domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




En el Universo se crean estrellas y… !pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                   

Mucho antes de que llegara las revoluciones científicas que todos tenemos en la mente, la Naturaleza parecía estar regida por el Cáos: Terremotos, volcanes que oscurecían el cielo lanzando el humo acompañado de cenizas, lluvias torrenciales y el rayo, tifones, enfermedades incurables de la que morían millones de personas, las hambrunas que azotaban a tantas criaturas y, nadie podía explicar el comportamiento del viento, aquellas tempestades marinas, o, temblores de la Tierra inesperados que traían la destrucción y la muerte.

Todo aquello, que ser el resultado de que, enfurecidos dioses, castigaban las impurezas del mundo y de sus criaturas. En absoluto sugería nadie que pudieran existir leyes “sencillas” y ordenadas con las que se pudieran explicar tal confusión en el comportamiento de una Naturaleza que, lo mismo se presentaba esplendorosa,  que rugía sembrando el miedo y el dolor de mil maneras distintas.

 

sistema_solar1.gif :: Sistema Solar - GMR

                               Tardamos mucho en comprender, como era nuestro Sistema solar

Allí donde se percibía orden en el universo, este orden se atribuía a la respuesta que daban los objetos físicos a una necesidad de que se preservaran la armonía y el orden siempre que fuera posible -se suponía las órbitas de los planetas y del Sol alrededor de la Tierra y que eran círculos, porque los círculos eran perfectos-, los objetos caían hacia el suelo porque el centro de la Tierra marcaba el centro de todo y todo tendía a confluir hacia aquel lugar, el centro de simetría de todo el universo.

 

                                             

 

Acordaos que, el filósofo Aristarco de Samos, se atrevió a expresar sus ideas y dijo que, la Tierra y todos los planetas se movían alrededor del Sol. ¡Claro, nadie le prestó la menor atención! y, muchísimos años más tarde, tuvo que venir Copérnico, allá por el año 1543,  diciendo lo mismo para pasar a la historia. Su De Revolutionibus Orbium Coelestrum quedó terminado en lo esencial en 1530 y, a cuando se publicó, hizo exclamar, en 1539, a Martín Lutero: “Este loco desea volver de revés toda la astronomía; pero las Sagradas Escrituras nos dicen que Josué ordenó al Sol que se detuviera, no a la Tierra”. Galileo replicó más tarde, respondiendo a críticas similares: “La Biblia nos muestra la manera de llegar al cielo, no la manera en que se mueven los cielos”.

 

JKepler.png

Retrato de Kepler de un artista desconocido (ca. 1610)

Tuvo que llegar Kepler, quien, utilizando las observaciones minuciosamente recopiladas por Tycho Brahe, señaló, para aquellos que tuvieran los ojos bien abiertos que, el planeta Marte no sólo se movía alrededor del Sol sino que, su órbita, era elíptica, echando así por tierra la antigua perfección circular, preferida por los clásicos griegos .

Ahora, pasado el tiempo y mirando hacia atrás, podemos ver con diáfana claridad, muchos ejemplos que podrían ilustrar la diferencia tan brutal que existe entre la ciencia de los antiguos y la de tiempos posteriores a partir de Galileo. Es cierto que los antiguos griegos fueron unos matemáticos excelentes, en particular, unos  geómetras de primera. También es cierto que aquella geometría que imperó durante más de dos mil años entre nosotros (aún hoy,  alguna perdura), tenía sus raíces en culturas más antiguas.

 

Tic-Tac - Revista Mètode

Galileo Galilei fue el primer europeo en estudiar realmente los péndulos y descubrió que su regularidad podía ser utilizada para llevar registro del tiempo, dando lugar a los primeros relojes. En 1656, el inventor y matemático holandés Huygens fue el primero en construir exitosamente un reloj de precisión.

Galileo y el péndulo. La Historia nos habla del primer experimentador serio de la historia. Experimentó para demostrar el tiempo que invertía el péndulo en realizar una oscilación completa que resultó ser siempre la misma, tanto si recorría un amplio arco como si describía uno pequeño. Experimentos posteriores demostraron que ese tiempo dependía de la longitud del péndulo. Este es el fundamento del reloj de péndulo (diseñó uno que llegó a construir su hijo). Posteriormente utilizó el péndulo como preciso cuando realizó experimentos para estudiar el comportamiento de unas bolas que rodaban hacia abajo por una rampa. Estos experimentos le servían para estudiar la caída de objetos para investigar los efectos que producía la Gravedad sobre los cuerpos en movimiento.

                                                     

Él desarrolló el concepto de aceleración: Una velocidad constante de 9,8 metros por segundo significa que cada segundo el objeto en movimiento cubre una distancia de 9,8 mettros. Él descubrió que los objetos que caen se mueven cada vez más rápidos, con una velocidad que aumenta cada segundo y que el aumento, era uniforme, siempre el mismo. También observó como aquellas bolas que caen por la rampa, se frenan a causa del rozamiento. Aquello era física pura dándo sus primeros pasos y camino de la relatividad, la termodinámica y la mecánica cuántica.

Fue un grande entre los gigantes. Se le suele recordar como el fundador del método experimental de la física; su imagen va asociada con la del telescopio y el plano inclinado, con los instrumentos que diseñó y armó para observar y medir. También es famosa su polémica con los aristotélicos de su tiempo que se limitaban a citar a los clásicos y pensar cómo debían ser los movimientos de los cuerpos, en vez de observarlos. Por último, ¿Quién no conoce la anécdota del atrevido maestro arrojando dos cuerpos de diferente peso desde la Torre de Pisa? (Anécdota probablemente apócrifa pero, como dicen los italianos, Se non è … è ben trovatto! ).

 

 

Fue una combinación del descubrimiento de las órbitas elípticas por parte de Kepler, y de la teoría de Galileo sobre la aceleración y el método científico, lo que preparó el camino para el mayor descubrimiento científico del siglo XVII, y quizá de todos los siglos: la Ley de la Gravitación universal de Newton que cerró con el broche de oro que conocemos por su gran obra: Philosophiae Naturalis Principia Mathemática,más conocida coloquialmente como los Principia, publicada en 1687.

 

                   

Newton adoptó y perfeccionó la idea de Galileo, valorando de manera positiva los deliberadamente simplificados (como los planos sin rozamiento) para utilizarlos en la descripción de aspectos concretos del mundo real. Por ejemplo, una característica fundamental de los trabajos de Newton sobre la Gravedad y las órbitas  es el hecho de que, en sus cálculos realtivos a los efectos de la Gravedad, él consideró objetos tales como Marte, la Luna o una , como si toda su masa estuviera concentrada en un solo punto, y de esta manera, siempre que nos encontremos en el exterior del objeto en cuestión, su influencia gravitatoria se mide en función de nuestra distancia a dicho a dicho punto, que es el centro de masa del objeto /y asimismo el centro geométrico, si el objeto es una esfera).

Allí quedaron para las generaciones venideras las Leyes del movimiento de Newton, que constituyen la de trescientos años de ciencia, pero que puede resumirse de una forma muy sencilla y que marcan el desarrollo del modo científico de observar el mundo.

 

Leyes de Newton (resumen): cuáles son, fórmulas y ejemplos - Significados

Para resolver un problema en mecánica, lo único que necesito es las tres leyes de Newton

– Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas transmitidas sobre él.

– El cambio de movimiento es proporcional a la fuerza motriz transmitida y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

– Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

Esta y tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico .

 

                       

 

El problema de los tres cuerpos fue, totalmente inabordable por Newton que, en aquellos casos en los que se veía imposibilitado, siempre recurría a Dios para que le solucionara el asunto. Claro que, ante tal sugerencia, siempre se encontraba de frente con Leibniz que, comparó el universo ordenado y determinista de Newton con un reloj, afirmando con sarcasmo que el Dios de Newton debía ser un relojero bastante torpe si era incapaz de hacer un reloj que marcara siempre la hora correcta, pues para que funcionara bien tenía que intervenir cada vez que se estropeara.

Aquel problema de los tres cuerpos (del que hablaremos en otra ocasión), continuó sin solución hasta finales del siglo XVII, cuando entró en escena el matemático francés Pierre Laplace,  (claro que, también tendríamos que ver lo que dijo Poincaré, otro francés, al respecto).

Así, poco a poco, se pudo ir poniendo orden y buscando explicación para todos aquellos fenómenos de la Naturaleza que no tenían explicación y que, sólo la Ciencia, nos la podía dar.

 

                             

Explicando la Ley de Faraday o de Inducción Magnética de forma sencillaExplicando la Ley de Faraday o de Inducción Magnética de forma sencilla

                             Los experimentos de Faraday quedaron para la Historia

Mas tarde llegarían Faraday y Maxwell que investigaron la naturaleza de la luz el primero y, supo expresarla en ecuaciones el segundo. Aquello, fue un de gigante para comprender el mundo que nos rodea y cómo funciona, en algunos aspectos, la Naturaleza. Podemos decir que aquello fue uno de los mayores triunfos de la Ciencia del siglo XIX. La explicación dada por Maxwell sobre la radiación electromagnética se basó en la obra de Faraday y, entre ambos, dijeron al mundo que electricidad y magnetismo eran dos aspectos distintos de la misma cosa.

  Forma de las ecuaciones

 

 

Por qué las leyes de Maxwell no se pueden aplicar en la empresa?

 

Las Ecuaciones de Maxwell surgen de la teoría electromagnética y son el resumen esta teoría desde un punto de vista macroscópico. Esas ecuaciones tienen la forma más general:

 

Ecuaciones de Maxwell | Ecuaciones, Infografia, Electromagnetismo

Y son, por tanto, un total de ocho ecuaciones escalares (tres para cada uno de los rotacionales de los campos eléctrico y magnético y una para las divergencias).

 Parámetros presentes

Los parámetros que intervienen en la formulación de las ecuaciones de Maxwell son los siguientes:

  • $ \vec{E}$ – Campo eléctrico existente en el espacio, creado por las cargas.
  • $ \vec{D}$ – Campo dieléctrico que resume los efectos eléctricos de la materia.
  • $ \vec{B}$ – Campo magnético existente en el espacio, creado por las corrientes.
  • $ \vec{H}$ – Campo magnético que resume los efectos magnéticos de la materia.
  • $ \rho$ – Densidad de cargas existentes en el espacio.
  • $ \vec{J}$ – Densidad de corriente, mide el flujo de cargas por unidad de tiempo y superfície y es igual a…

Las ecuaciones de Maxwell llevaban consigo dos características muy curiosas: una de ellas pronto tendería un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera de aquellas características innovadoras era que daban a la velocidad de la luz un valor constante, independientemente de cómo se mueva la fuente de luz con respecto a la (o aparato) que mida su velocidad. Ya sabeis que fue esto, lo que llevó a Einstein a desarrollar la teoría de la relatividad en 1905.

 

                         

 

En el mundo de la física las ideas de Max Planck fueron progenitoras de algunas de las aportaciones más importantes de Einstein. Planck fue el primero en …

A partir de todo aquello, Eisntein Planck y después muchos otros, vinieron a poner los conocimientos de la Ciencias Físicas y Astronómicas en un  lugar privilegiado en el que, podíamos mirar las galaxias y también a los átomos. El mundo de lo muy grande y el de lo muy pequeño, quedó al alcance del entendimiento humano. Claro que, Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sus mas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.

Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para . Esas puertas cerradas esconden las cosas que no sabemos y las llaves que las pueden abrir son retazos de conocimientos que nos permiten entrar para descorrer la cortina que esconde los secretos de la Naturaleza, de la que en definitva, formamos parte.

 

                         

 

¡Cuánto hay ahí, en esa bella Nebulosa de arriba! En espesas nubes moleculares que se concentran en vórtices obligadas por la Gravedad, nacen nuevas estrellas y nuevos mundos. Ahí se transforman los materiales sencillos como el Hidrógeno en otros más complejos y, la radiación de las jóvenes estrellas nuevas masivas, tiñen de rojo el gas y el polvo del lugar, mientras , presumidas, se exhiben rodeadas de ese azul suave que las distingue de aquellas otras más antiguas, que tiñen de amarillo y rojo toda la región.

 

 

¿Qué sería de la cosmología sin   ¿Es la ecuación de Einstein donde  es el tensor energía-momento que mide el de materia-energía, mientras que  es el Tensor de curvatura de Riemann contraído que nos dice la cantidad de curvatura presente en el hiperespacio. Este pequeño conjunto de signos es uno de los pensamientos más profundos de la mente humana y… ¡Nos dice tánto con tan poco! En esa ecuación de campo de la relatividad general, está presente lo que los físicos llaman “belleza en una ecuación”, toda vez que dice muchísimo con muy poco.

Un agujero negro gigante destruye una estrella masivaAgujero negro 142 veces más grande que el Sol es descubierto por físicos | GQ

               Estos agujeros negros gigantes contienen miles de veces la masa del Sol

También esa ecuación nos habló de la existencia de Agujeros negros, esos objetos de densidad “infinita” en los que dejan de existir el espacio y el tiempo. La singularidad es el punto matemático en el que ciertas cantidades físicas alcanzan valores infinitos. Así nos lo dice la relatividad general general: la curvatura del espacio-tiempo se hace infinita en un Agujero Negro.

 

 

La cosmología estaría 100 años atrás sin esta ecuación. Einstein  con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares, nos descubrio un Universo nuevo, un mundo fantástico de posibilidades ilimitadas en el que podían ocurrir maravillas como, por ejemplo, que el tiempo transcurriera más lentamente y dónde reside la fuente de la energía. Claro que, al mérito de Einstein (que lo tiene), tendríamos que sumar el de Faraday, Maxwell, Mach, Lorentz, Planck y algunos otros de cuyas ideas él supo aunar un todo que clarificó el mundo y que, por separado, no decían tanto.

 

                              http://photos1.blogger.com/blogger/2816/1320/1600/clusterNGC290.jpg

 

No puedo evitarlo, siento debilidad por las estrellas, esos objetos brillantes del cielo en los que, se “fabrican” los elementos complejos que son la materia primaria para la vida. Nosotros, como he comentado muchas veces, estamos hechos de polvo de estrellas.

 

                                                                                                  Procesos estelares

 

Origen de los elementos químicos y evolución estelar - Entrevista radial con imágenes - YouTube

Dependiendo de sus masas que hacen desde que “nacen” hasta que “mueren”  este es el recorrido

En ellas, en las estrellas, se producen cambios y transformaciones de cuyos procesos, debemos conocer para saber lo que allí ocurre y el por qué de esas mutaciones de la materia. Siempre llamó mi atención las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo (como la nebulosa cabeza de caballo en la de arriba) se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

 

                         

 

En las estrellas está el secreto de todos los elementos naturales que conocemos en la Naturaleza, allí se fraguan todos mediante la fusión de la materia sencilla en otra más compleja, en sus hornos nucleares que, en estrellas como el Sol, llegan hasta el Hierro antes de convertirse en gigantes rojas y enanas blancas después, dejando una bonita Nebulosa planetaria. Otros elementos más pesados surgen de las explosiones d3e Supernovas que es el final de las estrellas masivas que terminan como agujeros negros y púlsares regando antes el espacio interestelar de material nebulosa con sus eyecciones de las capas exteriores antes de explotar.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

160 ideas de La tierra vista desde el espacio | vistas, tierra, tierra desde el espacio

 

A nosotros nos puede parecer enorme, es el planeta que acoge a toda la Humanidad. Sin embargo, en el contexto del Universo y comparado con otros objetos cosmológicos, es menos que una mota de polvo y, si pensamos en ello, (quizás), podamos llegar a la conclusión de que debemos cambiar y mirar las cosas desde otras perspectivas, al fin y al cabo no somos tan importantes como algunas veces podemos creer, ni sabemos, tanto como creemos.

 

                                           http://1.bp.blogspot.com/_xyYFMwz4t6g/S7-euKLPDFI/AAAAAAAACkY/ur2Aaiw1zHg/s1600/conciencia+03.jpg

                                        ¡Sí, la Galaxia está en Mente y, nuestra Mente, en la Galaxia!

 

La evolución del Universo que está prescrita por el paso del Tiempo (con la ayuda de la Entropía), es inexorable, y, nosotros, nuestras mentes, que son el ejemplo más claro de la evolución en su más alto grado de la materia, también evoluciona al mismo ritmo que el universo nos marca. De esa manera, el transcurrir de los siglos posibilitan la apertura mental de nuevas ideas y, el conocimiento del mundo, de la Naturaleza, se hace cada vez más patente para nosotros que, al final de toda esta historia, volveremos a fundirnos con todo, en el mismo lugar del que partimos: ¡Las estrellas! allí está nuestro origen y, algo me dice que volveremos a él.

 

 

¿Será cuando llegue Andrómeda y le de el beso de amor a la Vía Láctea? La Galaxia Andrómeda se acerca a nosotros a una velocidad escalofriante de 500 Km/s., es tanta la distancia que de ella nos separa (2,3 años-luz) que, tardará 3.000 millones de años en fundirse con la Vía Láctea y, para entonces, quién podrá estar aquí?

emilio silvera

La verdadera Historia de la Teoría del Caos

Autor por Emilio Silvera    ~    Archivo Clasificado en Caos y Complejidad    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Entradas anteriores

Conferencia de las Naciones Unidas sobre el Cambio Climático de 2009 -  Wikipedia, la enciclopedia libreComenzó cumbre de Copenhague | SPDA Actualidad Ambiental                                                                                                             Cumbre Copenhague Cambio Climático - De Kioto a Copenhague

No son pocas las Organizaciones que operan alrededor de todo este tinglado del falso “Cambio Climático”. Viven de subvenciones de los grandes capitales a los que interesa este movimiento para imponer a la población una serie de normas que los tenga controlados y, al mismo tiempo, les produzcan a ellos grandes beneficios. Incluso lo de las vacunas del Covid-19 sospecho que fue un movimiento de “algunos” para hacer el gran negocio de miles de millones. Desde que apareció los primeros síntomas de la Pandemia, hasta que se pusieron a la venta las vacunas, no había tiempo material de que hubieran hecho las suficientes pruebas y cumplidos con todos los requisitos que la Ley exige antes de dar vía libre al medicamente. Sin embargo, el permiso se obtuvo con el beneplácito de los Gobiernos que firmaron un documento liberando de responsabilidad a las farmacéuticas por las consecuencias derivadas de las “vacunas” que no han sido pocas y, entre ellas, el de la destrucción del sistema inmune, ya que, dichas “vacunas” tenían hasta grafeno.

No son pocas las muertes de personas consecuencia de esas vacunas, algunos de las fallecidos y perjudicados son famosos y alguna cantante de primera fila que ha quedado imposibilitada para mover los músculos. Además nos quieren prohibir comer carne y consumir insectos… ¡Qué puñetas está pasando! ¿Hasta cuando soportaremos todos estos abusos?

 

¡Valiente montaje! Solo hay que darse una vuelta por el Pasado para comprobar que los cambios climáticos han sido cosa natural en la Historia de la Tierra. El hombre no tiene la capacidad de cambiar absolutamente nasa, y, cierto es que, en el ámbito comarcal puede crear alguna que otra contaminación con sus actividades pero… ¡A nivel mundial!

Del 7 al 18 de diciembre de 2009, se celebraron en Copenhague (Dinamarca) las reuniones correspondientes a la 15. ª Conferencia de las Partes de la Convención Marco de las Naciones Unidas sobre el Cambio Climático

“Es la peor noticia posible para aquellos que esperan avances importantes en la cumbre climática que se celebró  en Copenhague. Uno de los científicos más destacados de la teoría del cambio climático, Phil Jones, se veía obligado a presentar su dimisión temporal como director de la Unidad de Investigación Climática de la Universidad de East Anglia del Este, en Norwich, Inglaterra, tras ser acusado de manipular datos sobre los efectos del cambio climático para exagerar su impacto.”

¿Qué iría buscando con tal comportamiento? Cuando se hacen cosas así, dichos comportamientos están aconsejados por intereses particulares que no siempre se pueden confesar. No está bien manipular datos para que el gran público tenga una idea equivocada de la verdadera situación de las cosas.

 

 

The Mark Twain House & Museum | Hartford CT

¿Os acordáis de aquella vez que Mark Twain tuvo que decir:

“Las noticias sobre mi muerte han sido exageradas”.

Bueno, pues hasta ahí llegan para vender

 

La primera vez que en La Voz se habló del cambio climático: ¿Tienen los  cañones la culpa del mal tiempo?

Tienen avionetas fumigando para deshacer las nubes y que no llueva (miramos al cielo y vemos esas rayas blancas provocadas con materiales que destrozan las nubes), los Gobiernos de la Agenda 2030 lo autorizan perjudicando a las personas para conseguir sus fines bastardos.

Los Medios de Comunicación, no siempre son fieles “comunicadores” y, para realzar las noticias, las expresan con un grado extra de exaltación, o, licencia poética que, distorsiona la realidad de lo que realmente deberían comunicar, y, no pocas veces, tal hecho se debe a que (sobre todo en noticias relativas a cuestiones científicas) no se elige a la persona debidamente preparada y adecuada a la noticia que se quiere ofrecer al público. Si la noticia se ha dado de manera equívoca, el científico redactor debe enmendar lo que se dijo con miras a llamar la atención o conseguir alguna subvención.

 

Los 30 años del sida | Sida y Hepatitis | elmundo.es

             Los 30 años del sida | Sida y Hepatitis

“Desde la década de los 80 el Síndrome de Inmunodeficiencia Humana (SIDA) se ha considerado una de las peores enfermedades de nuestra época, para la que, según se creía hasta hace poco, parecía no existir cura.

Desde hace bien poco tiempo, sin embargo, se han dado a conocer ciertos hallazgos que podrían acabar por fin con este mal. Primero fue el caso de un niño en Estados Unidos a quien por el tratamiento médico recibido fue posible erradicar todo rastro posiblemente peligroso de VIH con el que había nacido. Después el Instituto Pasteur de París anunció que 14 adultos habían logrado controlar la acción del virus.”

Así, de manera comedida y reflejando la realidad es como deben darse siempre las noticias sin levantar expectativas falsas en uno u otro sentido.

 

Betelgeuse, una estrella moribunda 1.000 veces mayor que el sol podría  estallar muy pronto | Euronews

Betelgeuse, una estrella moribunda 1.000 veces mayor que el sol podría y `podría estallar muy pronto.                 

Escribo esto a partir de un artículo leído en la prensa diaria que, tratando de hablar de exóticos objetos que existen en el Universo, llegan a hablarnos de estrellas masivas con 600 veces la masa del Sol, y, tal barbaridad, nos lleva a pensar que, para hacer un reportaje o comentario de estos temas, los diferentes medios, deberían acudir a personas versadas en lo que están tratando, y, de esa manera, además de quedar mucho mejor, evitarían el ridículo de publicar las cosas alejadas de la realidad. La masa máxima que se considera para una estrella viene a ser de 150/300 masas solares, ya que, cuando su masa es mayor, la propia radiación la destruye. Pueden existir algunas estrellas que sobrepasen ese límite de las 120 masas solares pero, están continuamente eyectando material al espacio para descongestionarse y no explotar.

De esta estrella, la ciencia nos dice: Su masa es 20 veces la masa del Sol. Los astrofísicos predicen que Betelgeuse explotará como supernova de tipo II al final de su vida.

 

                                 

 

Eta Carinae es una estrella que posiblemente pueda tener más de 120 masas solares pero, como podéis contemplar en la imagen, está envuelta en una Nebulosa que ella misma ha generado al estar, continuamente eyectando material al espacio y evitar así su propia muerte.

Buscando en mi documentación, un buen ejemplo de lo que digo, por suerte, me encuentro con un artículo escrito por Don Carlos Miguel Madrid Casado del Departamento de Lógica y Filosofía de la Ciencia en la Facultad de Filosofía de la Universidad Complutense de Madrid, dónde nos deja un claro ejemplo de lo que no debiera ser. Aquí os lo dejo.

“Edward Lorenz (1917-2008): ¿Padre de la Teoría del Caos?

 

                                       

 

El miércoles de 16 de abril de 2008, a los 90 años de edad, moría Edward Norton Lorenz. Los periódicos de medio mundo pronto se hicieron eco de la noticia. Todos los obituarios recogieron que había muerto “el Padre de la Teoría del Caos”. Lorenz, escribían, fue el primero en reconocer el comportamiento caótico de ciertos sistemas dinámicos, como el atmosférico. El estudio de este comportamiento altamente inestable y errático le condujo, continuaban, a formular una de las principales características de lo que hoy se llama “caos determinista”: la dependencia sensible a las condiciones iniciales, popularmente conocida como “efecto mariposa”. Lorenz, concluían, fue el artífice de la tercera revolución científica del siglo XX, después de la Teoría de la Relatividad y la Mecánica Cuántica.

Condiciones iniciales en la Vida

Una de la mayores características de un Sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta e impredecible.

Qué hacer cuando me doy un golpe o caída - Fisiolution

Si resbalas te darás un golpe

Las condiciones iniciales de un sistema implican que las condiciones finales sean tal como, de manera inevitable serán. Es decir, su condición inicial nos dice cuál será su condición final. Desde su nacimiento nos está diciendo como será su “muerte”.

De todo  sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta,

 

TEORÍA DEL CAOS – APRENDEMOS MATEMÁTICAS

La Teoría del Caos una rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos, es decir aquellos sistemas cuyo estado evoluciona con el tiempo, con la particularidad de ser muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro, haciendo  complicada la predicción a largo plazo.

 

                        El aleteo de una mariposa puede provocar un Tsunami al otro lado del mundo

 

Pero, veamos,  ¿ha sido realmente Edward Lorenz el “creador” de la Teoría del Caos? ¿O acaso su papel de estrella protagonista se debe más bien a una inusitada alianza entre mérito y fortuna? El propósito de esta nota es ofrecer una panorámica de la Historia de la Teoría del Caos que complique su nacimiento y enriquezca su evolución, sacando a la luz la figura de ciertos científicos que el gran talento de Lorenz ha ensombrecido y ocultado .Comenzamos nuestra panorámica retrocediendo hasta los tiempos de la Revolución Científica.

 

el sistema solar | Planetas del sistema solar, Planetas ...

 

El intento por comprender las trayectorias planetarias observadas por Kepler condujo a Newton a modelarlas matemáticamente, siguiendo la estela de Galileo. Newton formuló sus leyes de una forma matemática que relacionaba entre sí las magnitudes físicas y sus ritmos de cambio. Las leyes físicas quedaron expresadas como ecuaciones diferenciales. Estudiar un fenómeno físico y hallar las ecuaciones diferenciales que las gobernaban eran las dos caras de la misma moneda.

 

 

 

Qué es la Fisica? Ramas de la Fisica Aprende Facil

 

Desde el siglo XVII, toda la naturaleza –sólidos, fluidos, sonido, calor, luz, electricidad- fue modelada mediante ecuaciones diferenciales. Ahora bien, una cosa era dar con las ecuaciones del fenómeno en cuestión y otra, bien distinta, resolverlas. La teoría de las ecuaciones diferenciales lineales fue desarrollada por completo en poco tiempo. No así la teoría gemela, la teoría de las ecuaciones diferenciales no lineales.

 

                                          El problema de los tres cuerpos 

Uno de los problemas no lineales que trajo de cabeza a físicos y matemáticos fue el problema de los n cuerpos de la Mecánica Celeste: dados n cuerpos de distintas masas bajo atracción gravitacional mutua, se trataba de determinar el movimiento de cada uno de ellos en el espacio. Newton resolvió geométricamente el problema de los dos cuerpos en los Principia. Posteriormente, Bernoulli y Euler lo resolvieron analíticamente con todo detalle. Sin embargo, no ocurrió así con el problema de los tres cuerpos. Newton sabia que, cuando un tercer cuerpo entraba en escena, el problema no era fácilmente resoluble, y que esto traía serias consecuencias para la cuestión de la estabilidad del Sistema Solar (que, a fin de cuentas, en la época, pasaba por ser un sistema de siete cuerpos). Aunque débiles en comparación con la fuerza de atracción del Sol, las fuerzas gravitatorias entre los planetas no eran ni mucho menos despreciables, por cuanto a la larga podían desviar algún planeta de su órbita e incluso, en el límite, expulsarlo fuera del Sistema Solar.

 

leonhard euler 2

El matemático suizo Leonhard Euler

Las fuerzas interplanetarias podían estropear las bellas elipses keplerianas, sin que fuera posible predecir el comportamiento del Sistema Solar en un futuro lejano. En Motu corporum in gyrum, Newton afirmaba que los planetas no se mueven exactamente en elipses ni recorren dos veces la misma órbita, y reconocía que definir estos movimientos para todo futuro excedía con mucho la fuerza entera del intelecto humano. Si el Sistema Solar se iba desajustando, era necesaria una solución drástica: la Mano de Dios tenía que reconducir cada planeta a su elipse, reestableciendo la armonía. Este Deus ex machina newtoniano provocó, como es bien sabido, la ira de Leibniz, para quien Dios no podía ser un relojero tan torpe.

 

MOMENTOS ESTELARES DE LA CIENCIA: PIERRE SIMON LAPLACE

 

Tiempo después, Laplace creyó explicar las anomalías orbitales que preocuparon a Newton como meras perturbaciones que sólo dependían de la Ley de Gravitación y tendían a compensarse en el transcurso del tiempo. Así, al presentar su Mecánica Celeste a Napoleón, exclamó que Dios no era una hipótesis necesaria en su sistema del mundo. Sin embargo, en sus ecuaciones del sistema Sol-Júpiter-Saturno (problema de los tres cuerpos), Laplace despreció un término matemático que creía muy pequeño pero que, en contra de lo por él supuesto, podía crecer rápidamente y sin límite, hasta desestabilizar el Sistema Solar.

Muchos físicos y matemáticos decimonónicos dedicaron sus esfuerzos a dar una respuesta completa al problema de los tres cuerpos y a la cuestión de la estabilidad del Sistema Solar. Entre ellos, uno de los personajes clave en la configuración de la Teoría del Caos: Henri Poincaré.

 

poincare Henri Poincaré. El trabajo científico.

                           Henri Poincaré

En 1855, los matemáticos europeos tuvieron noticia de que un importante concurso internacional iba a ser convocado bajo el auspicio de Oscar II, rey de Suecia y Noruega, para celebrar su sesenta aniversario en el trono. Se ofrecía un sustancioso premio al matemático capaz de resolver el problema de los tres cuerpos y, de este modo, avanzar en el estudio de la estabilidad del Sistema Solar. Alentado por la competencia, Poincaré procedió a sintetizar muchas de sus ideas acerca del estudio cualitativo o topológico de las ecuaciones diferenciales no lineales. El Jurado declaró ganador a Poincaré por una compleja resolución del problema restringido de los tres cuerpos, en que un planeta ligero se mueve bajo la atracción gravitatoria de dos estrellas iguales que giran una alrededor de la otra describiendo dos elipses confinadas en un mismo plano. Sin embargo, el artículo de Poincaré contenía un error y una tirada completa de la prestigiosa revista Acta Mathemática hubo de ser destruida.

 

 

A toda prisa, Poincaré revisó su trabajo y descubrió que, en verdad, no podía probarse la estabilidad del sistema, porque su dinámica no seguía pauta regular alguna. Su revisión del problema contiene una de las primeras descripciones del comportamiento caótico en un sistema dinámico. Poincaré fue, desde luego, el abuelo de la Teoría del Caos. Además, a partir de entonces, Poincaré contribuyó como pocos, a popularizar la idea de que existen sistemas deterministas cuya predicción a largo plazo resulta imposible. En Ciencia y Método, escribía: “Puede suceder que pequeñas diferencias en las condiciones iniciales produzcan algunas muy grandes en los estados finales. Un pequeño error al inicio engendrará un enorme error al final. La predicción se vuelve imposible”.

 

                                             

                    Otros también trataron el tema y profundizaron en los secretos de la Naturaleza

¡Caramba! Medio siglo antes que Lorenz, Poincaré se había topado con… ¡el efecto mariposa! Aún más: el genial matemático francés señaló que el tiempo meteorológico hacía gala de esta clase de inestabilidad y apuntó qué dificultades se derivarían para la predicción meteorológica. En su labor divulgadora no estuvo solo: su compatriota Pierre Duhem difundió las investigaciones de Poincaré y, también, de Jacques Hadamard, quien fue pionero en demostrar matemáticamente que, para cierto sistema dinámico hoy conocido como el Billar de Hadamard, un pequeño cambio en las condiciones iniciales provoca un notable cambio en la posterior evolución del sistema.

 

 

Henri Poincaré, el profeta del caos que probó que hay problemas imposibles  de resolver - BBC News MundoLa Conjetura de Poincaré - YouTube

                                                              La famosa conjetura de pOINCARÉ

Durante el primer cuarto del siglo XX, la influencia de Poincaré no desapareció y se dejó notar en los trabajos de George David Birkhoff a propósito de las características cualitativas y topológicas de los sistemas dinámicos. Tampoco puede olvidarse el papel de Stephen Smale, que ganaría la Medalla Fields –el Premio Nobel de los matemáticos- en 1966 por sus contribuciones a la Teoría de los Sistemas Dinámicos. Mediado el siglo XX, este topólogo continuó la senda trazada por Poincaré t Birkhoff, y descubrió la Herradura de Smale, que pasa por ser el mecanismo topológico que da lugar al caos (efecto mezcla).

 

Imagen

                 George David Birkhoff

Simultáneamente, cruzando el telón de acero, existía otra fértil tradición: la Escuela Rusa. En la U. R. S. S., los físicos y matemáticos habían heredado de Alexander Liapunov sus influyentes nociones acerca de la estabilidad del movimiento de los sistemas dinámicos. Si Poincaré se había ocupado de la teoría de la estabilidad desde una perspectiva cualitativa, Liapunov lo hizo cuantitativamente (exponentes de Liapunov). Recogiendo el testigo de ambos, Kolmogorov y Arnold se concentraron en el estudio de la estabilidad de los sistemas dinámicos de la Dinámica Celeste. Durante la guerra fría, los principales resultados de los matemáticos soviéticos fueron traducidos al inglés y dados a conocer al resto de matemáticos, europeos y norteamericanos, gracias al providencial trabajo de Solomon  Lefschetz.

 

                                                     

Y en éstas, apareció Lorenz… En 1963, este matemático y meteorólogo, antiguo alumno de Birkhoff en Harvard, estaba trabajando en el pronóstico del tiempo en el MIT. Estudiando la convección en la atmósfera, Lorenz planteó un modelo matemático formado por tres ecuaciones diferenciales ordinarias para describir el movimiento de un fluido bajo la acción de un gradiente térmico. Mientras buscaba soluciones numéricas con la ayuda de una computadora, se encontró –al volver de tomar una taza de café- con que se producía un dramático comportamiento inestable, caótico. Lorenz se había topado por casualidad con el fenómeno de la sensibilidad a las condiciones iniciales, que hacía de su sistema algo en la práctica impredecible. En efecto, tras establecer las propiedades básicas del flujo, Lorenz reparó en que una pequeña variación en las condiciones iniciales ocasionaba estados finales completamente diferentes. Lorenz había descubierto, tomando prestada la indeleble metáfora que forjaría más tarde, el efecto mariposa: el aleteo de una mariposa en Brasil puede ocasionar un tornado en Texas. Ahora bien, sería el matemático norteamericano Guckenheimer el que, allá por los años 70, acuñara la expresión “dependencia sensible a las condiciones iniciales”.

 

El modelo ECMWF sigue insistiendo en esta descarga fría para ...

 

Lorenz publicó su hallazgo en una revista de meteorología, en un artículo titulado Deterministic Nonperiodic Flow, en que citaba expresamente a Poincaré y Birkhoff (aunque desconocía las ideas del primero sobre predicciones meteorológicas), pero que pasó prácticamente desapercibido. Sólo Stephen Smale y James Jorke –el introductor del término caos en la literatura científica- reconocieron las repercusiones filosóficas de la investigación de Lorenz y la dieron a conocer. Si Edward Lorenz ofreció a la comunidad científica el paradigma de sistema dinámico caótico continuo, el zoólogo Robert May dio a conocer en su artículo Simple Mathematical Models with Complicated Dynamics el paradigma del sistema dinámico caótico discreto: la aplicación logística.

 

Qué son la Teoría del caos y el Efecto mariposa (y cómo nos ...

                                                                El efecto mariposa

A finales de los 70 y principios de los 80, la exploración de aplicaciones de la Teoría del Caos comenzó a dar sus frutos más allá de las simulaciones en las pantallas de ordenador. Entre los fenómenos físicos estudiados destaca, sin duda, la transición a la turbulencia en los fluidos, cuyo estudio contaba con el precedente que suponía el artículo On the nature of turbulence de David Ruelle y Floris Takens, quiénes introdujeron la noción de atractor extraño. Paralelamente, el físico Mitchell Feigenbaum descubrió heurísticamente ciertas constantes universales que caracterizan la transición del movimiento periódico al movimiento caótico, dando inicio a una de las ramas más prometedoras de la Teoría del Caos a día de hoy: la Teoría de la Bifurcación.

 

En resumidas cuentas, a comienzos del siglo XXI, la Teoría del Caos se nos aparece como la ciencia fisicomatemática que estudia el comportamiento aperiódico e inestable en sistemas deterministas no lineales. Mientras que la revolución relativista fue, prácticamente, fruto de un único hombre (Albert Einstein), y la revolución cuántica lo fue de apenas un puñado (Planck, Bhor, Heisenberg, Schrödinger, Dirac), la revolución del caos determinista es, en cambio, obra de múltiples. La Teoría del Caos es hija tanto de matemáticos (Poincaré, Hadamard, Birkhoff, Smale, Yorke…) como de físicos, biólogos y otros tantos científicos de campos dispares (Lorenz, May, Feigenbaum…). Atribuir su paternidad únicamente a un hombre, aun cuando sea Lorenz, es una simplificación excesiva. Lorenz fue, por así decirlo uno de los muchos padres.”

Hasta aquí el artículo que el Señor Madrid Casado escribió y fue publicado en el número 3 del volumen 22 de la Revista Española de Física en 2008. (salvo algunas imágenes y apuntes propios, en esencia, el artículo es del Señor Madrid Casado).

 

 

El trabajo está bien y nos introduce en la historia de la Teoría del Caos desde sus raíces, y, lo único en lo que podemos disentir del autor es, en el hecho cierto de que, Einstein, autor de la relatividad, también se apoyó en muchos (Mach, Maxwell, Lorentz, -en la primera parte, y, sobre todo en Riemann, en la segunda), aunque eso no le quita ni una pizca del mérito que tiene como científico que supo aunar muchos conocimientos dispersos, unirlos en una sola entidad y hacer ver al mundo lo que allí había. Y, por otra parte, al hablar de la Mecánica Cuántica, excluye a Einstein que, en verdad (aunque la combatió) fue uno de sus padres en aquellos primeros momentos, su trabajo sobre el Efecto Fotoeléctrico (que le dio el Nobel de Física) así lo demuestra. Por otra parte, no habría estado de más y de pasada, comentar que Poincaré fue el autor de la “Conjetura” que lleva su nombre y que ha estado ahí 100 años sin que nadie la resolviera,

 

 

Perelman, el ser humano más inteligente | elmundo.esLa Conjetura de Poincaré - YouTube

En la Asamblea de Matemáticas celebrada en Madrid, se negó a coger el premio de un millón de dolores

Hasta que llegó, un matemático extraño, llamado Perelman (ruso) que sin tener el premio que ofrecían al ganador, puso en Internet la solución. Este personaje, no acudió a la cita en Madrid, donde se celebraba el Año Internacional de las Matemáticas y el rey le entregaría la Medalla Field. Todos se quedaron esperando y él, que vivía con su madre en un apartamento de 65 m2, estaba con su cestita al brazo cogiendo setas en el campo.

De todo esto podemos obtener la consecuencia de que, todo tiene otra historia detrás, y, si profundizamos, la podemos descubrir para conocer de manera completa y precisa, el transcurso de los hechos y los personajes que en ellos tomaron parte.

emilio silvera