Feb
21
¿La sustancia cósmica? ¡La semilla de la materia!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
¿Sabía el Universo que íbamos a venir? ¡Las piedras nos hablan y nos cuentan… tantas cosas!
¿La sustancia cósmica? ¡La semilla de la materia!
Debajo de éstas imágenes se puede leer:
“Hallan indicios de materia oscura unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares. Un detector de rayos cósmicos de dos mil millones de dólares en la Estación Espacial Internacional halló la huella de algo que pudiera ser la materia oscura, la misteriosa sustancia que se cree mantiene unido al cosmos.”
Es asombroso como a base de repetir una conjetura… ¡Se termina creyendo que es una realidad! ¡Materia oscura! ¿Dónde? No tenemos remedio, desde que Fritz Zwicky en 1933, propuso la existencia de la “materia oscura” para justificar el movimiento anómalo de las galaxias… Todos se agarraron a la idea que cuadraban las cuentas y les evitaba el trago de no saber contestar a la pregunta de por qué las galaxias se movían más rápidamente de lo que deberían teniendo en cuenta la materia que se podía observar.
Siempre hemos querido dar las respuestas a cuestiones que no sabíamos, y, pasando el Tiempo se desvelaba el misterio y la respuesta tenía que ser cambiada por la que realmente procedía… ¿Pasará lo mismo con la dichosa “materia oscura”?
“Pero los primeros resultados del Espectrómetro Magnético Alfa (AMS, por sus siglas en inglés) son casi tan enigmáticos como la materia oscuraen sí, la cual nunca ha sido observada directamente. Muestran evidencia de nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares, anunciaron un miércoles científicos en el laboratorio europeo de física de partículas cerca de Ginebra.”
Dicen: “nunca ha sido observada directamente”, y, habría que preguntar: ¿Indirectamente sí ha sido observada?
Como no me canso de repetir, cualquiera de estas noticias nos vienen a decir que, de la “materia oscura”, nada sabemos. Sería conveniente, para que las cuentas cuadren, que exista esa dichosa clase de materia o lo que pueda ser, toda vez que, sin ella, no resulta fácil llegar a una conclusión lógica de cómo se pudieron formar las galaxias, o, de por qué se mueven las estrellas de la manera que lo hacen.
Algo tienen que decir para justificar lo injustificable.
Hace treinta años, los astrofísicos se enfrentan a este dilema: o bien las galaxias tienen mucha materia que no vemos, pero que causa una fuerte atracción gravitatoria sobre las estrellas externas (que por ello orbitarían tan rápido) o bien ni la ley de la gravedad de Newton ni la de Einstein serían válidas esas regiones externas de las galaxias. Las dos opciones son revolucionarias para la física: la primera implica la existencia de materia oscura en el universo (materia que no vemos pero que sí afecta al movimiento de las estrellas y galaxias), y la segunda implica que una ley básica (la de Newton/Einstein de la gravitación) es incorrecta.
En el momento actual, no sabemos cual de esas dos opciones es la buena (podrían incluso ser buenas las dos, es decir, que existiera materia oscura y además que la teoría de Newton/Einstein estuviera mal. No creo que sea ese el problema, debe haber una tercera opción desconocida que debemos encontrar). La gran mayoría de los astrofísicos prefieren explicarlo con la materia oscura (un camino cómodo y fácil) antes que dudar de las leyes de la gravitación de Newton/Einstein. Esto no es sólo cuestión de gustos, es que las leyes de la gravitación funcionan con una increíble exactitud en todos los demás casos donde las hemos puesto a prueba (en los laboratorios, en las naves espaciales y los interplanetarios, en la dinámica del Sistema Solar, etc.).
El problema de la materia oscura (si es que realmente existe y no es que las leyes de Newton/Einstein sean incompletas) es uno de los más importantes con los que se enfrenta la astrofísica hoy en día.
Cuando pienso en la existencia ineludible de esa “materia cósmica” primigenia, la primera y más sencilla clase de materia que se formó en las primeras fracciones del primer segundo del Big Bang, en la mente se me aparece una imagen llena de belleza creadora a partir de la cual, todo lo que ahora podemos contemplar es posible. La belleza de la idea es que toma dos problemas -la ventana del tiempo inadecuada para la formación de las galaxias y la existencia de la “materia oscura”- y los une para conformar una solución al dilema central de la estructura del universo.
La “materia oscura”, por hipótesis, tiene una ventana de tiempo mucho más larga que la materia ordinaria, porque se desapareja más pronto en el Big Bang. Tiene mucho tiempo para acumularse antes de que la materia ordinaria sea libre para hacerlo y formar los átomos. La “materia oscura o sustancia cósmica primera, es de porte más sencillo y no tiene ni requiere la complejidad de la materia bariónica para formarse, es totalmente translúcida y se sitúa por todas partes, es decir, permea todo el universo invadiendo todas sus regiones a medida que este se expande más y más. Y fue esa “invisible” sustancia cósmica, la que realmente hizo posible que las galaxias se pudieran formar a pesar de la expansión de Hubble.
El hecho de que la materia ordinaria caiga entonces en el agujero gravitatorio creado de este modo sirve para explicar por qué encontramos galaxias rodeadas por un halo de algo que hemos dado en llamar “materia oscura”. Tal hipótesis mata dos pájaros de un sólo tiro.
Pero debemos recordar que en este punto sólo tenemos una idea que puede funcionar, no una teoría bien construida. Para pasar de la idea a la teoría, tenemos que responder dos preguntas importantes y difíciles:
1. ¿Cómo explicamos la estructura de la “materia oscura”?
2. ¿Qué es la “materia oscura”?
Se habla de materia oscura caliente y fría. También, algunas veces me veo sorprendido por las ocurrencias que tienen algunos científicos de hoy que, como los antiguos, imaginan respuestas para acomodar las cuestiones que realmente desconocen y, buscan así, una salida airosa sin que se note la inmensa ignorancia que llevan consigo.
Podríamos comenzar a examinar estas cuestiones pensando en el modo en que la “materia oscura” pudo separarse de la nube caliente en expansión, de materiales que constituía el universo en sus comienzos. Por analogía de la discusión del desaparejamiento de la materia ordinaria después de la formación de los átomos, llamaremos también desaparejamiento a la separación de la “materia oscura” de aquella fuente “infinita” de energía primera.
Una transformación como la que condujo a la formación de los átomos es necesaria para que ocurra el desaparejamiento. Todo lo que tiene que suceder es que la fuerza de la interacción de las partículas que forman la “materia oscura” caigan por debajo del punto en que el resto del universo puede ejercer una presión razonable sobre él. Después de esto, la “materia oscura” continuará a su aire, indiferente a todo lo que la rodee.
Resulta que desde el punto de vista de la creación de la estructura observada del universo, la característica más importante del proceso de desaparejamiento para la “materia oscura” es la velocidad de las partículas cuando son libres. Si el desaparejamiento tiene lugar muy pronto en el Big Bang, la “materia oscura” puede salir con sus partículas moviéndose muy rápidamente, casi a la velocidad de la luz. Si es así, decimos que la “materia oscura” está caliente. Si el desaparejamiento tiene lugar cuando las partículas están moviéndose poco a poco -velocidad significativamente menor que la de la luz- decimos que la materia está fría.
De los tipos de “materia oscura” que los cosmólogos toman en consideración, los neutrinos serán el mejor ejemplo de “materia oscura” caliente. Los neutrinos han llamado la atención de los científicos en relación a la “materia oscura” durante mucho tiempo. Para tener una idea aproximada del número de neutrinos del universo, podríamos decir que existe actualmente un neutrino por cada reacción nuclear que tuvo lugar desde siempre. Los cálculos indican que hubo aproximadamente mil millones de neutrinos producidos durante el Big Bang por cada protón, neutrón o electrón. Cada volumen del espacio del tamaño de nuestro cuerpo contiene unos diez millones de estos neutrinos-reliquias y en ellos no se encuentran los que se produjeron más tarde en las estrellas. Está claro que toda partícula tan corriente como ésta podría tener en principio un efecto muy grande sobre la estructura del Cosmos, si tuviera una masa.
Pero resulta que la “materia oscura” caliente, actuando sola, casi con toda seguridad no podría explicar lo que observamos en el universo y que el escenario de “materia oscura-fría” debe modificarse por completo si queremos mantenerla como candidata a esa teoría última de la materia que “debe” existir en el universo pero, que no sabemos lo que es y la llamamos, precisamente por eso “materia oscura”.
El tema de la materia desconocida, invisible, oculta y misteriosa que hace que nuestro universo se comporte como la hace… ¿sigue siendo una gran incognita! Nadie sabe el por qué las galaxias se alejan las unas de las otras, el motivo de que las estrellas en la periferia de las galaxias se muevan a mayor velocidad de lo que deberían y otros extraños sucesos que, al desconocer los motivos, son achacados a la “materia oscura”, una forma de evadirse y cerrar los ojos ante la inmensa ignorancia que tenemos que soportar en relación a muchos secretos del Universo a los que no podemos dar explicación.
Sí, las cuerdas son unas buenas candidatas para la “materia oscura”
Claro que otros, han imaginado cuestiones y motivos diferente para explicar las cosas. A mí me hizo mucha gracia las palabras de aquel Premio Nobel de Física holandés:
“La materia oscura es la alfombra bajo la cual, los cosmólogos, barren su ignorancia”.
Aunque no todas si son muchas las GUT y teorías de supersimetría las que predicen la de cuerdas en la congelación del segundo 10-35 después del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas líneas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían ser un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria y no pueden ser rotas por la presión de la radiación en los inicios del Universo.
El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y la cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.
Lo cierto es que todavía no se ha encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no pierden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC y aceleradores como el LHC las evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, sino que el modelo del Big Bang es un modelo acertado.
Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com
Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas del orden del defecto de ángulo del cono generado por la curvatura del espacio-tiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros, curvan el espacio-tiempo de manera distinta. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.
En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.
Una de las virtudes de la teoría es que puede detectarse por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el de la cosmología (a pesar de que, la cuerdas cósmicas, no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.
En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las del 10^-35 segundo después del Big Bang.
Podrían estar por todas partes
Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto la “materia oscura”. Ejercen una atracción gravitatoria, no pueden ser rotas por la presión de la radiación en los inicios del Universo.
Como habéis podido comprender, todas estas teorías están por demostrar y sólo son conjeturas derivadas de profundos pensamientos de lo que puso ser y de lo que podría ser. Nada relacionado con la materia oscura, las supercuerdas o las cuerdas cósmicas ha sido demostrado ni se han observado por medio alguno en nuestro Universo. Sin embargo, no descartar nada y hacer lo posible por demostrarlas, es la obligación de los científicos que tratan de buscar una explicación irrefutable de cómo es el Universo y por qué es así.
El misterioso “universo” de los campos cuánticos que nadie sabe lo que esconde
A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba. En fin, muchas elucubraciones y conjeturas que surgen siempre que no sabemos explicar esa verdad que la Naturaleza esconde y, mientras tanto nosotros, simples mortales de la especie Homo, seguimos dejando volar nuestra imaginación que trata, cargada siempre de curiosidad, de desvelar esos misterios insondables del Universo.
Finalmente sabremos sobre esa sustancia cósmica que impregna todo el universo pero, no será la “materia oscura” de la que todos hablan, será otra cosa muy diferente e inimaginable en estos momentos en los que, nuestra ignorancia, echa mano de cualquier cosa para poder ocultarla… ¡materia oscura! ¿Qué es eso?
Emilio Silvera V.
Feb
21
Nebulosas Moleculares Gigantes… ¡Y mucho más!
por Emilio Silvera ~ Clasificado en General ~ Comments (2)
No siempre hemos podido elegir el camino
https://youtu.be/WjLg0YVunxM
Para estudiar una gran estructura del cielo en base a una pequeña parte de su extensión. Ya hemos leído sobre la Nube de Perseo, una de las nubes moleculares más cercanas a nosotros. Las nubes moleculares son grandes masas compuestas es su mayor parte por hidrógeno y algo de polvo, ocupando extensos volúmenes en el disco de nuestra galaxia. En ocasiones sufren un proceso de fragmentación en el que se diferencian zonas de mayor densidad que el resto, y esas zonas, denominadas núcleos densos, irán atrayendo el gas circundante hasta formar estrellas. Cuando las primeras estrellas se forman en estos núcleos densos conforman una asociación OB, denominada así porque las estrellas de tipo espectral O y B son las que dominan esa región de la nube molecular, iluminando su entorno como grandes candelas celestes.
NGC 1333: la guardería estelar de Perseo
Volvamos a la Nube de Perseo. Se encuentra en el brazo de Orión, a unos 1.000 años luz de distancia, y ocupa un área extensa del cielo, desde la Nebulosa California a las nebulosas NGC 1333 e IC 348, lindando por el oeste con VdB 16 y VdBb 13, ya en la constelación de Aries. En toda la extensión de la nube se encuentran dos principales poblaciones de estrellas, siendo la más añosa la que se organiza en la asociación Perseo OB2, en torno a IC 348, cuyas estrellas se formaron hace unos 5 millones de años. La otra población es mucho más joven, tanto que sus estrellas están naciendo en este mismo momento, como se puede comprobar en las inmediaciones de NGC 1333.
Las grandes nebulosas oscuras que pueden contener más de un millón de masas solares de material y extenderse más de 200 parsecs se conocen como nubes moleculares gigantes. Las más pequeñas, llamadas glóbulos de Bok, tienden a tener menos de 3 años luz de diámetro y contienen menos de 2000 masas solares de material.
La familia de las Nebulosas es bastante amplia y de distintas configuraciones, composiciones, emisiones y reflexiones que tienen que ver con su masa y densidad, con las estrellas que allí están presentes y la radiación que emiten para ionizar algunas regiones con el ultravioleta… etc. Existen nebulosas bipolares, brillantes, de absorción, de emisión, de reflexión, difusas, filamentarias, oscura, planetaria y protoplanetaria que es la etapa de formación de aquella.
Una nebulosa solar es aquella nube de gas y polvo a partir de la cual se forma un sistema planetario. Arriba podemos contemplar. El telescopio ALMA ha fotografiado por primera vez los inicios de la formación de un sistema planetario alrededor de una estrella. El astro es HD 142527 y está situado a unos 450 años-luz de la tierra. Alrededor de él podemos observar un anillo de gas y polvo cósmico que con el paso del tiempo dará lugar a un sistema planetario.
De las Nebulosas y de sus diferentes tipos hemos hablado aquí de manera amplia habiendo explicado en qué consistía cada una de ellas y, de qué materiales estaban formadas en función de las distintas circunstancias que en cada una de ellas estaba presente. Hoy estaremos con las Nebulosas moleculares gigantes.
La nube de Rho Ophiuchi
La nube de Rho Ophiuchi es una nube molecular gigante compuesta de hidrógeno ionizado y en gran parte del polvo oscuro; debe su nombre a la estrella ρ Ophiuchi, ubicada a tres grados al norte de Antares (estrella amarilla), en la constelación de Ofiuco. Es una de las regiones de la formación estelar más cercanas en el Sistema solar; se encuentra a tan sólo 130 parsecs (420 años luz).
Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varían entre unos pocos cientos de miles hasta diez millones de masas solares. Las NMGs (Nebulosas moleculares gigantes) consisten mayoritariamente en moléculas de Hidrógeno (H2, 73% en masa), átomos de Helio (He, 25%), partículas de polvo 1%, Hidrógeno atómico neutro (H I, menos del 1%) y un rico cóctel de moléculas interestelares (menos del 0,1 %).
Arriba podemos contemplar la grandiosa Nebulosa Molecular Orión. Nuestra Galaxia contiene más de 3 000 NMGs, estando las más masivas situadas cerca de la radiofuente Sagitario B2 en el Centro Galáctico. Comprenden la mitad de la masa de toda la materia interestelar, aunque ocupan menos del 1% de su volumen. La densidad de gas promedio es de unas pocas miles de moléculas por cm3.
Las Nebulosas Moleculares Gigantes se encuentran mayoritariamente en los Brazos Espirales de las galaxias de disco, y son el lugar de mayor nacimiento de estrellas masivas. Este tipo de Nebulosas perduran durante más de 30 millones de años, tiempo durante el cual, sólo una pequeña fracción de su masa es convertida en estrellas. La Nebulosa Molecular Gigante más próxima a nosotros se encuentra en Orión, y está asociada a la Nebulosa de Orión que más arriba podéis ver con sus claros y llamativos colores rojo, azulado y el espeso marrón oscuro molecular, todo ello, adornado por estrellas que brillan ionizando extensas regiones con sus potentes radiaciones ultravioletas.
En estas Nebulosas se han detectado moléculas esenciales para la Vida
Arriba una imagen de NGC 7822 que se asemeja a una gran boca abierta llena de estrellas nuevas. Dentro de la nebulosa, bordes brillantes y formas oscuras se destacan en este paisaje colorido. Oxígeno atómico, hidrógeno y azufre en tonos azul, verde y rojo. Aquí se forman estrellas de manera continuada y van transformando el lugar con los fuertes vientos solares y la radiación de estrellas masivas. Con un diametro de 60 años-luz, la Nebulosa perdura en el espacio interestelar como si de un laboratorio natural se tratara, creando nuevos objetos y transformando la materia. Ahí se mezclan los gases Hidrógeno, Helio, Carbono, Nitrógeno, Oxígeno y otras pequeñas porciones de otros elementos que, forman moléculas que, a veces, alcanzar el nivel necesario para convertirse en los ladrillos necesarios para la vida.
Hermosa Nube Molecular en la Constelación de Cefeo donde ya se han creado cientos de miles de estrellas. Las Nebulosas son el producto residual de las estrellas gigantes y masivas cuando llegan al final de sus vidas y explotan en Súper-Novas, las capas exteriores de la estrella salen eyectadas hacia el espacio interestelar para formar la Nebulosa mientras que, la parte principal de la masa, implosiona, es decir, se contrae sobre sí misma bajo el peso de su propia masa para formar una estrella de neutrones o un agujero negro.
Más de 300 discos proto-planetarios – sistemas planetarios en formación
Descubren objetos de masa planetaria en Orión. Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple, en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.
… Y surgieron las membranas plasmáticas que…
Lo cierto es que es una maravilla que a partir de esa materia “inerte” la Naturaleza haga posible que evolucione hasta los pensamientos al llegar a formarse el protoplasma vivo que dará lugar a células replicantes que con el paso de miles millones de años se conforman en cerebros generadores de ideas y de consciencia. Y, a todo esto, el Carbono es el elemento que hace todo eso posible. No podemos olvidar la importancia que tiene el Carbono para la presencia de la Vida en nuestro planeta y, seguramente, en otros muchos también, y, ese elemento está abundantemente presente en esas Nebulosas moleculares gigantes.
Otra vez, como siempre me pasa, me desvío del tema principal, se ha cruzado una idea por mi mente y la sigo sin que caiga en la cuenta de que estaba en otros menesteres. A veces, cuando ocurren cosas así, uno se da cuenta de que muchas son las cosas que están relacionadas y, esas conexiones te llevan de lugar a otro sin sentir.
Aquí tenemos la Nube molecular de Orión que es como un motor precursor de la Vida. En un lugar llamado Universitán he podido leer que:
“La Nebulosa de Orión, también conocida como M42, es una de las nebulosas más brillantes y más famosos en el cielo. La formaciónde estrellas brillantes, nubes de gas y una región de estrellas jóvenes y calientes están en la foto izquierda en este mosaico marco de fuerte colorido, que incluye a la nebulosa M43 cerca del centro de la polvorienta y azulada nebulosa de reflexión NGC 1977. Situado en el borde de una gigantesca e invisible nube molecular compleja, los astrónomos han identificado lo que parecen ser numerosos sistemas solares bebé.
Orión es un zoológico cósmico, con discos protoplanetarios, enanas marrones, movimientos intensos y turbulentos de gas, y los efecto de foto-ionización de estrellas masivas cercanas, así como “balas” supersónicas -diez veces el diámetro de la órbita de Plutón y con átomos de hierro al rojo vivo de color azul brillante, que se cree que se han formado hace unos mil años de un hecho violento desconocido.
Más de 13 millones de años por lo menos en uno de los ámbitos de la vida pudo haber comenzado en nubes nebulares. Si se restringe a la Vía Láctea, que es de 13,6 mil millones de años, las combinaciones químicas primero habrían pasado miles de millones de años para convertirse en un organismo auto-replicante, con un genoma de ADN mucho antes de la existencia de la Tierra.”
El Universo nunca dejará de asombrarnos.
Emilio silvera V.