Oct
5
El Sol avala la Vida en nuestro planeta
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Nos desenvolvemos en nuestra vida cotidiana, y, la mayoría de nosotros, no piensa en la importancia que tiene esa estrella que llamamos Sol. Hace posible la fotosíntesis de las plantas, mantiene la atmósfera, hace posible que los océanos y los mares tengan las adecuadas temperaturas, y, en definitiva, sin su luz y su calor… ¡Nuestro planeta no albergaría la Vida! Su masa supone más del 99 por ciento de todo el Sistema solar.
Es una estrella más bien pequeña de la clase G2V amarilla, y, como ella, solo en la Vía Láctea existen más de 30.000 millones. Así que, si eso es así (que lo es), hagamos un pequeño cálculo de los muchos planetas con vida que existen en nuestra Galaxia, en todo el Universo…. ¡La Vida debería pulular por todas partes!
Sólo las inmensas distancias que nos separan impiden el contacto de Civilizaciones de distintos mundos. Sin embargo, si tenemos el Tiempo suficiente… ¡Todo llegará!
Oct
5
Sí, a pesar de todo, algunas cosas no cambian
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Descubren un raro y escatológico comportamiento de los panda
Fenómenos naturales que no siempre podemos explicar
Lo cierto es que… ¡La Naturaleza está Viva!
Lo cierto es que no siempre podemos explicar todo lo que vemos. La Naturaleza hace cosas que para nosotros, no tienen explicación. Sin embargo, no es que no la tenga, lo cierto es que somos nosotros y nuestra ignorancia los que carecen de la explicación suficiente, carecemos de los conocimientos necesarios para dar esa explicación que, está ahí, esperando a que la descubramos.
Por extraño que nos pueda parecer, todo tiene una explicación, aunque no seamos capaces de darla
“El principio de razón suficiente es un principio filosófico según el cual todo lo que ocurre tiene una razón suficiente para ser así y no de otra manera, o en otras palabras, todo tiene una explicación suficiente”.
Si sabemos buscar… ¡Siempre habrá un más allá!
Los átomos invisibles tienen en su interior una gran complejidad
Lo que sucede primero, no es necesariamente el principio. Antes de ese “principio”, suceden algunas cosas que nosotros no hemos podido o sabido percibir. Sin embargo, es cierto que hay cosas que son invariantes, que no cambian nunca y, de eso, si nos hemos podido dar cuenta a base de observar y comprobar una y otra vez.
Antes de que esta escena fuese una realidad… ¿Qué había allí? Dicen que todo surgió de la “nada” pero, lo cierto es que… ¡Si surgió es porque había!
Hace tiempo, los sucesos que constituían historias eran las irregularidades de la experiencia. Sabemos que lo que no cambia son las Constantes de la Naturaleza pero, tampoco cambia el Amor de una madre por un hijo, la salida y la puesta del Sol, nuestra curiosidad, y otras muchas cosas que conviven con nosotros en lo cotidiano.
Y, como carecemos de muchísimos conocimientos, lo aconsejable es hacer preguntas y perseguir las respuestas.
Poco a poco, los científicos llegaron a apreciar el misterio de la regularidad y lo predecible del mundo. Pese a la concatenación de movimientos caóticos e impredecibles de átomos y moléculas, nuestra experiencia cotidiana es la de un mundo que posee una profunda consistencia y continuidad. Nuestra búsqueda de la fuente de dicha consistencia atendía primero a las leyes de la Naturaleza que son las que gobiernan como cambian las cosas. Sin embargo, y al mismo tiempo, hemos llegado a identificar una colección de números misteriosos arraigados en la regularidad de la apariencia. Son las Constantes de la Naturaleza que, como la carga y la masa del electrón o la velocidad de la luz, le dan al Universo un carácter distintivo y lo singulariza de otros que podríamos imaginar. Todo esto, unifica de una vez nuestro máximo conocimiento y también, nuestra infinita ignorancia.
En este quásar están presentes algunas de las constantes de la Naturaleza
Las constantes físicas suelen ser de dos tipos: las que tienen asociada una unidad propia y las adimensionales. La constante de estructura fina es de este último tipo, es adimensional y se representa mediante un número. Diversas sondas han determinado que este número se aproxima a 1/137.
La constante de estructura fina, también llamada constante de Sommerfeld o constante de acoplamiento electromagnético, es una de las constantes físicas fundamentales que caracteriza la fuerza de la interacción electromagnética entre partículas atómicas cargadas. El nombre de esta constante fue acuñado por el físico Arnold Sommerfeld, que amplió el modelo atómico de Bohr con la motivación de explicar las líneas de estructura fina observadas en los espectros del hidrógeno, que los modelos anteriores no habían logrado explicar satisfactoriamente.
Esos números misteriosos (el valor de esas constantes fundamentales), son medidos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invariancia. Sin embargo, no podemos explicar sus valores. ¿Por qué la constante de estructura fina vale 1/137? Nadie puede contestar a esa “simple” pregunta. Sabemos que ahí, en esa constante, están involucrados los tres guarismos h, e, y c. El primero es la constante de Planck (la mecánica cuántica), el segundo el Electrón (el electromagnetismo), y, el tercero, la velocidad de la luz (la relatividad especial de Einstein).
La velocidad de la luz en el vacío es de 299.792,458 kilómetros por segundo, aunque siempre suele decirse que es de 300.000 kilómetros por segundo para aproximar y que es lo mismo que decir 1.080.000.000 kilómetros por hora. Sorprendente, simple y llanamente
A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos misteriosos del ritmo del Universo que son inquebrantables en su constancia, así lo podemos comprobar en la Gravedad o en la velocidad de la luz en el vacío entre otros. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distingue de otros muchos que pudiéramos imaginar. Existe un hilo invisible que teje incesante una continuidad a lo largo y a lo ancho de toda la Naturaleza: Algunas cosas cambian para que todo siga igual.
La NASA revela la primera imagen de la estrella más lejana del universo
En regiones lejanas del Universo, por muy extrañas que nos pudieran parecer, también estarían regidas por las mismas constantes de la Naturaleza que en la nuestra. Esas constantes están presentes en todas partes y, al igual que las cuatro fuerzas fundamentales, disponen que todo transcurra como debe, que las cosas sean como tienen que ser, que la dinámica del universo siga esas normas y que, bajo ninguna circunstancias las cosas cambien de como tienen que ser.
Así que, tomando como patrón universal esas constantes, podemos esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra, lo único que in situ, conocemos. Hasta donde nuestros conocimientos han llegado también parece razonable pensar que dichas constantes fueron y serán las mismas en otros tiempos además de hoy, ya que, para algunas cosas, ni la historia ni la geografía importan. De hecho, quizá sin un substrato semejante de realidades invariables no podrían existir corrientes superficiales de cambio ni ninguna complejidad de mente y materia. Todos sabemos, por ejemplo que, si la carga del electrón variara aunque sólo fuese una diez millonésima parte de la que es, la vida no podría existir.
- En t=0 la corriente tiene un valor inicial.
- Conforme la transcurre el tiempo, la corriente disminuye y tiende a cero.
- La corriente tiene una forma exponencial decreciente.
- El tiempo t= L/R es el tiempo que emplearía la corriente en caer hasta cero si continuase cayendo a la rapidez inicial de decaimiento, m0.
- La curva cambia solo si cambia la constante de tiempo, por lo cual para cualquier circuito que tenga la misma constante tau, tendrá la misma curva.
- Si se duplica el tau la respuesta original ocurrirá en un tiempo posterior, y la nueva curva se obtiene colocando cada punto de la curva original dos veces más lejano hacia la derecha.
- Con un tau más grande, la corriente tardará más en decaer a cualquier fracción dada de su valor original.
- El “ancho” de la curva es proporcional a L/R.
- En t= 1 tau, i (t) = 36,79%Io
- Se considera que el tiempo que toma la corriente en caer a cero (tiempo de descarga) es de alrededor de 5 constantes de tiempo o 5 tau. En este tiempo la corriente ha caído a menos del 1% de la corriente inicial.
La constante de tiempo de un circuito RL serie se puede evaluar en forma gráfica a partir de la curva de respuesta i (t).
Muchos han sido los que se han sentido atraídos por las posibles consecuencias biológicas de las teorías cosmológicas en que las “constantes” tradicionales cambian con el paso del tiempo o donde los procesos gravitatorios se despliegan de acuerdo con un reloj cósmico diferente del de los procesos atómicos (¿será precisamente por eso que la relatividad general – el cosmos –, no se lleva bien con la mecánica cuántica – el átomo –?).
La radiactividad natural es el proceso de emisión espontánea de radiaciones por parte de núcleos atómicos inestables, que se fisionan y se transforman en otros núcleos. No hace mucho tiempo que sabemos de ella.
El cañón natural más grande del Sistema solar está en Marte
La invariancia de las constantes hace posible que nuestro Universo contenga las maravillas que podemos en él observar. Sin embargo, a lo largo de la historia muchos se han empeñado en hacerlas cambiar…pero no lo consiguieron.
No pocas veces tenemos que leer en la prensa o revistas “especializadas” noticas como estas:
“Nueva evidencia sostiene que los seres humanos vivimos en un área del Universo que está hecha especialmente para nuestra existencia. ¿Según los científicos? Esto es lo que más se aproxima a la realidad. El controversial hallazgo se obtuvo observando una de las constantes de la naturaleza, la cual parece ser diferente en distintas partes del cosmos.”
Yo aconsejaría a los observadores que informaron y realizaron “el estudio” que prestaran más atención o que cambiaran los aparatos e instrumentos de los que se valieron para llevarlo a cabo, toda vez que, hacer tal afirmación, además de osados, se les podría calificar de incompetentes.
De estar en lo cierto, tal informe se opondría al principio de equivalencia de Albert Einstein, el cual postula que las leyes de la física son las mismas en cualquier región del Universo. “Este descubrimiento fue una gran sorpresa para todos”, dice John Webb, de la Universidad de New South Wales, en Sidney (Australia ), líder del estudio que sigue diciendo: Aún más sorprendente es el hecho de que el cambio en la constante parece tener una orientación, creando una “dirección preferente”, o eje, a través del Universo.
Esa idea fue rechazada más de 100 años atrás con la formulación de la teoría de la relatividad de Einstein que, de momento, no ha podido ser derrocada (aunque muchos lo intentaron).
Está claro que algunos, no se paran a la hora de adquirir una efímera notoriedad, ya que, finalmente, prevalecerá la verdad de la invariancia de las constantes que, a lo largo de la historia de la Física y la Cosmología, muchas veces han tratado de hacerlas cambiantes a lo largo del tiempo, y, sin embargo, ahí permanecen con su inamovible estabilidad.
Veamos por encima, algunas constantes:
La Constante de Gravitación Universal: G
La primera constante fundamental es G, la que ponemos delante de la fórmula de la gravedad de Newton.
Es una simple constante de proporcionalidad pero también ajusta magnitudes: se expresa en N*m2/Kg2.
Es tal vez la constante peor medida (sólo se está seguro de las tres primeras cifras…), y como vemos la fuerza de la gravedad es muy débil (si no fuera porque siempre es atractiva ni la sentiríamos).
La Constante Electrica: K
No confundir con la constante K de Boltzmann para termodinámica y gases..
La ley de Coulom es prácticamente igual a la de la gravitación de Newton, si sustituimos las masas por las cargas, es inversa al cuadrado de la distancia y tiene una constante de proporcionalidad llamada K
La constante es la de de Coulomb y su valor para unidades del SI es K = 9 * 109 * N * m2 / C2
Una larga lista de constantes se podrían traer aquí para asombro de todos:
Esto es lo único que veríamos viajando a la velocidad de la luz en el vacío Espacial
La velocidad de la luz c = 299.792.458 m/s y se suele aproximar por 3·10^8m/s.
Que la velocidad de la luz es una constante se comprobó hasta la saciedad en diversos experimentos, como el famoso experimento Michelson-Morley que determinó mediante un interferómetro que la velocidad de la luz no dependía de la velocidad del objeto que la emitía, esto descartó de golpe la suposición de que hubiera un “eter” o sustancia necesaria por la que se propagara la luz. En su lugar aparecieron las famosas transformaciones de Lorenz, la contracción de Lorentz explicaba el resultado del experimento. La rapidez constante de la luz es uno de los postulados fundamentales (junto con el principio de causalidad y la equivalencia de los marcos de inercia) de la Teoría de la Relatividad Especial.
Es tan grande la fuerza de Gravedad que genera un agujero negro que, además no dejar escapar la luz, se puede tragar (literalmente) a una estrella vecina
Así que, amigos míos, esas cantidades conservarán su significado natural mientras la ley de gravitación y la de la propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos. A tal respecto Max Planck solía decir:
“Por lo tanto, al tratarse de números naturales que no inventaron los hombres, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos”-
Yo no apostaría por la soledad del Ser Humano en el Universo
En sus palabras finales alude a la idea de observadores situados en otros lugares del Universo que definen y entienden esas cantidades de la misma manera que nosotros, sin importar que aparatos o matemáticas pudieran emplear para realizar sus comprobaciones.
Estaba claro que Planck apelaba a la existencia de constantes universales de la Naturaleza como prueba de una realidad física completamente diferente de las mentes humanas. Pero él quería ir mucho más lejos y utilizaba la existencia de estas constantes contra los filósofos positivistas que presentaban la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo sería reemplazada por otra mejor. Claro que Planck reconocía que la inteligencia humana, al leer la naturaleza había desarrollado teorías y ecuaciones para poder denotarlas pero, sin embargo, en lo relativo a las constantes de la naturaleza, éstas habían surgido sin ser invitadas y, como mostraban claramente sus unidades naturales (unidades de Planck) no estaban escogidas exclusivamente por la conveniencia humana.
Sí, las constantes universales hacen que nuestro cerebro funcione como lo hace y no de otra manera. Si la masa del protón, la carga eléctrica del electrón, o la velocidad de la luz variaran aunque sólo fuese una diezmillonésima… ¡La vida no estaría presente en nuestro Universo!
Las constantes de la Naturaleza inciden en todos nosotros y, sus efectos, están presentes en nuestras mentes que, sin ellas, no podrían funcionar de la manera creadora e imaginativa que lo hacen. Ellas le dan el ritmo al Universo y hacen posible que todo transcurra como debe transcurrir.
Es curioso comprobar que, una de las paradojas de nuestro estudio del Universo circundante es que a medida que las descripciones de su funcionamiento se hacen más precisas y acertadas, también se alejan cada vez más de toda la experiencia humana que, al estar reducidas a un ámbito muy local y macroscópico, no puede ver lo que ocurre en el Universo en su conjunto y, por supuesto, tampoco en ese otro “universo” de lo infinitesimal que nos define la mecánica cuántica en el que, cuando nos acercamos, podemos observar cosas que parecen fuera de nuestro mundo, aunque en realidad, sí que están aquí.
En ese “universo” especial que el ojo no puede ver, hay otros mundos y otros seres que, como nosotros, desarrollan allí sus vidas y su tiempo que, aunque también se rigen por las invariantes constantes univerales, para ellos, por su pequeñez, el espacio y el tiempo tendrán otros significados.
Einstein nos dejó dichas muchas cosas interesantes sobre las constantes de la Naturaleza en sus diferentes trabajos. Fue su genio e intuición sobre la teoría de la relatividad especial la que dotó a la velocidad de la luz en el vacío del status especial como máxima velocidad a la que puede transmitirse información en el Universo. El supo revelar todo el alcance de lo que Planck y Stoney simplemente habían supuesto: que la velocidad de la luz era una de las constantes sobrehumanas fundamentales de la Naturaleza.
La luz se expande por nuestro Universo de manera isotrópica, es decir, se expande por igual en todas las direcciones. Así actúan las estrellas que emiten su luz o la bombilla de una habitación. Cuando es anisotrópica, es decir que sólo se expande en una dirección, tendríamos que pensar, por ejemplo, en el foco de un teatro que sólo alumbra a la pianista que nos deleita con una sonata de Bach.
El Cinturón de Orión y sus tres famosas estrellas
La luz de las estrellas: Podemos ver como se expande por igual en todas las direcciones del espacio (Isotrópica)
Claro que, cuando hablamos de las constantes, se podría decir que algunas son más constantes que otras. La constante de Boltzmann es una de ellas, es en realidad una constante aparente que surje de nuestro hábito de medir las cosas en unidades. Es sólo un factor de conversión de unidades de energía y temperatura. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud.
Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.
Las constantes fundamentales determinan el por qué, en nuestro Universo, las cosas son como las observamos.
Y, a todo esto, la teoría cuántica y de la Gravitación gobiernan reinos muy diferentes que tienen poca ocasión para relacionarse entre sí. Mientras la una está situada en el mundo infinitesimal, la otra, reina en el macrocosmos “infinito” del inmenso Universo. Sin embargo, las fuerzas que rigen en el mundo de los átomos son mucho más potentes que las que están presentes en ese otro mundo de lo muy grande. ¡Qué paradoja!
¿Dónde están los límites de la teoría cuántica y los de la relatividad general? Somos afortunados al tener la respuesta a mano, Las unidades de Planck nos dan la respuesta a esa pregunta:
Supongamos que tomamos toda la masa del Universo visible y determinamos la longitud de onda cuántica. Podemos preguntarnos en que momento esa longitud de onda cuántica del Universo visible superará su tamaño. La respuesta es: Cuando el Universo sea más pequeño que la longitud de Planck (10-33 centímetros), más joven que el Tiempo de Planck (10-43 segundos) y supere la Temperatura de Planck (1032 grados). Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender a qué se parece el mundo a una escala menor que la Longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la Gravedad.
El satélite Planck un observatorio que explora el universo lleva el mismo nombre del fundador de la teoría cuántica será pura coincidencia?.Credito: ESA. La Gravedad cuántica queda aún muy lejos de nuestro entendimiento.
La Relatividad General la teoría de Einstein de la gravedad, nos da una base útil para matemáticamente modelar el universo a gran escala -, mientras que la Teoría Cuántica nos da una base útil para el modelado de la física de las partículas subatómicas y la probabilidad de pequeña escala, de la física de alta densidad de energía de los inicios del universo – nanosegundos después del Big Bang – en la cuál la relatividad general sólo la modela como una singularidad y no tiene nada más que decir sobre el asunto.
Las teorías de la Gravedad Cuántica pueden tener más que decir, al extender la relatividad general dentro de una estructura cuantizada del espacio tiempo puede ser que nosotros podamos salvar la brecha existente entre la física de gran escala y de pequeña escala, al utilizar por ejemplo la Relatividad Especial Doble o Deformada.
¡Es tanto lo que nos queda por saber!
El día que se profundice y sepamos leer todos los mensajes subyacentes en el 137, ese día, como nos decía Heinsenberg, se habrán secado todas las fuentes de nuestra ignorancia. Ahí, en el 137, Alfa (α) Constante de estructura Fina, residen los secretos de la Relatividad Especial, la Velocidad de la Luz, c, el misterio del electromagnetismo, el electrón, e, y, la Mecánica Cuántica, es decir el cuanto de acción de Planck, h
emilio silvera
Oct
5
Nuestro lugar en el Universo…¿Cuál será?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
¿Quién nos observa? No podríamos negar que esté sucediendo
Confinados en este pequeño planeta, alejado0s del Centro galáctico, situados en un Sistema planetario situados en la periferia de la Galaxia, en el interior del Brazo de Orión, sin medios técnico o mecánicos para poder desplazarnos a otros lugares de la Galaxia, donde la estrella más cercana (Próxima Centauro) está a 2,2 años luz de distancia de nosotros… ¿Cómo podremos saber si realmente estamos solos, no ya en la Galaxia, sino en el vasto Universo.
Alguna que otra vez hemos podido leer declaraciones de los responsables del SETI. El ‘padre’ del Instituto de Búsqueda de Inteligencia Extraterrestre (SETI), Frank Drake, ha reunido al reconocido científico Stephen Hawking y a decenas de periodistas en la Royal Society en Londres, para anunciar un nuevo proyecto innovador para buscar vida extraterrestre inteligente llamado “Breakthrough Listen”.
Una vez le hicieron una entrevista y la joven periodista le preguntó:
- Sr. Drake, con los años que hace que buscan la existencia extraterrestre, ¿Cómo no han encontrado nada, ningún vestigio real de si existencia?
- Lo que le puedo decir, joven señorita, es que hasta el momento hemos buscado una parte del cielo muy reducida. Para que se haga una idea: Imagina la superficie de una piscina olímpica y comparelá con el Océano Pacífico, pues nuestra búsqueda está limitada a esa piscina olímpica, nos queda el resto del Océano. Y, lo cierto es que el Universo es inconmensurablemente grande.
Tengo que advertir que el video lo pongo porque la Sierra de Huelva, siempre fue uno de los lugares favoritos de mi familia para pasar el fin de semana cuando los chicos eran pequeños, es el ambiente saludable y la buena comida, la tranquilidad del paisaje, su buena gente… Y, como dicen ahora, cargas las pilas.
En otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.
El remanente estelar de una supernova nos muestra los hilos de plasma
Los filamentos de un remanente de Supernova que, mirándolos y pensando de donde vienen… Te hacen recorrer unos caminos alucinantes que comenzaron con una inmensa aglomeración de gas y polvo que se constituyó en una estrella masiva que, después de vivir millones de años, dejó, a su muerte, el rastro que arriba podemos contemplar.
Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear retrospectivamente un tipo de argumento muy similar propuesto por otro personaje,
Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.
Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi por completo en las contribuciones de Darwin.
Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.
Wallace propuso en 1889, la hipótesis de que la selección natural podría dar lugar al aislamiento reproductivo de dos variedades al formarse barreras contra la hibridación, lo que podría contribuir al desarrollo de nuevas especies.
Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).
Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión. La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.
Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.
En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.
Lo tengo claro: El Ser Humano no es el centro de las cosas, y, de Seres pensantes “está” lleno el Universo
Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.
Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.
En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.
“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”
Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las consiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:
“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”
Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.
Siempre hemos tratado de saber, cuál sería nuestro lugar en el Universo, no ya en relación a la situación geográfica, sino referido a esa fascinante historia de la vida que nos atañe a los humanos, la única especie conocida que, consciente de su Ser, libera pensamientos y formula preguntas que, hasta el momento, nadie ha sabido contestar.
emilio silvera