Nov
19
Nuestro planeta y sus cambios naturales
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
No dejamos de hablar del “Cambio Climático” como algo malo provocado por los humanos. Sin embargo, qué podemos decir de todos los cambios sufridos por la Tierra cuando nosotros no habíamos llegado
Nov
19
¿El Misterio? Persistirá, ¡como el Tiempo!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Tras un largo y penoso caminar por el planeta Tierra …
Los habitantes de este mundo hemos, hemos conseguido construir un cuadro plausible del Universo, de la Naturaleza que tratamos de comprender. Hemos llegado a ser conscientes de que, en ella, en la Naturaleza, están todas las respuestas que buscamos y, nosotros mismos no hemos llegado a conocernos por ese mismo hecho de que, formando parte de la Naturaleza, también somos parte del enigma que tratamos de desvelar.
Parece que ahora estamos entrando en la edad adulta, quiero significar que después de siglos y milenios de esporádicos esfuerzos, finalmente hemos llegado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más modesta pretensión de nuestra madurez cosmológica.
Sabemos, por ejemplo, dónde estamos, que vivimos en un planeta que gira alrededor de una estrella situada en el borde de la Galaxia espiral a la que llamamos Vía Láctea, cuya posición ha sido determinada con respecto a varios cúmulos vecinos que, en conjunto, albergan a unas cuarenta mil galaxias extendidas a través de un billón de años-luz cúbicos de espacio.
También sabemos más o menos, cuando hemos entrado en escena, hace unos cinco mil millones de años que se formaron el Sol yn los planetas de nuestro Sistema Solar , en un Universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determinado los mecanismos básicos de la evolución de la Tierra, hallado prueba también de evolución química a escala cósmica y hemos podido aprender suficiente física como para comprender e investigar la Naturaleza en una amplia gama de escalas desde los Quarks saltarines en el “mundo” microscópico hasta el vals de las galaxias.
El Tiempo inexorable nunca dejó de fluir y mientras eso pasaba, nuestra especie evolucionaba, aprendía al observar los cielos y cómo y por qué pasaban las cosas. Hay realizaciones humanas de las que, en verdad, podemos sentirnos orgullosos. Aquellos habitantes de Sumer y Babilonia, de Egipto o China y también de la India y otros pueblos que dejaron una gran herencia de saber a los Griegos que pusieron al mundo occidental en el camino de la ciencia, nuestra medición del pasado se ha profundizado desde unos pocos miles de años a más de diez mil millones de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia que nos separa de la Luna hasta el radio de más de diez mil millones de años-luz del universo observable.
Tenemos razones para esperar que nuestra época sea recordada (si por ventura queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la Humanidad unida al contexto del Universo en su conjunto por unos conocimientos que, aunque no suficiente, sí son los necesarios para saber dónde estamos y, ahora, debemos buscar la respuesta a esa pregunta: ¿Hacia dónde vamos?
Claro que, el futuro es incierto
Como en la física, en el mundo y en nuestras vidas, también está presente el principio de incertidumbre y, de ninguna manera, podemos saber del mañana. Sin embargo, cuanto más sabemos del universo, tanto más claramente comprendemos lo poco que sabemos de él. La vastedad del Universo nos lleva a poder comprender algunas estructuras cósmicas y mecanismos que se producen y repiten como, el caso de la destrucción que nos lleva a la construcción. Es decir, una estrella masiva vieja explota y siembre el Caos y la destrucción en una extensa región del espacio, y, es precisamente ese hecho el que posibilita que, nuevas estrellas y nuevos mundos surgan a la vida. Sin embargo, la grandeza, la lejanía, esa inmensidad que se nos escapa a nuestra comprensión terrestre, nunca nos dejará comprender el universo en detalle y, siendo así, siempre tendremos secretos que desvelar y misterios que resolver.
Si añadimos a todo eso que, si poseyésemos un atlas de nuestra propia Galaxia y que dedicase una sóla página a cada sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de diez mil millones de volúmenes de dies mil páginas cada uno. Se necesitaria una biblioteca del tamaño de la de Harvard para alojar el Atlas, y solamente ojearlo al ritmo de una página por segundo nos llevaría más de diez mil años. Añádance los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra Galaxia solamente, y hay cien mil millones de galaxias más.
Sabiendo todo todo esto, siendo consciente de que, realmente, es así, tendremos que convenir con el físico Lewis Thomas cuando dijo: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”.
La ignorancia, como todo en el Universo, es relativa. Nuestra ignorancia, por supuesto, siempre ha estado con nosotros, y siempre seguirá estando, es una compañera con la que cargamos toda nuestra vida y que nos pesa. Algunos procuramos que pese lo menos posible para hacer más llevadero el viaje. Lo nuevo está en nuestras consciencias y de ellas, ha surgido nuestro despertar al comprender de sus abismales dimensiones, y es eso más que otro cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final pero la aventura del aprendizaje siempre será interminable y eterno, quizá (no me he parado a pensarlo) pueda ser esa la única forma de eternidad que pueda existir.
Cuando hicimos acto de presencia nosotros?
La dificultad de explicarlo todo no se debe a nuestra debilidad mental, sino a la estructura misma del universo. En los últimos siglos hemos descubierto que la trama del cosmos puede abordarse en varios niveles diferentes. Mientras no se descubre el siguiente nivel, lo que ocurre en el anterior no se puede explicar, sólo puede describirse. En consecuencia, para el último nivel que se conoce en cada momento nunca hay explicaciones, sólo puede haber descripciones.
“Los teoremas de incompletitud de Gödel son dos célebres teoremas de lógica matemática demostrados por Kurt Gödel en 1931. Ambos están relacionados con la existencia de proposiciones indecidibles en ciertas teorías aritméticas.
El segundo teorema de incompletitud es un caso particular del primero: afirma que una de las sentencias indecidibles de dicha teoría es aquella que «afirma» la consistencia de la misma. Es decir, que si el sistema de axiomas en cuestión es consistente, no es posible demostrarlo mediante dichos axiomas.
Los teoremas de incompletitud de Gödel son uno de los grandes avances de la lógica matemática, y supusieron —según la mayoría de la comunidad matemática— una respuesta negativa al segundo problema de Hilbert.1 Los teoremas implican que los sistemas axiomáticos de primer orden tienen severas limitaciones para fundamentar las matemáticas, y supusieron un duro golpe para el llamado programa de Hilbert para la fundamentación de las matemáticas. Por otra parte, durante algún tiempo ni Hilbert ni otros de sus colaboradores fueron conscientes de la importancia del trabajo de Gödel para su programa.”
La Ciencia es intrinsicamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no puede demostrarse dentro del sistema. Es decir, tiene que haber algo fuera del marco de cualquier teoría para poder comprobarla. La lección que podemos haber aprendido es que, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.
No es que pertenezcamos al Universo, formamos parte de él
Y, a todo esto, debemos alegrarnos de que así sea, de que no podamos comprender el Universo en toda su inmensa dimensión y diversidad. Nuestras mentes necesitan que así sea y, tendrán, de esa manera, el escenario perfecto para seguir creciendo a medida que busca todas esas respuestas que nos faltan y, lo bueno del caso es que, cada respuesta que encontramos, viene acompañada de un montón de nuevas preguntas y, de esa manera, esa historia interminable de nuestra aventura del saber…llegará hasta la “eternidad” de nuestro tiempo que, necesariamente, no tiene por que ser el tiempo del universo.
emilio silvera.
Nov
19
¡Las leyes del Universo! ¿Son las mismas en todas partes?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Está claro que el tiempo pasa y cada generación trata de saber lo que hicieron las que las precedieron. Los vestigios del pasado son muchos y, no siempre sabemos traducir sus mensajes pero, los estudiamos y procuramos llegar a explicaciones lógicas de lo que aquello pudo ser, y, para ello, nos transportamos a aquellos contextos del pasado, a las mentalidades de los pobladores que dejaron monumentos que, con una mezcla de lo religioso-astronómico, quería simbolizar lo que ellos creían.
Desde el Parque Nacional del Teide se puede conseguir una buena vista de nuestra Vía Láctea
La “infinitud” de la Vía Láctea, inconmensurable para nosotros, es sólo una más, de decenas de miles de millones que pueblan nuestro Universo. Así, nuestra Galaxia para nosotros “infinita”, es, sencillamente, un objeto más de los muchos que pueblan las regiones del Cosmos. Cientos de miles de millones de estrellas que brillan por todas partes, asombrosos enjambres de planetas repartidos por cientos de miles de sistemas planetarios, cuásares y púlsares, estrellas enanas blancas, marrones y negras, gigantes rojas, Nebulosas de increíbles dimensiones en las que nacen nuevas estrellas y mundos, explosiones supernovas y agujeros negros gigantes que engullen todo el material que pueda capturar… ¡El Universo! nunca dejará de asombrarnos, ni por su inmensidad, ni por su diversidad.
Utilizando una cámara nueva y más poderosa, el Telescopio Espacial Hubble, ha descubierto lo que parece ser el objeto más distante jamás observado, una proto galaxia pequeña a 13.200 millones -luz de distancia, que se remonta a tan sólo 480 millones de años después del nacimiento del universo o Big Bang. Es decir, nos ha traído una galaxia en formación a escaso tiempo del comienzo del tiempo.
Immanuel Kant llegó a la conclusión de que las galaxias eran universos-islas pero, él escribió primero que las nebulosas elípticas, ofrecían una visión que se podía asimilar a un “sistema de muchas estrellas” que se hallan a “enormes distancias”. Aquí, por primera vez se hizo un retrato del universo formado por galaxias a la deriva en la vastedad del espacio cosmológico. El libro de Kant, titulado Historia general de la naturaleza y teoría del cielo, fue publicado -si esta es la palabra apropiada- en 1755, pero su editor quebró, los libros le fueron confiscados para sus deudas y la obra de Kant, cayó en el olvido.
Los entusiasmos galácticos de Kant, a pesar de todo, contribuyeron a sensibilizar la mente humana a la riqueza potencial y la vastedad del universo. Pero el arrobamiento por sí solo por muy perspicaz que sea, es, un fundamento inadecuado para fundamentar una cosmología científica. Determinar si el universo está constituido realmente por galaxias requería hacer un mapa del universo en tres dimensiones, mediante observaciones muy exactas, si no menos arrobadoras, que la contemplación meditativa de Lambert y Kant.
Entró en escena William Herschel, el primer astrónomo que llevó a cabo observaciones agudas y sistemáticas del universo más allá del Sistema solar, donde está la mayor parte de lo que existe. De hecho, en la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.
El observatorio espacial Herschel ha facilitado a un grupo de astrónomos observar cinco galaxias muy lejanas gracias al efecto lente gravitatoria. Así, de alguna manera, y en memoria de Herschel, el Telescopio que lleva su nombre continñua su que fue fundamental
En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de , parece que ésto último no sucederá nunca. La materia del Universo parece estar aproximadamente en la tasa del la Densidad Crítica. Si es así, el Universo se expandirá para siempre y tendrá una muerte térmica: El frío desolador del Cero Absoluto (–273 ºC) donde ni los átomos se mueven.
Es curioso como Herschel, encontró su camino la plenitud siguiendo las huellas de Kepler y Galileo a través del puente que lo llevó de la Música a la Astronomía. La habilidad de Herschel como observador era también muy refinada; sabía utilizar los telescopios. Él decía: “Ver es un arte que es necesario aprender”.
“La luz de las estrellas fijas es de la misma naturaleza [que] la luz del Sol” nos decía Newton, mientras que E. Hubble, comentaba que: “Las observaciones siempre involucran una teoría”. Ambos llevaban razón. Surgieron dos escuelas de pensamiento sobre la naturaleza de las “nebulosas elípticas” que predominaron en el siglo XIX. Una de ellas, la teoría del universo-isla de Kant y Lambert- la expresión es de Kant-, sostenía qwue nuestro Sol es una de las muchas estrellas de una Galaxia, la Vía mLáctea, y que hay otras muchas galaxias, que vemos a través de grandes extensiones de espacio nebulosas espirales y elípticas. (como eran llamadas en aquel tiempo a las galaxias que, no se podían ver con la nitidez que nos proporcionan nuestras modernos telescopios.)
Las Tablas Rudolfinas de Kepler
Einstein entra en escena. Nació en Ulm, donde Kepler antaño había deambulado en busca de un impresor, con el manuscrito de las Tablas Rudolfinas Bajo el brazo. Einstein como sabemos, fue un niño aislado y encerrado en sí mismo. No habló los tres años. Daremos un salto hasta 1905, año en el que comenzaron a cristalizar sus pensamientos pudiendo escribir cuatro artículos memorables que lo situaron en ese lugar de privilegio de los verdaderos maestros.
N0, Einstein no llegó a la Física y la Cosmología en bicicleta, él cogió una autopista mayor, esa que está conformada por los pensamientos y que nos pueden llevar más lejos, de lo que cualquier vehículo nos podrá llevar nunca. El primero de aquellos -ahora famosos- artículos, fue publicado tres días después de cumplir los veintiseis años, contribuiría a poner los fundamentos de la física cuántica. Otro modificó el curso de la teoría atómica y la mecánica estadística. Los otros dos enunciaron lo que se conoció como la teoría de la relatividad especial.
Cuando Planck, por aquel entonces director editorial de la Revista científica Annalen der Physik, levantó la mirada después de leer el artículo sobre la relatividad especial, sabiendo inmediatamente que el mundo había cambiado. La era Newton había terminado y había surgido una nueva ciencia reemplazarla.
.
La odisea que llevó a Einstein hasta la relatividad especial -y de ella a la relatividad general, que expresaría la cosmología de los espacios curvos- empezó cuando tenía cinco años y su padre le mostró una brújula de bolsillo para que estuviera entretenido pero, aquello, le fascinó y, no podía saber qué magia hacia que la aguja señalara siempre hacia el mismo lugar sin tener en el movimiento. Al preguntar, le dijeron que la Tierra está envuelta dentro de un campo magnético que era el responsable de tal “milagro” y, aquello, al joven Einstein, le maravilló y despertó su curiosidad que nunca le dejó entonces. Él decía que detrás de las cosas debe haber algo profundamente oculto, que nos podría explicar el por qué se comportan de ciertas maneras.
Como antes decía, en el siglo XX hemos podido ser testigos de múltiples y maravillosos descubrimientos científicos que han cambiado la concepción que del mundo podíamos tener: La teoría de Planck del cuanto que nos llevó directamente a la Mecánica Cuántica, el Relatividad de Einstein que nos lleva a un espacio-tiempo de cuatro dimensiones, nos dijo que la luz marcaba el límite de transmitir la información y, también, que la masa y la energía eran una misma cosa, así como que, ¡el Tiempo!, era relativo y no absoluto. Más tarde, en su ampliación de la teoría en 1916, nos dijo que la presencia de grandes masas distorsionaba el espacio-tiempo.
Deformación de la malla espacio-tiempo
Estos dos claros exponentes de aquella revolución científica nos abrieron los ojos y la mente a un Universo distinto que , después de dichas teorías, tenía más sentido. Otro de aquellos descubrimientos explosivos, fue la teoría cosmológica del big bang, que surgió como combinación de ambas, y, justo es que se diga, quienes fueron sus protagonistas que, no por sabido, estará demás dejar aquí un pequeño homenaje.
Cuando Einstein publicó en 1916 la teoría de la relatividad general era consciente de que ésta modificaría la universal de Newton: la solución a sus ecuaciones no sólo sustituyo el planteamiento dinámico de fuerza de atracción por otro geométrico de deformación del espacio-tiempo, sino que permitía explicar el universo en su conjunto.
Fue él el primer sorprendido al encontrar que dicha solución global traía como consecuencia un mundo cambiante, un universo que inicialmente estimó en contracción. Como esto no le cabía en la cabeza introdujo un término en las ecuaciones que contrarrestara el efecto gravitatorio: una fuerza repulsiva, a la que llamó constante cosmológica (Λ) constante dotaba al espacio vacío de una presión que mantenía separados a los astros, logrando así un mundo acorde a sus pensamientos: estático, finito, homogéneo e isótropo.
Más tarde, Einstein comentaría que la introducción de constante, había sido el mayor error de su vida, porque (con una mejor estimación de la densidad) podía haber predicho la expansión del universo antes de que fuera observada experimentalmente. Claro que, su excusa era admisible, cuando el introdujo la constante cosmológica, nadie sabía que el universo estaba en expansión. Sin embargo, estudios posteriores han venido a confirmarla.
Albert Einstein y el famoso eclipse
Con todo y a pesar de su enorme importancia, la teoría de la relatividad no llegó a tener verdadera importancia hasta que, en 1919, Arthur Eddintong confirmó la predicción del físico alemán con respecto a la curvatura de la luz, aprovechó el eclipse solar de Sol de ese año. De la noche a la mañana, Einstein se convirtió en el físico más popular del mundo al predecir con su ingenio y con su enorme intuición fenómenos que eran reales antes de que éstos fueran comprobados. Así, con carácter desenfadado, expresándose en términos sencillos y muy distintos ( estirados) que los de sus colegas, había dado respuesta a preguntas que habían sido formuladas pero, que nadie hasta entonces, había sabido contestar.
El astrónomo holandés Willem de Sitter obtuvo en 1917 una solución a las ecuaciones del sabio alemán, sugiriendo la posibilidad de que el universo fuera infinito, aparentemente estático y de densidad prácticamente nula en el que tan solo había energía. Por otro lado, el matemático ruso Alexander Friedmann consiguió en 1922 varias soluciones a las ecuaciones proponiendo universos que se contraían o que se expandían, según los valores que tomara la constante cosmológica. Cuando su se publicó en Alemania, Einstein respondió con una nota en la misma revista presumiendo un error matemático. El error resultó finalmente inexistente, pero Einstein tardó en rectificar, por lo que la respuesta de Friedmann quedó en un segundo plano.
Lo cierto es que Einstein, ha dado en el “blanco” con muchas de sus Ideas y, si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que – el vaticinó-, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de sucesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, nuevos mundos y, muy probablemente… nuevas formas de vida.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos.
Arriba Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. Abajo los científicos chinos comandados por Juan Yin crearon fotones entrelazados mediante la estimulación de un cristal con luz ultravioleta, que produjo un par de fotones con la misma longitud de onda, pero opuestos. Por separado, ambas teorías funcionan muy bien y se pueden medir y comprobar límites excepcionales. Sin embargo, si las juntamos…
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas. Y, entonces, en eso estamos pero, el casamiento, no se consuma.
Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad que, inmersa en lo cotidiano de un mundo macroscópico, nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que con su comportamiento, me obligan a pensar y me transportan este mundo material nuestro a ese otro fascinante, donde residen las maravillas del universo, sus cimientos infinitesimales en los que residen las “ladrillos” de las estrellas y galaxias…también de los mundos y de los seres vivos. La materia es tan compleja que aún no hemos podido llegar a comprenderla…del todo.
emilio silvera
Nov
19
¿Vida en las nubes de estrellas fallidas?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Estrella enana marrón: Imagínate una estrella. No como el Sol, sino que mucho más pequeña. Y de color oscuro, tirando a granate. Que, además, no es muy caliente y no consigue irradiar mucha luz. Tampoco puede emitir casi energía, porque no es capaz de desencadenar el proceso de fusión característico de las estrellas. Realmente, es muy parecida a los planetas grandes, llamados gaseosos, como Júpiter y, de hecho, los factores que las diferencian son cuestión de debate pues, externamente, son muy parecidos.
Una abundante nueva variedad de lugares que podrían servir de hogar para la vida… y las vistas son espectaculares. Flotando en la Vía Láctea hay tal vez mil millones de frías enanas marrones, objetos muchas veces tan masivos como Júpiter, pero no lo suficiente para encenderse como una estrella. Según un estudio reciente, las capas de sus atmósferas superiores presentan temperaturas y presiones similares a las de la Tierra, y podrían albergar microbios que naveguen en corrientes termales ascendientes.
La idea surge de la idea de una zona habitable que incluye una vasta cantidad de mundos que previamente no eran considerados. “No se necesita tener inevitablemente un planeta terrestre con una superficie”, dice Jack Yates, científico planetario de la Universidad de Edimburgo en Reino Unido, quien lideró el estudio.
Ni podemos imaginar lo que puede estar morando en las nubes Interestelares
La vida atmosférica no es solo para las aves. Durante décadas, los biólogos han conocido microbios que se dejan llevar por el viento a granes alturas sobre la superficie de nuestro planeta. Y en 1976, Carl Sagan imaginó la clase de ecosistema que podría evolucionar en las capas superiores de Júpiter, alimentados por la luz solar. Sería como plancton aéreo: pequeños organismos que Sagan llamó “hundidores” (“sinkers” en inglés). Otros organismos, denominados “flotadores” (“floaters” en inglés), podrían ser similares a globos y subir o bajar en la atmósfera manipulando la presión de sus cuerpos. En los años posteriores, los astrónomos también han considerado la idea de microbios en la atmósfera de dióxido de carbono sobre la superficie inhóspita de Venus.
Very Large Telescope, o VLT, de la EAO
El telescopio VLT de ESO ha sido el instrumento utilizado para crear el primer mapa del tiempo de la superficie de la enana marrón más cercana a la Tierra. Un equipo internacional ha hecho un mapa de las zonas claras y oscuras en WISE J104915.57-531906.1B, conocido comúnmente como Luhman 16B, una de las dos enanas marrones descubiertas recientemente que forman pareja y que se encuentra a tan solo seis años-luz del Sol
WISE image of Luhman 16. In the GMOS image in the inset, it is resolved into a pair.
Yates y sus colegas aplicaron el mismo pensamiento a una clase de mundo que Sagan no conoció. Algunas enanas marrones frías, descubiertas en 2011, tienen superficies a temperaturas ambientes o menores; las capas más bajas serían realmente agradables. En marzo de 2013, los astrónomos descubrieron a WISE 0855-0714, una enana marrón a solo 7 años-luz de distancia que parece tener nubes de agua en su atmósfera. Yates y sus colegas actualizaron los cálculos de Sagan para identificar los tamaños, densidades, y estrategias de vida de los microbios que podrían arreglárselas para mantenerse en las alturas de la región habitable de una enorme atmósfera con hidrógeno gaseoso como predominante. Si se hunde demasiado se cocina o aplasta por la presión. Si se eleva demasiado alto se puede congelar.
En tal mundo, los pequeños hundidores como los microbios de la atmósfera de la Tierra, o incluso más pequeños, tendrían una mejor probabilidad que los flotadores de Sagan, informaron en el estudio. Pero mucho depende del clima: Si las marejadas de vientos son muy fuertes en las enanas marrones, como parece ser el caso en las bandas de los gigantes de gas como Júpiter y Saturno, las criaturas del cielo pueden forjar un nicho. En ausencia de luz estelar, podrían alimentarse de nutrientes químicos. Las observaciones de las atmósferas frías de enanas marrones revelan la mayoría de los ingredientes de los que la vida terrestre depende: carbono, hidrógeno, nitrógeno y oxígeno, aunque quizá no fósforo.
WISE 0855-0714 es una enana o subenana marrón que se encuentra a 7,2 años luz de la Tierra. Considerada como la estrella más fría de la que se tiene conocimiento, con temperaturas que oscilan entre los 225 a 260 K (entre -48 a -13 °C)
Pero debido a que las enanas marrones siempre se están enfriando, los cálculos muestran que la mayoría de las enanas marrones son probablemente más frías que 500 K; la más fría que se conoce hoy en día tiene una temperatura de 250 K (WISE 0855-0714).
La vida es especulativa, pero vale la pena considerarla, dice Duncan Forgan, astro-biólogo de la Universidad de St. Andrews en Reino Unido, quien no participó del estudio pero dice que es alguien cercano al equipo. “Realmente abre el campo en términos de la cantidad de objetos que podríamos entonces pensar, bien, estas son regiones habitables”, indica.
25 aniversario del descubrimiento de la primera enana marrón
Hasta ahora, solo unas pocas docenas de enanas marrones frías han sido descubiertas, aunque las estadísticas sugieren que debería haber unas 10 a menos de 30 años-luz de la Tierra. Estas enanas deberían ser objetivos para el Telescopio Espacial James Webb (JWST), que es sensible en el infrarrojo donde las enanas marrones más se destacan. Después que se lance en 2018, el JWST debería revelar el clima y composición de sus atmósferas, dice Jackie Faherty, astrónomo de la Institución Carnegie para la Ciencia en Washington, D.C. “Comenzaremos a obtener magníficos espectros de estos objetos”, dice ella. “Esto me hace pensar en ello”.
Posible formas de vida en las nubes de estrellas fallidas
Probar la existencia de vida requeriría anticipar una fuerte huella espectral de subproductos de los microbios como metano u oxígeno, y luego diferenciarlos de otros procesos, dice Faherty. Otro problema sería explicar cómo podría surgir la vida en un ambiente que carece de interfaces agua-roca, como respiraderos hidrotermales, donde se piensa que la vida pudo haber comenzado en la Tierra. Quizá la vida podría desarrollarse gracias a reacciones químicas en las superficies de granos de polvo en la atmósfera de enanas marrones, o tal vez logró afianzarse apoyo después de llegar a bordo de un asteroide. “Tener pequeños microbios que flotan dentro y fuera de la atmósfera de una enana marrón es genial. Pero hay que llevarlos allí primero”, dice Forgan.
El estudio “Atmospheric Habitable Zones in Y Dwarf Atmospheres” fue publicado en la edición del 20 de febrero de 2017 de The Astrophysical Journal.
Fuente: Science
Nov
18
¡La Vida! Nuestro bien más preciado
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Si pensamos que nosotros, los verdaderos humanos teniendo consciencia de SER, hemos llegado aquí hace apenas el tiempo que tarda el ojo en parpadear si lo comparamos con la edad del Universo o del mismo Sistema Solar. A pesar de nuestra juventud, hemos sabido ir desvelando secretos de la Naturaleza. Secretos que estaban profundamente escondidos, y, ahora, casi podemos contestar a esa pregunta:
¿De dónde venimos? ¡Qué hacemos aquí? ¿Hacia donde vamos?
Bueno, como en todo lo demás, las respuestas que podemos dar también son conjeturas y teorías, imaginaciones de nuestra mente que es aconsejada por algunos datos que hemos podido juntar. Sin embargo, seguro, lo que se dice seguro… ¡No sabemos nada!