miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Misterios de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

El principio de constancia de la velocidad de la luz — Cuaderno de Cultura  Científica

                                 ¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz?

Cuando una partícula se acerca a la velocidad de la luz, su masa tiende a infinito; haría falta una energía infinita para seguir acelerándola y eso es algo que nunca se consigue.
                                                espacio gif - Buscar con Google | Cool optical illusions, Gif, Optical  illusions

                                  Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento.

 

Martillo golpea un primer plano de clavo martillo martillando un clavo en  una tabla de madera | Foto Premium

 

Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

 

                                       

 

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

 

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

 

Somos seres de luz… | Viaje astral, Fondo de pantalla de ...

    La luz está dentro de la materia y en el universo… ¡por todas partes! ¿Somos seres de luz?

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

                                                                 

                                                           No, un pulsar tampoco puede ser más rápido que la luz

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

                                               

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad, es el límite al que podemos enviar información y también, al que nos podríamos mover con las más rápidas naves que pudiéramos construir, aunque esas naves tendrían algunos problemas de masa y, los viajeros… ¡Muchos más!

Todo esto no es pura teoría, sino que ha sido comprobado, una y mil veces en los grandes aceleradores de partículas, donde el muó, por ejemplo, aumentó su masa diez veces al acercarse a velocidades relativistas, es la realidad de los hechos.

 

                       

            Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían superar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿Cómo iremos?

 

Hacia dónde se está expandiendo el universo?

 

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

                                   

                                      De momento sólo con los Telescopios podemos llegar tan lejos.

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

 

                           

 

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos encontrar lo que buscamos para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

File:Military laser experiment.jpg

                                     Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relagar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Observémosla. De todas las maneras, como nuestra imaginación es casi tan grande como el mismo universo, ya se han postulado teorías para ir buscando la manera de poder desvelar si existe alguna posibilidad de que la velocidad de la luz sea superada.

                                    Fórmula relativista de adición de velocidades.

En matemáticas se llama prolongación de una función a la extensión de su dominio más allá de sus singularidades, que se comportan como frontera entre el dominio original y el extendido. Normalmente, la prolongación requiere incluir algunos cambios de signo en la definición de la función extendida para evitar que aparezcan valores imaginarios puros u otros números complejos. La matemática de la teoría de la relatividad puede ser aplicada a partículas que se mueven a una velocidad mayor que la de la luz (llamadas taquiones) si aceptamos que la masa y la energía de estas partículas pueden adoptar valores imaginarios puros. El problema es que no sabemos qué sentido físico tienen estos valores imaginarios.

La fuente está en algunas ideas de Asimov.

 

No todo es Ciencia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestro amigo Nelson, desde Montevideo (Uruguay), siempre se acuerda de nosotros y nos tenía esta simpática “anécdota” que podría ser muy cierta…

 

 

La amistad de un jubilado y una paloma se hace viral

 

José y Francisco, dos amigos de la tercera edad, se veían en el parque todos los días para alimentar a las palomas, observar las ardillas y discutir los problemas del mundo.

Un día Francisco no llegó.

José no se preocupó mucho pensando que quizá tuvo un resfrío o algo parecido.

Pero después de una semana que Francisco no aparecía, José realmente se preocupó.

Sin embargo, como siempre se juntaban solo en el parque y José no sabía dónde vivía Francisco,
pues no podía averiguar qué le había pasado.

Pasado un mes, José fue al parque y sorpresa, ahí estaba Francisco!

 

Dos Adultos Mayores Jubilados Que Tienen Una Conversación En ...

 

José estaba muy excitado y alegre de verlo y le dijo:

Por lo que mas quieras Francisco, dime qué te pasó?”

Francisco le contestó, “He estado en la cárcel”

-“En la cárcel?” replicó José. “qué te pasó?”

-“Bueno”, dijo Francisco:

“Conoces a Gloria, la linda mesera rubia de la cafetería donde te he dicho que voy seguido?

-“Claro,” dijo José, “Yo la recuerdo. Qué pasa con ella?”

-“Bueno, un día me demandó por violación”.

-“¿Y?”

-“A mis 92 años, estaba tan orgulloso que cuando fui al juzgado me declaré culpable …..

Dos años y medio de cárcel para Jacinto, el anciano que mató al ladrón que  asaltó su casa | Ideal

 

Y el maldito Juez me sentenció a 30 días de cárcel por mentiroso

Busque otro…

 

 

Hombre y mujer ancianos cenando en una mesa de restaurante aislado sobre  fondo blanco Fotografía de stock - Alamy

Dos personas mayores él viudo y ella viuda, se conocían hacía varios años.

Una noche hubo una cena comunitaria en la Casa Club. Los dos sentados en la misma mesa, uno frente al otro.

Durante la comida él la miró, y la miró admirado y finalmente juntó el coraje para preguntarle:
– “¿Quieres casarte conmigo? ‘
Después de unos segundos de “cuidadosa consideración”, ella respondió:
– Sí. Sí, acepto! “
La comida terminó y, luego de algunos intercambios agradables de palabras, se fueron a sus respectivos hogares.

 

Anciano hispano vestido de ropa casual sorprendido con la mano en la cabeza  por error, recuerda error. olvidado, mal concepto de memoria Fotografía de  stock - Alamy

 

A la mañana siguiente, el despertó preocupado y dudoso de la respuesta. ¿Me dio el Sí, o, me dio el No’? No podía recordar.

Lo intentó y lo intentó, pero simplemente no recordaba, no tenía ni siquiera una vaga idea; inquieto, fue al teléfono y llamó a su amiga. En primer lugar, le explicó que su memoria no era tan buena como solía serlo. Luego le recordó la noche hermosa, que habían pasado y con un poco más de coraje, le preguntó:

– “Cuando te pregunté si querías casarte conmigo, dijiste, sí o no?’

Él quedo encantado al oírla decir:

 

Anciana Celebración Teléfono Celular Inclusión Los Ancianos Entorno Digital  Línea: fotografía de stock © Ibstock #654869974 | Depositphotos

 

 

– Te dije que sí, que sí, acepto y lo dije con todo mi corazón. Y estoy muy feliz de que me llamaras, no podía recordar quién me lo había pedido.

¡Cosas de la vida!

La abundancia Cósmica de los Elementos

Autor por Emilio Silvera    ~    Archivo Clasificado en Formación de elementos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

 

 

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

 

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.

 

M42: La Gran Nebulosa de Orión

              Me gusta la Gran Nebulosa de Orión. Hay ahí tantas cosas, nos cuenta tantas historias…

  FUENTES DE DATOS DE ABUNDANCIAS CÓSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.

Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nébulas de “Orión” y “Trífidos”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:

 

[Espada+de+Orion.jpg]

                                               ‑ Su uniformidad de composición

‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.

También tiene desventajas:

‑ Solo se observan las líneas de los elementos más abundantes.

‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.

‑ La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme  es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

 

       Resultado de imagen de Gran Nebulosa de Orión en Observatorio info

Las estrellas se forman a partir del gas y el polvo de las Nebulosas

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

 

Fred Hoyle

                  Sir Fred Hoyle

No me parece justo hablar de los elementos sin mencionar a Fred Hoyle y su inmensa aportación al conocimiento de cómo se producían en las estrellas. Él era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la época no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiempo”. En aquel momento, no estaba falto de razón.

Interstellar Fusion by aleou27 on DeviantArt

Pero no es ese el motivo de mencionarlo aquí, Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “árbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían convertir Carbono en Oxígeno 16.

 

                                             El Sol como gigante roja

El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después

Pero, sigamos con la historia de Hoyle. Quedaba aún el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar núcleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo,  pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.

Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamerciano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

 

Las estrellas del Universo son gaesosas y tienen forma esférica

                                          Estrella muy evolucionada que se transforma en otra cosa

Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubrió qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran escépticos ingleses en la relativo al big bang.

 

De acuerdo con el modelo del Big Bang, el universo se expandió a partir de un estado extremadamente denso y caliente y continúa expandiéndose hasta el día de hoy.

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, seguramente los elementos situados entre el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

 

           

                                                    Nucleosíntesis estelar

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.

 

                             

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

 

                                     

 

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.

¿Apreciáis la maravilla?

 

Imagen relacionada

 

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.

“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolcuión estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:

Resultado de imagen de La abundancia de elementos gráfico

 

Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia escribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”

 

Resultado de imagen de En el Big Bang sólo Hidrógeno, Helio y Litio

En el Big Bang: Hidrógeno, Helio, Litio.

En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.

En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.

Como habeis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

 

File:Triple-Alpha Process.png

         En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:

Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.

emilio silvera

El “universo” de las partículas, es fascinante

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                   

      ¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?

Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyeron para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.

                                                                                El núcleo atómico

 

                                                                 Cuarta fase: El núcleo atómico - Teoría de Ruedas

Si dividimos el átomo en 100.000 partes, una de ellas será el núcleo atómico. Lo curioso del caso es que esa pequeñísima parte tiene el 99,99% de toda la masa del átomos, el resto son espacios vacíos. Además, en esa infinitesimal superficie  están los nucleones (protones y neutrones) que están hechos por partículas más pequeñas llamadas Quarks, cada hadrón barión (protones y neutrones) tienen en sus entrañas tripletes de Quarks  que están allí confinados por la fuerza nuclear fuerte, la más potente de las cuatro fuerzas fundamentales del universo. La fuerza es intermediada por Bosones que se llaman Gluones, y, es la única fuerza de las cuatro que no disminuye con la distancia, sino que, por el contrario, cuanto más se alejan los Quarks unos de otros más potente es la fuerza para retenerlos.

 

 

El gluón es el bosón portador de la interacción nuclear fuerte, una de las cuatro fuerzas fundamentales. No posee masa ni carga eléctrica, pero sí carga de color, por lo que además de transmitir la interacción fuerte también la sufre

El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.

 

                                          Radiación cósmica - Wikipedia, la enciclopedia libreAumento de la radiación cósmica entre 2015 a 2016 | ¿De que hablamos ahora?

                                                                  Radiacion cosmica by vpatino5529 on emaze

 

El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.

 

                                  Volar en aviones nos expone a riesgos de radiación cósmica? - 100CIA

 

Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.

 

                   

 

Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.

 

                       Dirac y la antimateria – Blog del Instituto de Matemáticas de la Universidad de SevillaQué es la Antimateria ? – matematicacuanticayconsciente

                                  La famosa ecuación de Dirac que predice la existencia del positrón

Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había deducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.

 

                                   Paul A. M. Dirac y el descubrimiento del positrón - La Ciencia de la Mula Francis

 

En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.

                                                           SMS::.. Fuente de Iones

Las moléculas del gas y los átomos son ionizados por las colisiones con los electrones, dentro de la cámara de ionización. En el interior de la cámara de ionización, se encuentra el ánodo dentro de un cilindro “repeledor”. El filamento (cátodo), se encuentra a una distancia equidistante de todo el ánodo. Los electrones son emitidos y acelerados hacia el ánodo con una energía de unos 100eV, es entonces cuando ionizan a las partículas de gas, formando un plasma de iones y electrones. De este modo un electrón que no haya colisionado con el gas se vera reflejado por el potencial del cilindro “repetidor”, y será rempujado de nuevo hacia el ánodo.

 

Los rayos cósmicos se hunden a un mínimo en 6 años

 

Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.

Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.

 

                                            Un nuovo studio sul Positronio confonde gli scienziati

                                 Se han realizado estudios sobre el positronio para observar las reacciones del encuentro

Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco  Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.

 

Es característica la reacción γ → e+  +  e , donde el fotón debe tener al menos una energía igual a la masa del electrón y el positrón (ambos tienen una energía en reposo de 511 keV), es decir, 1.022 keV o 1,022 MeV, para poder generar las partículas. Generalmente este proceso viene seguido del inverso, en el que el positrón generado se aniquila con un electrón de la materia que existe alrededor.

Para que se dé este proceso de creación de pares es imprescindible que exista en las cercanías del fotón inicial un núcleo, cuya presencia es la que permite que se cumplan las leyes de conservación de momento y energía.

 

       

                El encuentro electrón positrón es efímero y se produce el decaimiento Beta

 

Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.

 

 

Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones.

 

                                      Resultado de imagen de los Joliot-Curie detectaron el positrón por otros medios

 

Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.

                                     Partícula alfa - Wikipedia, la enciclopedia librePartícula beta | ¿Qué es la radioactividad? Definición

                                                                                Partícula Alfa y partícula Beta

Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:

aluminio 27 + helio 4 = silicio 30 + hidrógeno 1

Nótese que los números másicos se equilibran:

27 + 4 = 30 + 1

Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.

                                           

 

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

 

                              Ciencia de los Materiales (Powerpoint) (página 2) - Monografias.com☢ La fusión nuclear - Energía nuclear: el poder del átomo

 

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

                                 

Representación 3D animada de un deuterio. Hay que tener en cuenta que la órbita del electrón no es regular.

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

 

ISO = IGUAL. - ppt descargarTritón (química) - Wikipedia, la enciclopedia libre

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre de ambas son las matemáticas. Las matemáticas componen ese lenguaje que explica lo que las palabras no pueden.

emilio silvera