding it up,” Symmetry, dec. 2008″ (Francis (th)E mule Science’s News).

 

 

Beneficios de la investigación básica en Física de Partículas: La tecnología desarrollada en los aceleradores de partículas tiene beneficios indirectos para la Medicina, la Informática, la industria o el medio ambiente. Los imanes superconductores que se usan para acelerar las partículas han sido fundamentales para desarrollar técnicas de diagnóstico por imagen como la resonancia magnética. Los detectores usados para identificar las partículas son la base de los PET, la tomografía por emisión de positrones (antipartícula del electrón). Y muchos hospitales utilizan haces de partículas como terapia contra el cáncer.

 

 

 

Describe la propiedad de un núcleo atómico para girar sobre su eje como un trompo, transformándolo en un pequeño imán. Los núcleos atómicos de hidrógeno, …  La imagenología es la rama de la medicina que trata del diagnóstico morfológico empleando diferentes modalidades de visualización del cuerpo humano basado en imágenes obtenidas con radiaciones ionizantes u otras fuentes de energía,  así como procedimientos diagnósticos y terapéuticos. Los equipos de imagenología requieren instalaciones especiales, como obra civil, instalación eléctrica, jaulas de Faraday, clima controlado, entre otras para llegar en forma rápida y segura a la detección de muchas enfermedades.

 

 

 

Con velocidades 10.000 veces mayor que una conexión típica, “The Grid” podrá enviar un catálogo completo de información desde Gran Bretaña a Japón en menos de 2 segundos. Esta red, creada en el centro de física de partículas CERN, puede proveer el poder necesario para transmitir imágenes holográficas; permitir juegos en línea con cientos de miles de personas, y ofrecer una telefonía de alta definición en video al precio de una llamada local.

Así, la World Wide Web (WWW), el ‘lenguaje’ en el que se basa Internet, fue creado en el CERN para compartir información entre científicos ubicados alrededor del mundo, y las grandes cantidades de datos que se producen motivan el desarrollo de una red de computación global distribuida llamada GRID.

 

Fuentes de Espalación de Neutrones - IDOM

Fuentes de Espalación de Neutrones

Los haces de partículas producidos en aceleradores tipo sincrotrón o las fuentes de espalación de neutrones, instrumentos creados para comprobar la naturaleza de la materia, tienen aplicaciones industriales en la determinación de las propiedades de nuevos materiales, así como para caracterizar estructuras biológicas o nuevos fármacos. Otras aplicaciones de la Física de Partículas son la fabricación de paneles solares, esterilización de recipientes para alimentos o reutilización de residuos nucleares, entre otros muchos campos.

 

Cómo distinguir estrellas de neutrones y estrellas de quarks con ondas gravitatorias - La Ciencia de la Mula Francis

Estarían hechas de matria “extraña”

Tambien en el campo de la Astronomía, el LHC, nos puede ayudar a comprender cosas que ignoramos. Nos hemos preguntado sobre la existencia de estrellas de Quarks-Gluones, y, sobre el tema, algo nos ha dicho ya el Acelerador Europeo de Partículas que trata de llegar hasta “la materia oscura” y algunos otros enigmas que nos traen de cabeza.

No es extraño encontrarnos una mañana al echar una mirada a la prensa del día, con noticias como éstas:

 

Colisión de iones pesados registrada por el experimento ALICE. (Imagen: CERN.)

El acelerador europeo ha obtenido plasma de quarksgluones, el primer estado de la materia tras el Big Bang.

 

 

“No todo son bosones de Higgs en las instalaciones del CERN. Aún hay muchas preguntas sobre el universo y sus partículas que se pueden responder a base de colisiones de alta energía. Y en eso, elLHC es el mejor. Un grupo de investigadores del consorcio europeo ha realizado nuevas mediciones de la que creen que es el primer tipo de materia que hubo durante los instantes iniciales del universo. El plasma de quarksgluones.

 

El Plasma de Quark-Gluones y el Tamaño de los Nucleones

Plasma de Quarks-Gluones y el tamaño de los Nucleones

Los quarks y los gluones son, respectivamente, los ladrillos y el cemento de la materia ordinaria. Durante los primeros momentos tras el Big Bang, sin embargo, no estaban unidos constituyendo partículas —como protones o neutrones— sino que se movían libremente en estado de plasma. A base de colisionar iones de plomo —que es un átomo muy pesado— a velocidades cercanas a las de la luz, el LHC pudo recrear durante pequeños lapsos de tiempo las que se creen fueron las condiciones de los primeros momentos del universo.

El plasma de quarksgluones es extremo y efímero. Por eso los investigadores han tenido que analizar los resultados de más de mil millones de colisiones para obtener resultados significativos.”

 

 

Evento de colisión de 7 TeV visto por el detector LHCb. El experimento del LHCb en el LHC estará bien ubicado para explorar el misterio de la antimateria. Crédito: LHC, CERN. Ya sabéis que, durante muchos años, la ausencia de antimateria en el Universo ha atormentado a los físicos de partículas y a los cosmólogos: mientras que el Big Bang debería haber creado cantidades iguales de materia y antimateria, no observamos ninguna antimateria primordial hoy en día. ¿Dónde ha ido? Los experimentos del LHC tienen el potencial de dar a conocer los procesos naturales que podrían ser la clave para resolver esta paradoja.

Cada vez que la materia es creada a partir de energía pura, se genera la misma cantidad de partículas y antipartículas. Por el contrario, cuando la materia y la antimateria se encuentran, se aniquilan mutuamente y producen luz. La antimateria se produce habitualmente cuando los rayos cósmicos chocan contra la atmósfera de la Tierra, y la aniquilación de materia y antimateria se observa durante los experimentos de física en los aceleradores de partículas.

 

 

Equipos de físicos en todo el mundo siguen analizando datos. Aquellas primeras colisiones de protones a la alta energía prevista de 7 Teraelectronvoltios (TeV), una potencia jamás alcanzada en ningún acelerador antes, nos puede traer noticias largamente esperadas y desvelar misterios, contestar a preguntas planteadas y, en definitiva, decirnos cómo es la Naturaleza allí, donde el ojo humano no puede llegar pero, si la inteligencia.

 

                          Los cuatro experimentos del LHC

Lo cierto es que, todos tenemos que convenir en el hecho cierto de que, el LHC es el mayor experimento físico de la historia de la Ciencia y que, de seguro, nos dará la oportunidad de comprender muchas cuestiones que antes se nos aparecían oscuras e indistinguibles entre la bruma de esa lejanía infinitesimal de la cuántica. Ahora, tenemos una herramienta capaz de llevarnos hasta aquellos primeros momentos en los que se construyó la historia del universo y, si podemos, de esta manera “estar allí”, veremos, con nuestros propios ojos lo que pasó y por qué pasó de esa manera.

Toda esta larga exposición de temas, de alguna manerta conectados, viene al caso para dejar claro que, aquellos detractores del LHC, no llevaban la razón y, sus protestas no tenían un contenido científico. El Acelerador de Partículas que llamamos abreviadamente LHC, nos ha dado y nos seguirá dando, muchos beneficios para toda la Humanidad.

emilio silvera