Nov
15
¿Otros universos? Pudiera ser
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Poco a poco, a medida que avanzamos en tecnología con cada vez más prestaciones, se van desvelando secretos que estaban profundamente escondidos, y, nos vienen a decir que, los modelos que habíamos construido se están tambaleando, ya que, hay mucho más de lo que podíamos imaginar.
Nov
15
¡Qué cosas!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Ahora prevalece el Big Bang pero… ¡No siempre fue así! Todo dependía del conocimiento de los pueblos
Nov
15
Misterios de la Naturaleza
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Cuando una partícula se acerca a la velocidad de la luz, su masa tiende a infinito; haría falta una energía infinita para seguir acelerándola y eso es algo que nunca se consigue.
No pocas veces hemos explicado aquí el motivo de por qué, nada material en nuestro Universo, puede superar la velocidad de la luz. Esa velocidad, la de la luz en el vacío, es un límite que impone la Naturaleza y, el tratar de superarla o incluso alcanzarla, trae consecuencias varias.
¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Porque cuando se acerca a las velocidades relativistas, es decir, la velocidad de la luz en el vacío, c, la energía inercial se convierte en masa y, al llegar a c (299.792,458 m/s), sería infinita. Una nave a medida que se acercara a c (299.792.458 metros por segundo), iría frenándose y ganando masa.
Ese fotón, que ha estado unos ocho minutos en movimiento (y que por tanto debería tener unos ocho minutos de edad) tiene en realidad menos de un segundo de vida. Al menos, en lo que respecta a sí mismo. Porque resulta que la materia que viaja a una velocidad cercana a la de la luz existe durante un tiempo, pero el tiempo que transcurre para sí misma es menor que el del observador.
Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?
Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.
Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.
En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).
No un pulsar tampoco puede ser más rápido que la luz
La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:
- En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
- En forma de masa, con lo cual se hace “más pesado”.
La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).
Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.
A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.
En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad.
Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.
El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.
Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.
¿Que velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?
Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz
La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían superar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿Cómo iremos?
La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.
De momento sólo con los Telescopios podemos llegar tan lejos. Ahí han captado la galaxia más lejana del Universo
Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.
Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?
Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.
La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.
A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa el paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.
A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.
Fotones emitidos por un rayo coherente conformado por un láser
Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relagar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.
¡La Naturaleza! Observémosla.
emilio silvera
Nov
15
Cuidarse y estar en forma, esencial para una buena vida
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Nov
15
Como sistema cerrado.la Entriopia del Universo crece
por Emilio Silvera ~ Clasificado en Física ~ Comments (2)
Variación de entropía del universoDesde el punto de vista de la Termodinámica, el universo es el conjunto constituido por un sistema y sus alrededores. Es, por tanto, un sistema aislado (no hay nada fuera de él). De la misma manera en que se puede calcular la variación de entropía de un sistema termodinámico entre dos estados, puede calcularse la variación de entropía de sus alrededores (todo lo que ha interaccionado con nuestro sistema). La suma de ambas magnitudes se denomina variación de entropía del universo. Como el universo es un sistema aislado, utilizando el teorema de Clausius se tiene que, para el universo: |
Donde el signo igual es aplicable para una transformación reversible y el signo menor que cuando dicha transformación es irreversible. A continuación se analiza cada caso por separado. En todo proceso irreversible, la entropía del universo aumenta. “Los sistemas aislados al evolucionar, tienden a desordenarse, nunca a ordenarse”. La entropía entropía mide el grado de desorden o de orden del sistema y depende únicamente de los estados inicial y final de dicho sistema. En todo proceso irreversible, la entropía del universo aumenta. “Los sistemas aislados al evolucionar, tienden a desordenarse, nunca a ordenarse”. La entropía entropía mide el grado de desorden o de orden del sistema y depende únicamente de los estados inicial y final de dicho sistema.
En el siguiente diagrama p – V se ha representado un ciclo irreversible
Está constituido por dos transformaciones: la AB (representada en verde en la figura), que es irreversible, y la BA (en rojo) que es reversible. Como el ciclo en su conjunto es irreversible, debemos aplicar el teorema de Clausius con el signo menor:
La integral de línea que aparece en la ecuación anterior puede ser descompuesta en la suma de las integrales evaluadas en cada etapa del ciclo, quedando:
Así
En todo proceso irreversible, la entropía del universo aumenta. “Los sistemas aislados al evolucionar, tienden a desordenarse, nunca a ordenarse”. La entropía entropía mide el grado de desorden o de orden del sistema y depende únicamente de los estados inicial y final de dicho sistema.
Ya que la integral evaluada a lo largo del tramo reversible es precisamente la variación de entropía entre los estados B y A. Por tanto,
Expresión conocida como desigualdad de Clausius.
El significado físico de esta ecuación es que la variación de entropía entre dos estados cualesquiera será siempre mayor que la integral del calor intercambiado irreversiblemente entre los dos estados partido por la temperatura.
Como aplicación de esta expresión, la variación de entropía en la expansión libre de Joule ha de ser mayor que cero (como efectivamente lo es) ya que el calor intercambiado en esta transformación irreversible es cero.
Como el universo es un sistema aislado, cuando en el universo se produce una transformación cualquiera AB irreversible el calor intercambiado es cero, por lo que:
Es decir, la entropía del universo siempre crece para cualquier transformación irreversible que se produzca.
Cuando en el universo tiene lugar una transformación reversible, debemos tomar el signo igual:
Agrupando ambos resultados:
Esta afirmación constituye un nuevo enunciado del Segundo Principio:
La entropía es una función de estado que, evaluada para todo el universo, aumenta en una transformación irreversible y permanece constante en una transformación reversible.
La entropía nos lleva al desorden En física se habla de entropía (usualmente simbolizada con la letra S) para referirnos al grado de equilibrio de un sistema termodinámico, o más bien, a su nivel de tendencia al desorden (variación de entropía). Cuando se produce una variación de entropía positiva, los componentes de un sistema pasan a un estado de mayor desorden que cuando se produce una entropía negativa. La entropía es un concepto clave para la Segunda Ley de la termodinámica, que establece que “la cantidad de entropía en el universo tiende a incrementarse en el tiempo”. O lo que es igual: dado un período de tiempo suficiente, los sistemas tenderán al desorden. Ese potencial de desorden será mayor en la medida en que más próximo al equilibrio se halle el sistema. A mayor equilibrio, mayor entropía. También puede decirse que la entropía es el cálculo de la energía interna de un sistema que no es útil para realizar un trabajo, pero que existe y se acumula en un sistema determinado. Es decir, la energía excedente, desechable.
Cuando un sistema pasa de un estado inicial a uno secundario, en un proceso isotérmico (de igual temperatura), la variación de entropía (S2 – S1 ) será igual a la cantidad de calor que intercambie el sistema con el medio ambiente ,(Q1→ Q2 ), dividido por su temperatura. Esto se expresa según la siguiente ecuación: S2 – S1 = (Q1→ Q2)/ T Esto demuestra que solo se pueden calcular las variaciones de entropía en un sistema y no valores absolutos. El único punto en donde la entropía es nula es en el cero absoluto (0 K o -273,16 °C). A todo esto:
|
La Fuente está en un trabajo sobre Termodinámica