domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Incertidumbre, Orden, Caos, Entropía…Vida.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Entropía    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Moléculas Biológicas by Dayanis MartinezBloques básicos de construcción de moléculas biológicas | Khan Academy en Español - YouTube

                          Moléculas, átomos y conexiones para formar pensamientos

Cerebro big data y ai con mente humana futura y 3d y red con mundo digital y tecnología abstracta órgano de conocimiento cibernético e inteligencia neurología o neurociencia y holograma tecnológico | Foto PremiumNeurociencia, arte y tecnología cósmica: increíbles imágenes del cerebro humanoSe muestra un cerebro colorido con un fondo negro y la palabra cerebro en él. | Foto Premium

A veces, al ver la presencia de vida en el Universo, uno está tentado de pensar que existe una Conciencia Cósmica

Imaginemos una mente inteligente que, en todo momento, pudiera tener conocimiento de todas las fuerzas que controlan la Naturaleza y también, de las condiciones en que se encuentran en cada momento todas las unidades de que consta ésta. Si esta mente tuviera una inteligencia suficiente para analizar todos estos datos, podría abarcar en una sola fórmula los movimientos de los cuerpos de mayor tamaño del universo y los de los átomos más ligeros; para ella nada sería incierto; el futuro y el pasado estarían ambos presentes ante sus ojos.

 

Ordenador cuántico, la guía definitiva | Data Center Market

 

El equivalente moderno de esta mente sería un superordenador que conociera todas las posiciones y las velocidades de todas las partículas del universo, y pudiera utilizar las leyes de Newton y las que describen las fuerzas de la naturaleza (como la gravedad y el electromagnetismo), no solo para predecir la trayectoria futura de cada partícula, sino para averiguar toda la historia de su procedencia –porque en las leyes de Newton no hay nada que nos revele la dirección del tiempo y funcionan de la misma manera si éste transcurre en sentido contrario, como podemos ver fácilmente si nos imaginamos el proceso inverso del choque entre dos bolas de billar, o si invertimos el movimiento orbital de todos los planetas del Sistema Solar-.

 

 

Científicos desvelan el misterio de la flecha del tiempo – DW – 13/09/2022

Los científico0s dicen que los misterios de ,la Flecha del Tiempo está aquí. Solo hay que saber buscar

No hay una flecha del tiempo en las leyes de Newton y, según Laplace y muchos otros, estas leyes parecen describir un mundo completamente determinista en el cual el pasado y el futuro están fijados de una manera rígida y no hay lugar para el libre albedrío.

Lo que ninguno de estos científicos parece haber observado es que el argumento fundamental se desploma si, en cualquier momento y lugar del universo, se produce una colisión simultánea entre tres partículas –aunque la valoración de si esto sería suficiente para restablecer el libre albedrío es una cuestión cuya discusión prefiero dejar a la filosofía.

 

 

 

La Entropía! Con el paso del Tiempo todo lo destruye : Blog de Emilio Silvera V.

                    El tiempo y la entropía destructora

“…Con el paso de los Eones, hasta la misma muerte tendrá que morir”

 

Las tres leyes de la naturaleza que te ayudarán a lograr el éxito                                                                                                                       PASAR LA VIDA SONRIENDO: SIEMBRA

 

En la física del movimiento y sus causas -Dinámica- las leyes de la naturaleza funcionan tanto si el tiempo transcurre “hacia adelante” como también si lo hiciera “hacia atrás”, es decir que son simétricas y reversibles en el tiempo. Si filmamos un choque entre dos partículas, o la órbita de un planeta entorno a su sol, y pasamos la película al revés, notaremos que las trayectorias están invertidas, lo cual es totalmente coherente para la física: no hay nada que nos indique que el tiempo está trascurriendo en sentido contrario. Si las leyes de la naturaleza no distinguen entre el pasado y el futuro, entonces ¿por qué notamos que el tiempo fluye en un sentido y no en otro? ¿De dónde sale esa asimetría del tiempo? ¿Por qué recordamos el pasado pero no el futuro?

 

Por qué las leyes de Maxwell no se pueden aplicar en la empresa?

  • El físico expresó de la forma más bella los principios sobre la electricidad y el magnetismo
  • “Los cuerpos del mismo signo se repelen y los cuerpos de signo diferente se atraen”.

Este mismo problema relativo al tiempo se planteó a partir de uno de los mayores triunfos de la física del siglo XIX: la investigación de la naturaleza de la luz y de otras formas de radiación electromagnética, que tuvo su momento culminante en la obra del escocés James Clerk Maxwell (1831-1879). La explicación dada por Maxwell sobre la radiación electromagnética se basa en la obra de Michael Faraday, que vivió entre 1791 y 1867, y propuso la definición de los “campos” eléctrico y magnético que surgen en torno a los objetos que poseen una carga eléctrica.

 

Faraday y la teoría electromagnética de la luz | OpenMind

Faraday y su teoría electromagnética que no supo explicar en ecuaciones y lo hizo Maxwell

Fue Faraday el primero en sugerir que la luz podría estar producida por algún tipo de vibración de las líneas de fuerza asociadas con imágenes y partículas “cargadas”, que vibrarían como lo hacen las cuerdas de un violín al ser pulsadas. El problema estaba en que, Faraday, carecía de los conocimientos matemáticos necesarios para desarrollar la idea de maneta tal que se desarrollara un modelo perfectamente configurado. Así, en la década de 1860, llegó Maxwell para rematar el trabajo de Faraday con sus maravillosas ecuaciones vectoriales para demostrar que todos los fenómenos eléctricos y magnéticos conocidos en aquella época, incluido el comportamiento de la luz, podía ser descrito mediante un conjunto de sólo cuatro ecuaciones, que actualmente se denominan ecuaciones de Maxwell.

 

                             Michael Faraday, el 'mago' de la electricidad | Iluminet revista de iluminación

                                                                          Faraday fue el experimentador

Newton y Maxwell, dieron al mundo el conjunto de herramientas matemáticas necesarias para controlar todo lo que la física conocía a mediados del siglo XIX. Por otra parte, lo más maravilloso de las ecuaciones de Maxwell era que, sin que se hubiera pedido, proporcionaban una descripción de la luz –las ecuaciones se crearon para describir otros fenómenos electromagnéticos, pero incluían en sí misma una solución que describía las ondas electromagnéticas que se desplazaban por el espacio a cierta velocidad- Esta velocidad es exactamente la de la luz (que ya había quedado bien determinada en la década de 1860 y pronto podría medirse con una precisión aún mayor), no dejando lugar a dudas de que la luz se desplaza como una onda electromagnética.

Las ecuaciones de Maxwell tienen dos características curiosas: una de ellas pronto tendría un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera característica innovadora de estas ecuaciones es que dan la velocidad de la luz como un valor constante, independientemente de cómo se mueva su fuente con respecto a la persona o al aparato que mida su velocidad (Einstein lo supo ver con claridad cuando lo incorporó a su teoría de la relatividad especial).

 

       La Flecha del Tiempo en el Universo…siempre hacia el futuro

Claro que, como todo, también las ecuaciones de Maxwell tenían sus limitaciones, especialmente en la descripción de fenómenos que se producen a escalas muy pequeñas, tales como el comportamiento de los átomos y de las partículas que los componen. En este caso, es preciso modificar tanto la descripción clásica de las descripciones electromagnéticas (Maxwell), como la descripción clásica de las interacciones entre partículas (Newton), fenómenos en los cuales se cumplen las reglas de la física cuántica. Así, las ecuaciones de Maxwell, como las de Newton, tampoco contienen la flecha del tiempo.

Lo que fue durante mucho tiempo la explicación habitual la razón por la que vemos una dirección predominante del tiempo surgió a partir de otro gran triunfo de la física del siglo XIX: la descripción de la relación entre calor y movimiento (termodinámica). Esto tuvo una importancia práctica fundamental en el mundo industrial cuando se utilizaba la fuerza de las máquinas de vapor.

Lo cierto es que, la importancia de la termodinámica reside en que permite a los físicos explicar el comportamiento de gran número de objetos –en especial, partículas de gas- que, en cierto sentido, funcionan juntos en un sistema complejo. Esto incluye el uso de promedios y estadísticas, pero se basa en gran medida en la idea de que un gas está constituido por una cantidad innumerable de partículas diminutas (átomos y moléculas) que no cesan de rebotar y chocar entre sí y con las paredes del recipiente que las contiene, cumpliendo las leyes del movimiento de Newton. Esta teoría cinética de los gases fue un ejemplo importante del modo en que las leyes universales de la física ponían orden en el caos.

 

Ludwing Boltzmann (1844-1906)
Ludwig Boltzmann (1844-1906)

La palabra “gas” fue acuñada por el físico flamenco Joannes van Helmont a partir de la palabra griega que significa “caos”; este término apareció impreso por primera vez en el libro de van Helmont titulado Ortus medicinae, publicado cuatro años después del fallecimiento de Joannes, en 1648. La idea de que los gases eran como un caos se consideró acertada durante trescientos años, hasta que Maxwell desde Gran Bretaña, y su contemporáneo Ludwig Boltzmann, desde Viena, consolidaron la teoría cinética (que hasta entonces había sido sólo una especulación), dándole una firme base científica fundamentada en las leyes de Newton.

 

 

Segundo Principio de la Termodinámica

 

Second Law of Thermodynamics

 

La segunda ley de la termodinámica es un principio general que impone restricciones a la dirección de la transferencia de calor, y a la eficiencia posible en los motores térmicos. De este modo, va más allá de las limitaciones impuestas por la primera ley de la termodinámica. Sus implicaciones se pueden visualizar en términos de la analogía con la cascada

Física Estadística y Termodinámica

Enunciados de Clausius y Kelvin-Planck

Equivalencia entre los enunciado de Clausius y de Kelvin-Planck

Límite en el rendimiento de un motor real

Concepto de entropía

Variaciones de entropía en procesos irreversibles

 

💪 TERMODINÁMICA. TODO lo que DEBES SABER para ESTUDIAR TERMODINÁMICA [👉 PARTE 1 ESPECIAL PARA TÍ] - YouTube

Lo que actualmente se conoce como segundo principio de la termodinámica se puede expresar de muchas formas diferentes, pero su primer enunciado se debe al físico británico William Thomson (quien fuera posteriormente lord Kelvin) en 1852. La cuestión principal sobre la que Thomson llamó la atención era la idea de la disipación –que, aunque el modo en que funciona el mundo natural se puede describir como un gran motor que convierte el calor en trabajo (o en movimiento, que viene a ser lo mismo), debe haber siempre algo de calor que se disipa durante el proceso, aunque realmente no se pierde, sino que se propaga por todo el universo, haciendo que la temperatura global suba una pizca, una cantidad imperceptible-Esto va más allá del principio, o ley, de la conservación de la energía (el primer principio de la termodinámica), porque en este caso, aunque la cantidad total de energía del mundo (expresión con la que los victorianos se referían a lo que actualmente llamaríamos el universo) se mantiene siempre igual, la cantidad de energía útil siempre está disminuyendo. Esto implica que los físicos necesitaban un método para cuantificar la cantidad de energía útil existente en un sistema cerrado, o en el mundo (el universo en toda su amplitud), de tal manera que pudiera tenerla en cuenta y manejarla en sus ecuaciones. Esto indujo a Rudolf Clausius a proponer el concepto de entropía, lo cual hizo en Alemania a mediados de la década de 1860.

 

La Entropía | Blog de Jose Antonio Martin

 

La entropía mide la cantidad de orden que hay en un sistema y, si el desorden aumenta, también lo hace la entropía. Sabiendo que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan) a medida que pasa el tiempo, el inevitable aumento de la entropía define una dirección del tiempo, una flecha que parte del pasado ordenado y apunta hacia el futuro desordenado. Dado que este proceso parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del universo.

 

7 hábitos para tener una vida más sustentable en 2021 | Architectural DigestVida - Qué es, definición y conceptoHistoria de vida - Plena inclusión

La vida, como sistema cerrado, está ineludiblemente sometida a la Entropía con el paso del Tiempo

La vida, por supuesto, parece desafiar este proceso creando orden y estructuras a partir de materiales desordenados (o, en todo caso, menos desordenados). No parece más que, el Universo, actúa como si tuviera una consciencia y, hubiera creado la vida para que, a través de ella, pudiera evitar ese final. Una planta, por ejemplo, construye su estructura, y puede fabricar flores de gran belleza, a partir del dióxido de carbono, agua y unos pocos restos de otros productos químicos. Pero sólo puede hacerlo con la ayuda de la luz solar, es decir, con energía procedente de una fuente externa. La Tierra, y en particular la vida que se desarrolla en ella, no es un sistema cerrado. Es posible demostrar, utilizando las ecuaciones desarrolladas por Thomson, Clausius y sus contemporáneos, que, en cualquier lugar del Universo donde aparece un foco de orden, esto se hace a costa de que se produzca más desorden en otro lugar.

 

Escala microscópica y nanoscópica en diferentes partículas y su... | Download Scientific DiagramExplorar el universo, desde escalas microscópicas hasta distancias cosmológicas, en un workshop orientado a postgraduados - ADEIT | Fundación Universidad-Empresa de la Universitat de València

 

A escala macroscópica, según unas leyes deducidas a partir de experimentos y observación siguiendo procedimientos científicos aprobados, ensayados y comprobados, el universo actúa de un modo irreversible. Nunca se puede hacer que las cosas vuelvan a ser como solían, todo lo que surge, aunque nos parezca igual, no lo es. Todo lo nuevo que surge a partir de lo que había, está más evolucionado y, de alguna manera, es diferente. Pero precisamente en nuestro sencillo y clásico ejemplo de irreversibilidad termodinámica, la entropía y la flecha del tiempo podemos observar con claridad la dicotomía aparente entre el mundo macroscópico y el mundo microscópico. A nivel de los átomos y las moléculas que componen el gas (en realidad un nivel sub-microscópico, pero nadie lo tiene en cuenta), toda colisión es, según las leyes de Newton, perfectamente reversible y, en ese modelo del movimiento inverso no habría nada que estuviera prohibido por las leyes de Newton. Obedeciendo ciegamente esas leyes, los átomos y las moléculas recorrerían su camino inverso para volver a quedarse en su posición original, con independencia del número de sucesos e interacciones que pudieran haber sufrido durante el proceso. Sin embargo, en el mundo real, nunca vemos que los sistemas actúen de esa manera. Las civilizaciones pasan y llegan otras nuevas, aquellas que se fueron, nunca volverán. De la misma manera, cuando una estrella, al final de su vida, explota como supernova y deja sembrado el espacio interestelar de una hermosa Nebulosa de la que, mucho más tarde, surgirán nuevas estrellas, éstas, serán de otra generación, más complejas y, aunque seguirán siendo estrellas, estarán clasificadas como diferentes, más complejas y evolucionadas que aquellas en las que tienen su origen.

 

El caos es cosa matemática

                                                         El Caos fue siempre un tema matemático

Me proponía al comenzar este trabajo a exponer muchas más cosas pero, como siempre pasa, el espacio y el tiempo no dan para tanto en este lugar y, dejo pendiente explicar cómo surge el Caos a partir del Orden y el Orden a partir del Caos, cómo podemos llegar al borde del Caos y qué transiciones de fase tienen que producirse para que, la normalidad y la simetría vuelva a reinar a partir de ese desorden que, en un principio, podría parecer irreversible.

De todo lo que aquí hemos hablado, se puede tomar razón y llegar a tener una razonada conciencia en el estudio de una galaxia espiral que, con sus millones de estrellas brillantes en los brazos espirales y sus estrellas rojas y más viejas en el centro galáctico, nos hablan claramente de la flecha del tiempo y de la entropía al considerar, la galaxia, como el sistema cerrado que, poco a poco, va tornándose más y más compleja en la composición de la materia que la conforma que, de manera irreversible va sufriendo transformaciones de todo tipo que, finalmente, la llevará a un estado crítico que hasta se podría transformar en un inmenso agujero negro como resultado final del proceso.

Mucho es lo que nos queda por saber, lo que sabemos, reconociendo que no es poco para el exiguo tiempo que llevamos aquí (en la medida del reloj del universo), es aún insuficiente para lo que la Humanidad necesita saber. Nuestra ignorancia es grande, muy grande…, casi infinita, si la contraponemos con todo aquellos que nos queda por descubrir de los secretos de la Naturaleza. Nunca podremos acabar ese aprendizaje que se pierde en la lejanía de la flecha del tiempo en ese infinito que llamamos futuro.

emilio silvera

¿La vida fuera de la Tierra? ¡Antes de que finalice el siglo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                     

              La vida microscópica está por todas partes…¡En otros mundos (creo) que también

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente prec-opernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

 

Fred Hoyle - Wikipedia

Así se expresaba Fred Hoyle. Fred Hoyle ​ fue un astrofísico inglés conocido principalmente por su teoría de la nucleosíntesis estelar y sus posturas a menudo controvertidas, ​ especialmente su rechazo a la teoría del Big Bang.

 

     Icebergs gigantes: Belleza y peligro de hielo

 

Hundimiento del RMS Titanic - Wikipedia, la enciclopedia libre

 

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

 

                                                     

           Son engañosos en su tamaño, solo dejan ver una mínima parte, el resto lo ocultan en la profundidad

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

 

Vida alienígena inteligente, una historia terráquea — Cuaderno de Cultura Científica

 

Fuertes lluvias cambiaron el paisaje del planeta Marte en el pasado – UNIVERSITAM

                                         Los familiares paisajes de Marte

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

 

Una enorme mayoría de científicos apuestan por la presencia de la Vida en otros mundos, en otros lugares fuera de la Tierra

 

Imágenes de Titán, la mayor luna de Saturno | National Geographic

Titán con su espesa atmósfera y sus mares de metano, es un pequeño mundo muy parecido a la Tierra hace algunos millones de años. Las primeras señales de vida que encontramos en la Tierra están referidas a fósiles hallados en las rocas más antiguas en Australia que tienen una edad de 3.800 M de años.

 

            Por qué Europa, la luna de Júpiter, lleva tan de cabeza a la NASA?

                                                          Encélado y Europa

 

Europa: Jupiter's Ocean World | NASA Space Place – NASA Science for Kids

      Así se cree que es Europa la Luna de Júpiter por dentro

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado

Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

 

 

Así es Europa, la luna de Júpiter que podría albergar vida

                         Europa y sus geiseres, podría albergar alguna clase de vida

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

 

                                           

 

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

 

satelite de jupiter lineas rojas surcos

El experimento que explicó por accidente las líneas rojas de la superficie de Europa, luna de Júpiter

Un experimento con agua y dos diamantes del tamaño de un grano de arena fue la clave para ofrecer una teoría sobre el satélite de Júpiter.

Europa es uno de los satélites de Júpiter y se caracteriza por ser un cuerpo liso congelado con unas marcas rojas entrecruzadas que recorren todo su territorio. Los científicos han observado por décadas a Europa y están casi seguros de que debajo de la aquella capa helada llena de surcos hay un mar salado. El satélite, en su mayoría, es todavía un misterio, pero un nuevo experimento de la Universidad de Washington, EE UU, ha arrojado un poco de luz sobre su naturaleza.

 

                      Cristal de cloruro de sodio. Sal común 

Mientras experimentaban con hielo sometido a alta presión, los científicos descubrieron que las moléculas de agua y de sal se convirtieron en algo nunca antes visto. Al comprimir una gota de agua a 25 mil atmósferas con la ayuda de dos diamantes del tamaño de un grano de arena, los investigadores presenciaron la formación de dos nuevos hidratos de cloruro de sodio.

 

La exploración de tres lunas heladas de Júpiter servirá para comprobar si cuentan con condiciones de habitibilidad.

La exploración de tres lunas heladas de Júpiter servirá para comprobar si cuentan con condiciones de habitabilidad.NASA/JPL/Universidad de Arizona / Montaje: 20BITS

Mientras la NASA tiene la mirada fija en la Luna con su proyecto Artemis, la Agencia Espacial Europea (ESA) pretende viajar hasta las lunas heladas de Júpiter con su misión JUpiter ICy moons Explorer (JUICE). La intención del equipo que hay detrás del programa comenzó un  13 de abril de hace algunos años, con el lanzamiento de la nave, y la llegada a su primer destino se espera que se produzca a principios de la década que viene.

 

NASA escoge a SpaceX para explorar luna Europa de Júpiter – DW – 24/07/2021

 

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.

 

                    File:Cassini Saturn Orbit Insertion.jpg

 

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

 

File:Titan in natural color Cassini.jpg

                                                                 Titán

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

 

 

La sonda Galileo toma mañana sus últimas fotos de la luna Io de Júpiter | Sociedad | EL PAÍSTritón, la luna asesina de Neptuno

                      Io la luna de Neptuno   y su compañera Tritón

Llegó a su órbita actual en dirección contraria, igual que un conductor suicida. Y arrasó, literalmente, al resto de las hasta entonces pacíficas lunas interiores de Neptuno. Por culpa de Tritón , en efecto, el octavo planeta hace gala de una de las más extrañas colecciones de satélites de todo el Sistema Solar.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

 

La Tierra se formó a partir de bloques rocosos secos y cálidosReal Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva y el origen de la vida'

Paisajes de la Tierra Prehistórica, lluvia de metano, ¿Cuántas sorpresas más? De esta Tierra ígnea surgieron aquellas primeras células replicantes que dieron lugar a otras formas de vida más complejas

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

 

VÍDEO Doce años de las imágenes de Huygens aterrizando en TitánTitán, la otra Tierra del Sistema Solar exterior

Con sus mares de metano

 

1.300+ Titán Luna Fotografías de stock, fotos e imágenes libres de derechos - iStock

En unos cientos de años podría ser un pequeño mundo habitable

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera

El Fino equilibrio de la Vida en el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La presencia de la Vida en el Universo…¡Siempre trajo de cabezas a los grandes pensadores!

 

El ajuste fino es muy real, si alguno de ellos se desequilibra… ¡Mal irían las cosas para la vida!