viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Hemos llegado más lejos que el Modelo Estándar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cien explicaciones para la señal de una nueva partícula en el LHC

 

Cuatro razones por las que el futuro de la física pasa por el LHC

 

El hallazgo de una hipotética partícula desconocida ha desatado una avalancha de informes científicos publicados en un famoso servidor de preimpresión

 

Colisión de protones en el LHC

                                                     Colisión de protones en el LHC – ATLAS/CERN

ABC apartado de Ciencia

 

Qué fue del bosón de Higgs? | Ciencia | EL PAÍS

 

Los nuevos resultados del LHC, el mayor acelerador de partículas del mundo, ubicado en el subsuelo de la frontera francosuiza, desvelaban a mediados de este mes la posible existencia de una partícula desconocida con una masa seis veces mayor que el bosón de Higgs, descubierto en 2012. Esta misteriosa señal pertenecería a un ámbito de la Física más allá del modelo estándar, es decir, un terreno completamente nuevo en el que todo lo que se conoce se pone en cuestión.

Pero nos movemos en el tambaleante campo de las hipótesis. Hasta ahora, no es posible decir qué es lo que han encontrado los dos grandes detectores del colisionador, los experimentos ATLAS y CMS. Ni siquiera se está en condiciones de afirmar que esa partícula existe o se trata, en cambio, de un simple error estadístico. A pesar de todo, el interés que suscita es tan alto que los investigadores teóricos ya han enviado 95 manuscritos al servidor de preimpresión arXiV en el que lanzan sus hipótesis sobre qué es lo que se ha visto en realidad, según informa la revista «Nature».

 

                                          LHC.svg

 

Esta oleada de interés ya estaba prevista. Poco después del anuncio del intrigante hallazgo, Tiziano Camporesi, portavoz del CMS, explicaba a «Nature» que esperaba ver cientos de preimpresos en las siguientes semanas. «Tengo mucha curiosidad por ver lo que nuestros amigos teóricos están preparando», reconocía a la publicación. Y no es para menos, porque el atisbo de una nueva partícula es el premio gordo para cualquier físico.

 

Los neutrinos no viajan más rápido que la luz | RTVE

Entonces dijeron: 

“Los científicos del CERN descubren unas partículas que viajan más rápidas que la luz” Se referían a los neutrinos y, la falsa noticia se debió a una mala medición de los Físicos del Proyecto Ópera en Italia

 

 

El 17 de noviembre la colaboración OPERA ha presentado el documento sobre la medición de la velocidad del neutrino para su publicación en el Journal of High Energy Physics, y en paralelo en el repositorio digital ArXiv. El documento está en línea desde el 18 de noviembre.

Desde el laboratorio europeo de física de partículas CERN saben que hay que ser cautelosos. No hay más que mirar los ejemplos del pasado. Una emoción similar se suscitó después del polémico anuncio en 2011 de que los neutrinos pueden viajar más rápido que la luz, o tras el falso positivo del descubrimiento de las ondas gravitacionales con un telescopio desde el Polo Sur en 2014, pero ninguna de las dos afirmaciones superó la revisión científica. En este caso, además, el interés ni siquiera se ha suscitado después de una publicación científica, sino de una transmisión en directo de un evento del CERN.

Supersimetría

Resultado de imagen de Las partículas supersimétricas

Supersimetría (SUSY para los amigos) - Matemáticas y sus fronteras

 

Muchos de esos informes en arXiv relacionan la hipotética partícula con la supersimetría (SUSY), un nuevo marco teórico más allá de la teoría estándar que predice que cada partícula conocida tiene una gemela desconocida más pesada.

El mismo día que se hizo el anuncio, el teórico del CERN Gian Francesco Giudice y sus colaboradores publicaron un documento de 32 páginas con el análisis de las conclusiones, que ya tiene 68 citas. Al contrario que muchos de sus colegas, Giudice cree que la hipotética partícula no es fácil de conciliar con la supersimetría.

Otras posibilidades son que la partícula sea un primo más pesado del bosón de Higgs o un «gravitón», una partícula que podría llevar la fuerza de la gravedad, de una manera similar a cómo los fotones llevan la fuerza electromagnética.

El tiempo dirá cuál es la auténtica identidad de esta señal. El LHC, ( entonces en parón), volverá a ponerse en marcha en abril de 2016. Quizás en los meses siguientes pueda obtener más datos que esclarezcan su origen.

 

El CERN busca la partícula que revolucionará la física

       En el LHC se ha buscado (sin éxito), la partícula que revolucionará la Física: El Gravitón

El que los físicos no hayan dado todavía con el Gravitón debe ser debido (seguramente), a que la Gravedad es la Fuerza de la Naturaleza más débil, y, su partícula mediadora el hipotético Bosón que llamamos Gravitón, también lo será y se muestra esquivo, no se deja ver.

 

Sabemos que la gravedad es una interacción a distancia y sabemos gracias a la relatividad general de Einstein que esta interacción se transporta a través del espacio como una onda con velocidad c (la velocidad de la luz). Por tanto lo lógico siguiendo el principio de belleza es que lo que se transporta sea en realidad una partícula cuántica mediadora que llamamos gravitón.

Detección de ondas gravitatorias - Wikipedia, la enciclopedia libreEl nacimiento de la astronomía de ondas gravitacionales - Eureka

El Gravitón es esquivo y, como las otras fuerzas tienen a su partícula portadora, la Gravedad también debe tenerla y es el desaparecido Gravitón que es el mediador de la fuerza. Muchas son las cosas que no sabemos, y, las deducimos empleando la lógica pero, hay que verificar la teoría.

Para estar seguros de que los gravitones existen deberíamos ver evidencia de que actúa como partícula en algún caso, no sólo como onda cuando viaja por el espacio. Algo parecido a cuando Einstein dijo que la luz tenía doble naturaleza onda-partícula debido al efecto fotoeléctrico. Pero claro, para ser capaces de detectar un comportamiento de partícula en un gravitón, haría falta un detector del tamaño de Júpiter, algo que por lo pronto no creo que sea experimentalmente posible.

Publica: emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting