lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo pudo surgir la Vida? ¡Es todo tan complejo!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 »

                                   

                        Podemos leer en las piedras… ¡Cuentan tantas historias!

                    Estas extrañas rocas podrían ser la prueba más antigua de vida en la Tierra                                                                 Estas extrañas rocas podrían ser la prueba más antigua de vida en la Tierra

Estas extrañas rocas podrían ser la prueba más antigua de vida en la Tierra

 

Según las investigaciones más recientes, hay varios candidatos para ser considerados la formación rocosa más antigua: parte del cinturón de rocas verdes de Isua (Groenlandia), el terreno Gneis Narryer (Australia), el cinturón de rocas verdes de Nuvvuagittuq (Canadá) o el Gneis Acasta, en el cratón Slaves (Canadá).

Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el ambiente en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biología responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.

 

TEMA 11: LAS ROCAS Y SUS ORIGENES - SERGIO S Y PALOMA M

 

Muchas veces pasamos junto a sistemas rocosos sin pensar que, en ellos, están presentes un sin fin de datos del pasado que nos hablan de la vida y, son los geólogos los que, pacientemente se internan por lugares perdidos del mundo en busca de esa huella que nos hable del surgir de la vida.

El vestigio geológico, como dijo James Hutton, no presenta “ni vestigios de un principio ni perspectiva de un futuro”. Las perspectivas de un futuro siguen siendo remotas, pero durante las últimas décadas los paleontólogos han desenterrado lo que verdaderamente puede considerar los vestigios del principio de la vida.

Hallados en Cantabria insectos prehistóricos desconocidos atrapados en ámbar | Sociedad | EL PAÍS    Teruel, cuna del mantíspido fósil más antiguo encontrado en ámbar

              Insectos fosilizados de millones de años de edad atrapados en el ámbar

 

Cómo pudo surgir la Vida? ¡Es todo tan complejo! : Blog de Emilio Silvera V.Cómo pudo surgir la Vida? ¡Es todo tan complejo! : Blog de Emilio Silvera V.Cómo pudo surgir la Vida? ¡Es todo tan complejo! : Blog de Emilio Silvera V.

Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.

 

Estas estructuras han sido atribuidas a bacterias fosilizadas. La cantidad de carbono restante unida a estos microfósiles es generalmente muy débil (entre 0,01-0,5% con puntas excepcionales hasta el 1%) lo que hace particularmente difícil el análisis del carbono orgánico. No obstante, se han podido determinar los isótopos de carbono y presentan un enriquecimiento variable pero así y todo significativo en carbono 12, lo que habitualmente se traduce en un origen biológico. En general, las moléculas biológicas producidas por fotosíntesis se caracterizan por un enriquecimiento en 12C en relación con los carbonatos minerales. Así, la relación 12C/13C pasa de 88,99 en los carbonatos minerales de referencia a valores comprendidos entre 90,8 y 91,7 en las moléculas orgánicas biológicas.

 

Aunque no son plantas, las cianobacterias son uno de los principales seres vivos capaces de realizar la fotosíntesis, y también están sujetos al mismo intercambio de gases. En ellos los gases fluyen a través de la membrana y la pared celular por transporte pasivo.

 

Sistema petrolero. | PPT

Los Kerógenos de tipo I o Kerógeno Sapropélico es producto de la acumulación de materia orgánica en cuencas lacustres, ocasionalmente en marinas, …

 

Resultado de imagen de Kerógenos

                         Estructura molecular de los kerógenos 

Arguyendo un parecido entre las cianobacterias modernas y los microfósiles de Pilbara, William Schopf, de la Universidad de Los Ángeles, ha descrito estos últimos como fósiles de cianobacterias. Estas bacterias ancestrales, pues, ya habrían practicado la fotosíntesis oxigenada. Interpretación muy importante ya que situaría la fotosíntesis oxigenada muy atrás en los tiempos geológicos, mientras que los indicios bioquímicos más antiguos de la fotosíntesis oxigenada encontrados en esquistos carbonados, también en Australia, sólo se remontan a 2.700 millones de años. Según el inglés Martin Brasier, de la Universidad de Oxford, las estructuras contendrían efectivamente carbono orgánico enriquecido en isótopo 12, pero la materia orgánica sería de origen puramente químico y no biológico. Podría proceder de la reacción del hidrógeno con el monóxido de carbono (reacción llamada de Fischer-Tropsch), dos gases presentes en los fluidos de las fuentes hidrotermales. La acumulación de materia orgánica en microestructuras sería debida a la cristalización del cuarzo en la vena hidrotermal, y el importante enriquecimiento en carbono 12 sería el resultado de procesos puramente químicos. La explicación de Brasier, no obstante, no es totalmente convincente porque no es probable que la reacción de Fischer-Tropsch produjera moléculas tan complejas como los kerógenos (materia orgánica compleja, insoluble en los disolventes habituales) depositados en las venas hidrotermales.

 

Resultado de imagen de Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguasFormación de Hierro Bandeado | Geofrik's BlogFormación de Hierro Bandeado | Geofrik's Blog

“Roca perteneciente a una formación de hierro bandeado. El Fe se concentra en las bandas plateadas, mientras que en las bandas rojizas hay materiales detríticos silíceos con altos contenidos ferruginosos (que le dan ese color). Autor: desconocido.”

         Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas

 Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años donde se han encontrado Bacterias fósiles de una antigüedad aproximada de 3.500 millones de años.

Muchas veces hemos oído hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en forma natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrógeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de cada mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.

Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios… del Oxígeno, de la atmósfera, etc. 

No hay ninguna descripción de la foto disponible.

 

 

En los materiales más antiguos simplemente no queda suficiente 14para que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que tiene sus secretos muy bien guardados en lo más profundo de los tiempos.

 

                         Resultado de imagen de Los primeros seres fotosintéticos

                                      El primer antepasado común de las plantas y de las algas

Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.

 

Archean Barberton Greenstone Belt - IUGS

 

Ahora Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano y llegado a la conclusión de que la fotosíntesis ya existía al menos hace 3300 millones de años.

Estas capas de microbios crecían en una Tierra en la que no había oxígeno libre, una Tierra muy distinta a la que conocemos ahora. Probablemente su hábitat era la línea costera a muy baja profundidad bajo la superficie. Un sitio en el que había agua y la luz del Sol llegaba sin dificultad. Esa tonalidad, probablemente verde-azulada, sería la que cambiaría el planeta gracias a la luz y la evolución.

 

                           

                          ¡La Vida! Que estuvo presente en el pasado… ¡De tantas maneras!

 

                             

                                       Estas son las formas de vida más antiguas conocidas

Los microorganismos fósiles más antiguos fueron encontrados en los sedimentos de Barberton, en África del Sur, y de Pilbara, en Australia. Estos sedimentos, de una antigüedad de entre 3.200 y 3.500 millones de años, son ligeramente más jóvenes que las rocas de Groenlandia. Los sedimentos se han conservado bien y muestran la existencia de abundante vida en las aguas litorales de poca profundidad, y quizá incluso cerca de la superficie del agua (algunos biofilms tienen una estructura laminada que parece indicar una vida bacteriana que ya utilizaba energía solar). Los microfósiles identificados comprenden estructuras filamentosas con una longitud de entre diez y algunos cientos de micras, bastoncillos de algunas micras de largo y estructuras esféricas y ovoides de aproximadamente 1 micra de diámetro.

 

                                     Resultado de imagen de Se han observado al microscopio electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara

 

Los trabajos realizados en Orleans, en el Centro de biofísica molecular del CNRS, por Frances Westall podrían aportar una explicación intermedia. Se han observado al microscopio electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara en zonas limítrofes con las venas hidrotermales de Schopf, pero nunca en el interior mismo de las venas. Estas morfologías contienen carbono identificado por microanálisis con el microscopio electrónico. Parece, en efecto, que las bacterias ancestrales vivían, y posteriormente fueron fosilizadas, en rocas sedimentarias cercanas a venas hidrotermales. Las venas hidrotermales pueden muy bien haber arrastrado la materia orgánica de las bacterias muertas y/o fosilizadas (por lo tanto, enriquecidas en carbono 12), materia orgánica que habría sido depositada nuevamente más arriba en las venas hidrotermales, para formar las famosas estructuras carbonadas complejas descritas por Schopf. Las estructuras de Schopf, pues, sólo serían restos de materia orgánica bacteriana y no bacterias fosilizadas. Esta explicación, por lo tanto, es intermedia entre el todo bacteriano de Schopf y el todo químico de Brasier. No obstante, afirma la presencia de vida bacteriana hace unos 3.500 millones de años.

 

Restos de tierra fósil hallados en Groenlandia - elece.net

                   Restos de tierra fósil hallados en Groenlandia

Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años.

 

Existen bacterias fósiles? – microBIOblog

 Bacterias fósiles de una antigüedad de aproximadamente 3.500 millones de años

Las rocas más antiguas susceptibles de presentar trazas de vida son sedimentos de una antigüedad aproximada de 3.750 millones de años descubiertos en el sudoeste de Groenlandia.

 

Resultado de imagen de Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejasExisten bacterias fósiles? – microBIOblog

                                                      Bacterias fósiles

Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejas. La relación isotópica del carbono está comprendida entre 90,2 y 92,4 en lo referente a la materia orgánica de los sedimentos de Groenlandia. Estos valores sugieren, pero no demuestran de manera cierta, la existencia de actividad fotosintética, y por lo tanto de vida primitiva, hace 3.800 millones de años. En efecto, esta materia orgánica muy antigua (a veces reducida a cristales de grafito) ha sufrido importantes modificaciones en el curso de la diagénesis.

 

Resultado de imagen de Moléculas orgánicas complejas

Imagen relacionadaResultado de imagen de Moléculas orgánicas complejas

               Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas. Por ejemplo: En la luna Encelado, en nubes interestelares y en los lugares menos esperados. Ahí están.

El producto final de esta degradación, los kerógenos, se compone de macromoléculas complejas estables resistentes, que pueden incluso ser transformadas en grafito puro durante el metamorfismo. Todos estos tratamientos pudieron muy bien generar los enriquecimientos en 12C observados. También hay que desconfiar mucho de la contaminación eventual de estas rocas por microorganismos más recientes, contaminación que, evidentemente, falseará los análisis. A causa de las múltiples transformaciones sufridas por estas rocas, hay muy pocas probabilidades de encontrar en ellas vestigios de microfósiles. En efecto, en los sedimentos de Groenlandia no se ha descubierto ninguna estructura parecida a bacterias fósiles.

 

“Astrónomos que trabajan en el Atacama Large Millimeter/submillimeter Array (ALMA) han descubierto la presencia de moléculas orgánicas complejas en una estrella en formación, conocida como MWC 480, y que está a 455 años luz de distancia. Este hito parece dejar claro que esas moléculas, fundamentales para la vida, están presentes en todo el Universo.”

 

 

Imagen relacionada

También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados desde hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.

 

                 Mapa de Australia con la región de Pilbara coloreada en rojo

 

Los cascarones de dinosaurios son clave para investigaciones futurasIndicios de vida microbiana en unas rocas de Australia de hace 3.480 millones de años

 

Fósiles de cascarones  y de manto bacteriano  en los sedimentos de Pilbara, Grupo de Warrawoona, 3.446 Ga-
© Frances Westall

Cratón de Pilbara | Amigos de los Dinosaurios y la Paleontología

 El grupo Warrawoona  y Cratón de

Las antiguas rocas de Pilbara permiten vislumbrar la cuna de la vida en la Tierra - Vista al Mar

En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental emergente. La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.

 

Estromatolitos | Geofrik's Blog

 

Son células que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares cálidos y son el resultado de la unión de seres unicelulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y cuando una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.

“Las nefritas del este de Pilbara comprende sobre todo rocas volcánicas de facies de nefritas, correspondientes al Grupo Warrawoona, al cual se data entre 3.517 y 3.325 millones de años, y cantidades menores de rocas sedimentarias metamórficas así como varios tipos de rocas ígneas.”

Granulita (Granulite) - RocaGRANULITA – yogahimsablog

 

“Rocas metamórfica de color blanquecino, frecuentemente con granates almandinos incrustados. Las granulitas (del latín ‘granulum’, pequeño grano) son rocas metamórficas que han sufrido durante su metamorfismo unas elevadas temperaturas. Debido a ello, presentan una textura granoblástica, esto es, que los minerales cristalizados que contiene poseen todos un tamaño apreciable y homogéneo. Son de gran interés en geología debido a que uno de sus lugares de aparición son las dorsales oceánicas

 

                   Minerales Cristalizados | Trujillomineral cristalizado de cuarzo. paquistan. - Compra venta en todocoleccion

  • Fragmentos de rocas creados por abrasión mecánica por la propia acción del viento, aguas superficiales, glaciares  y expansión-contracción térmica por variaciones estacionales o diurnas.
  • Suelos, los cuales son creados por la descomposición química de las rocas mediante la acción combinada de ácidos débiles disueltos en agua superficial y meteórica, hidrólisis, ácidos orgánicos, bacterias, acción de plantas, etc.

La erosión es uno de los principales actores del ciclo geográfico.

 

 

En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a estaidentificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.

 

Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos. Actualmente, estos restos están cuestionados tanto por su origen biológico como por su edad.

Puede parecer sorprendente que las bacterias puedan dejar fósiles. Sin embargo, un grupo particular de bacterias, las cianobacterias o “algas azul-verdosas”, han dejado un registro fósil que se extiende en el Precámbrico – las cianobacterias más viejas, como fósiles conocidos tienen casi 3.500 millones años, son los fósiles más antiguos actualmente conocidos. El grupo muestra lo que probablemente es el conservacionismo más extremo de morfología de cualquier organismo. Aparte de las cianobacterias, las bacterias fósiles identificables no son muy frecuentes. Sin embargo, bajo ciertas condiciones del medio químico, pueden reemplazarse células bacterianas con minerales, muchas veces pirita o siderita (carbonato férrico), formando réplicas de las células que una vez estuvieron vivas.

Las cianobacterias como estrellas: hoy brillan, con un origen milenario

Las cianobacterias como estrellas: hoy brillan, con un origen milenario

Como decíamos, en la datación de objetos más antiguos situados en las profundidades de la historia de la Tierra, el 14C no sirve, y, nos tenemos que valer de otros materiales cuya vida media sea más larga. Para ello, necesitamos un reloj mucho más imponente: un radioisótopo cuya vida media se mida en muchos millones de años o incluso, en miles de millones de años. El Potasio 40 (40k) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio 40 (40 Ca), que desafortunadamente no puede distinguierse de los iones de Calcio ya presentes en el mineral, o bien Argón (40 Ar), que só piede distinguierse. La Vida Media del 40K es de 1250 millones de años. Además, el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas.

 

Circón.Composición, usos, yacimientos y propiedades. Toda la información

       Mineral de Circón:

El circón o como también se le conoce, el Zircón es un tipo de mineral que entra dentro del grupo de los nesosilicatos. Esta dentro de la clase 9 de la escala de Strunz y puede encontrarse en la naturaleza bajo diferentes colores, aunque la gran mayoría de piedras suele ser de color azul.

Hablamos de un mineral que se conoce desde la edad media, lo que hace que sea un mineral que nos ha acompañado durante muchos siglos. Como es un mineral muy bonito, se usa mucho en el mundo de la joyería.

Sin embargo, lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los aviones: un isótopo que no se pierda fácilmente en un mineral que no se altere fácilmente. Los circones, unos minerales que contienen uranio y se encuentran en los granitos y otras rocas ígneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los cristales de circón en el momento de su formación nos proporcionan dos cronómetros fiables: el 238U se desintegra en Plomo 206 (206Pb) con una vida media de unos cuatro mil quinientos millones de años (la edad de la Tierra), mientras el isotopo 235U, menos abundante ( un 7 por mil), se desintegra en 207Pb con una vida media de algo más de setecientos millones de años. Esta peculiaridad nos permite verificar por dos métodos las edades medidas en las rocas más antiguas de la Tierra y, podemos saber la edad de los fósiles hallados en ellas.

En la actualidad, nuestro conocimiento de la vida en ambientes arcaícos es a un tiempo frustrante y emocionante: frustrante porque tenemos muy pocas certezas, emocionante porque sabemos algo, por poco que esto sea. Además, es estimulante, pues el compañero de la ignorancia es la oportunidad. Así que nos quedan preguntas importantes que realizar sobre las rocas de Warrawoona y las de otros lugares que nos muestran fósiles que, no siempre sabemos descifrar. Si las rocas más antiguas que hemos podido identificar nos indican la presencia de organismos complejos, ¿Qué clase de células vivían en tiempos aún más lejanos? Y, en última instancia, ¿Cómo pudieron surgir? ¿Cuál es el origen de la vida?

 

El origen de la vida Tabla Figura

¿Quién puede contestar esa pregunta?

La vida fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Nosotros (creo), junto con la inmensa diversidad de clases de vida que en la Tierra han sido, estábamos presentes en las instrucciones que el Universo tenía impresas en la evolución de Gaia. Sin embargo, la vida es muy distinta a todo lo demás porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida, y, esa evolución bioquímica de la materia para hacer posible la vida, se gestó, primero en las estrellas, más tarde en laas explosiones supernovas que hicieron posible la transmutación de materiales sencillos en más complejos y, finalmente, en las Nebulosas donde se formaron nuevas estrellas y planetas que, cargados con estos materiales prebióticos, sólo tuvieron que esperar que, en algún plameta como la Tierra, situado en la Zona habitable de su estrella (el Sol) dejara que el Tiempo, con su transcurrir, hiciera el trabajo.

 

        Muchos son los planetas situados en la zona habitable de “sus estrellas”

A grandes rasgos entendemos como pueden haber evolucionado las moléculas biológicas a partir de precursores simples presentes en la Tierra joven. Sin embargo, ssigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de froma tan compleja hasta llegar a “fabricar” una “máquina” tan maravillosa como nuestro cerebro de cuyas funciones, simplemente conocemos una parte muy superficial.

 

Resultado de imagen de El maravilloso cerebro humano

 

Si pensamos en cómo se pudo conformar el cerebro humano, una estructura de tal complejidad que, posiblemente, nada en el Universo se le pueda igualar, toda vez que, llegar a transiciones de fase que pasan por sucesos que parten desde la materia inerte y llegan hasta los pensamientos y los sentimientos…, no existe nada que se le pueda igualar.

¿Conoceremos algún día la verdadera Historia? Esperemos que, al menos, en su mayor parte sí.

emilio silvera

 

  1. 1
    emilio silvera
    el 22 de octubre del 2023 a las 9:53

    El tema es tan complejo y tan amplio que, en cada trabajo sobre el surgir de la vida en nuestro mundo, trato de explicar uno de los apartados involucrados en tan fascinante historia, y, en este caso, nos centramos en los fósiles encontrados en las rocas más antiguas de la Tierra que nos muestran las pruebas de que hace unos 3.800 millones de años, ya estaban presentes las primeras formas primigenias de pequeños “seres” unicelulares vivos que, con el paso del Tiempo evolucionaron hacia los pensamientos.

    Por lo que podemos saber, una cosa es cierta: ¡La materia “inerte” evolucionó hasta la Vida!

    A ciencia cierta, nadie sabe (en realidad) explicar esa historia, y, con los datos que a lo largo de muchos años, los instrumentos avanzados que la tecnología ha puesto a nuestra disposición, la datación del Carbono 14… Hemos construido una historia más menos cercana a la realidad de cómo pudo suceder aquel asombroso suceso de que la Vida pudiera hacer acto de presencia en nuestro Universo.

    El inicio y el origen de tal acontecimiento está lejos de nuestro entendimiento, y, debido a ello, se han elaborado distintos pensamientos o conjeturas que han dado lugar a diversas teorías, y, dichas teorías nos llevan a distintos lugares y escenarios variados para que, dicho maravilloso hecho, pudiera haber surgido en un planeta como la Tierra, y, no se ha descartado (entre otros), el de la Panspermia, es decir, que la vida llegó a nuestro planeta en esporas venidas del Espacio Interestelar y aquí florecieron en un ambiente idóneo para ello.

    Nosotros, siendo unos representantes bastante avanzados de la Vida, tampoco la podemos explicar, y, nos hemos acogido a la evolución como los cosmólogos se han agarrado a la “materia oscura”, ambos para poder explicar lo que no saben y salir del atolladero de mostrar su ignorancia.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting