jueves, 26 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Física? ¡Una maravilla! Nos dice cómo funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).”

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.

 

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

 

 

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

 

 

 

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

 

 

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

 

Radiación de Cuerpo Negro

 

 

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

 

 

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

 

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

 

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

 

 

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

 

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

 

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

 

 

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro infinitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

 

 

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

¿Podría ser el Universo un Holograma?

 

También Gerardt Hooft es el autor de lo que han dado en llamar l principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor,  y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio  concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.

Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck  existe al menos un grado de libertad  (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:

S\le\frac{A}{4}

 

donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:

S\le \left( \frac{kc^3}{G\hbar} \right) \frac{A}{4} = k \frac{A}{4\ell_P^2}

donde:

Claro que esta… ¡Es otra Historia!

Emilio Silvera

Los secretos de la Naturaleza ¿Los podremos desvelar?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿Qué estará pasando por esa cabecita?

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo. Un conflicto fundamental caracteriza cada fase. Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior. Análogamente, el psiicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño. En un mes, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión, sin comprender que la pelota existe aunque no la vea. Al mes siguiente, esto resultará obvio para el niño.

 

Quinteto de Stephan

 

Los procesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.

Esta es la esencia de la dialéctica. Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio universo) pasan por una serie de estadios. Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas. La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio. Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.  Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado. Esta teoría se aplica también a las sociedades o culturas. Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII. Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas. Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a lo cualitativo: los campesinos tomaron las armas, tomaron París y asaltaron la Bastilla.

 

Las transiciones de fases pueden ser también asuntos bastante explosivos. Por ejemplo, pensemos en un río que ha sido represado. Tras la presa se forma rápidamente un embalse con agua a enorme presión. Puesto que es inestable, el embalse está en el falso vacío. El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado  de menor energía. Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

 

Resultado de imagen de La explosión atómica

 

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.  De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente. Esto se denomina desintegración radiactiva. Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E = mc2. Por supuesto, dicha liberación es una explosión atómica; ¡menuda transición de fase! De nefasto recuerdo por cierto.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas. En un libro llamado Pasajes, el autor, Gail Sheehy, destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

 

Fábricas de estrellas en el Universo lejano

 

Los contornos recubiertos muestran la estructura de la galaxia al ser reconstruida desde las observaciones hechas bajo el fenómeno de lente gravitatorio con el radiotelescopio Submillimeter Array. La formación de nuevas estrellas en el Universo es imparable y, la materia más sencilla se constituye en una estructura que la transformará en más compleja, más activa, más dispuesta para que, la vida, también pueda surgir en mundos ignotos situados muy lejos del nuestro.

 

Sí, todo cambia y nada permanece: transiciones de fases hacia la complejidad

 

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado. Aquí existe simetría. Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.  Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría. Supongamos ahora que el primer comensal toma la copa que hay a su derecha. Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha. Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.  Cada comensal ha tomado la copa izquierda. De este modo, la simetría izquierda-derecha se ha roto.

 

Resultado de imagen de El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda.

 

El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda. ¡La simetría especular…! Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

 

Cadena pp

 En las estrellas se tiene que producir el proceso triple alfa para que exista el Carbono

 

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el hornotermonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como  el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante la conocida fórmula E = mc2. Esta es la fuente de energía que también subyace en la bomba atómica. Es decir, convertir materia en energía.

 

 

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puedo vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución y poder contarlo.

 

Resultado de imagen de Hay cosas que, cambiando... ¡Nunca cambian! La entropía se encarga de ello

Hay cosas que,… ¡Nunca cambian! Son las constantes universales

 

Pero volviendo a las cosas de la Naturaleza y de la larga vida de las estrellas, sí, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol. Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar, la estrella más cercana a la Tierra (150 millones de Km =  1 UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años, y, como todo en el Universo, su discurrir la va desgastando, evoluciona hacia su imparable destino como gigante roja primero y enana blanca después.

 

El Sol, como gigante roja, engulle a Mercurio

 

Cuando ese momento llegue, ¿dónde estaremos? Pues nosotros, si es que para entonces estamos por aquí,  contemplaremos el acontecimiento desde otros mundos. La Humanidad habrá dado el gran salto hacia las estrellas y, colonizando otros planetas se habrá extendido por regiones lejanas de la Galaxia.

El Universo siempre nos pareció inmenso, y, al principio, aquellos que empezaron a preguntarse cómo sería, lo imaginaron como una esfera cristalina que dentro contenía unos pocos mundos y algunas estrellas, hoy, hemos llegado a saber un poco más sobre él. Sin embargo, dentro de unos cuantos siglos, los que detrás de nosotros llegaran, hablarán de universos en plural, y, cuando pasen algunos eones, estaremos de visita de un universo a otro como ahora vamos de una ciudad a otra.

¡Quién pudiera estar allí!

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

 

 Todo lo grande está hecho de cosas pequeñas

 

Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros.

Esta ecuación nos habla de lo que se conoce como masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!).

Esto significa que tratamos de localizar una partícula con la precisión de una Longitud de Planck,  las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck,  y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Lo cierto es que, esas unidades tan pequeñas, tan lejanas en las distancias más allá de los átomos, son las que marcan nuestros límites, los límites de nuestras teorías actuales que, mientras que no puedan llegar a esas distancias… No podrán avanzar en el conocimiento de la Naturaleza y, tampoco, como es natural, en la teoría de supercuerdas o en poder saber, lo que pasó en el primer momento del supuesto big bang, hasta esos lugares, nunca hemos podido llegar.

Emilio Silvera

Siempre buscando la realidad de las cosas

Autor por Emilio Silvera    ~    Archivo Clasificado en La justa medida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                   

 

                                               

 

¿Os acordais de la Mars Climater Orbiter? Allá por el mes de Septiembre de 1998, la NASA preparaba a bombo y platillo la gran noticia que sacudiría el “mundo”  de Prensa con una gran noticia. En breve (dijeron), saldría para el planeta Marte la nueva misión comocida como la Mars Climater Orbiter, diseñada para estudiar la atmósfera superior de Marte y, estaba acondicionada para poder enviarnos datos importantes sobre el clima y la atmósfera marciana. En lugar de ello, simplemente se estrelló contra la superficie del planeta.

 

                                                                                 

 

La distancia entre la nave espacial y la superficie del planeta Marte era de 96,6 kilómetros inferior de lo que pensaban los controladores de la misión, y 125 millones de dolares desaparecieron en el rojo polvo de la superficie Marte. La pérdida ya era suficientemente desastrosa, pero aún, hubo que morder más el polvo cuando se descubrió la causa: Lockheed-Martin, la empresa que controlaba el funcionamiento diario de la nave espacial, estaba enviando datos al control de la misión en unidades imperiales -millas, pies y libras de fuerza- mientras que el equipo de investigación de la NASA estaba suponiendo, como el resto del mundo científico internacional, que recibián las instrucciones en unidades métricas. La diferencia entre millas y kilómetros fue lo suficiente para desviar la nave unas 60 millas el curso previsto y llevarla a una órbita suicida hacia la suprficie marciana, en la que quedó chafada e inservible dando al traste, no ya con el dinero (que también) sino  con un montón de ilusionados componentes del equipo que esperaban grandes acontecimientos del Proyecto.

La lección que podemos obtener de esta catástrofe está muy clara:  ¡Las Unidades de medida son importantes!

                                                                                Resultado de imagen de Medidas de peso

El peso es una unidad de medida. Medir es comparar. La unidad de medida de la masa o peso es el gramo y se escribe g. Sus múltiplos son: decagramo(dag), hectogramo(hg), kilogramo(kg) y submúltiplos decigramo(dg), centigramo(cg) y miligramo(mg).

 

   

                               Rústica unidades de medida de líquidos

 

Nuestros predecesores nos han  legado incontables unidades de medida de uso cotidiano que tendemos a utilizar en situaciones diferentes por razones de conveniencia. Compramos huevos por docenas, pujamos en la subasta en guineas, medimos las carreras de caballos en estadios, las profundidades oceánicas en brazas, el trigo en fanegas, el petróleo en barriles, la vida en años y el peso de las piedras preciosas en quilates. Las explicaciones de todos los patrones de medida existentes en el pasado y en el presente llenan cientos de volúmenes.

 

 

 

Todo era plenamente satisfactorio mientras el comercio era local y sencillo. Pero cuando se inició el comercio internacional en tiempos antiguos, se empezaron a encontrar otras formas e contar. Las cantidades se median de forma diferente de un pais a otro y se necesitaban factores de conversión, igual que hoy cambiamos la moneda cuando viajamos al extranjero a un pais no comunitario. Esto cobró mayor importancia una vez que se inició la colaboración internacional de proyectos técnicos. La Ingenieria de precisión requiere una intercomparación de patrones exacta. Está muy bien decir a tus colaboradores en el otro lado del mundo que tienen que fabricar un componente de un avión que sea exactamente de un metro de longitud, pero ¿cómo sabes que su metro es el mismo que el tuyo?

 

 

  No todas las medidas se regían por los mismos patrones

 

En origen, los patrones de medidas eran completamente locales y antropométricos. Las longitudes se derivaban de la longitud del brazo del rey o de la palma de la mano. Las distancias reflejaban el recorrido de un día de viaje. El Tiempo seguía las variaciones astronómicas de la Tierra y la Luna. Los pesos eran cantidades convenientes que podían llevarse en la mano o a la espalda.

 

   

 

Muchas de esas medidas fueron sabiamente escogidas y aún siguen con nostros hoy a pesar de la ubicuidad oficial del sistema decimal. Ninguna es sacrosanta. Cada una está diseñada por conveniencia en circunstancias concretas.Muchas medidas de distancia se derivan antropomórficamente de las dimensiones de la anatomía humana:

El “pie” es la unidad más obvia dentro de esta categoría. Otras ya no resultan tan familiares. La “yarda” era la longitud de una cinta tendida desde la punta de la nariz de un hombre a la punta del dedo más lejano de su brazo cuando se extendía horizontalmente hacia un lado. El “codo” era la distancia del codo de un hombre a la punta del dedo más lejano de su mano estirada, y varía entre los 44 y los 64 cm (unas 17 y 25 pulgadas) en las diferentes culturas antiguas que lo utilizaban.

 

 

 

La unidad náutica de longitud, la “braza” era la mayor unidad de distancia definida a partir de la anatomía humana, y se definía como la máxima distancia entre las puntas de los dedos de un hombre con los brazos abiertos en cruz.

El movimiento de Mercaderes y Comerciantes por la región mediterránea en tiempos antiguos habría puesto de manifiesto las diferentes medidas de una misma distancia anatómica. Esto habría hecho difícil mantener cualquier conjunto único de unidades. Pero la tradición y los hábitos nacionales era una poderosa fuerza que se resistía a la adopción de patrones extranjeros.

El problema más evidente de tales unidades es la existencia de hombres y mujeres de diferentes tamaños. ¿A quién se mide como patrón? El rey o la reina son los candidatos obvios. Claro que, había que recalibrar cada vez que, el titular del trono cambiaba por diversos motivos.

  http://www.culturaclasica.com/cultura/statera.jpg

La depuración de patrones de  medidas comenzó de forma decisiva en Francia en la época de la Revolución Francesa, a finales del siglo XVIII. La introducción de nuevos pesos y medidas conlleva una cierta comvulsión en la Sociedad y raramente es recibida con entusiamo por el pueblo.  Así, dos años más tarde, se introdujo el “metro” como patrón de longitud, definido como la diezmillonésima parte de un cuadrante de meridiano terrestre. Aunque esta es una forma plausible de identificar un patrón de longitud, es evidente que no resulta práctica a efectos de comparación cotidiana. Consecuentemente, en 1795 las unidades fueron referidas directamente a objetos hechos de forma especial.

 

 

Siempre hemos tratado de medirlo todo, hasta las distancias que nos separan de las estrellas.

 

Sí, siempre hemos tenido que medirlo todo. Al principio, como unidad de masa se tomó el gramo, definido como la masa de un centímetro cúbico de agua a cero grados centígrados. Más tarde fue sustituido por el kilogramo (mil gramos), definido como la masa de mil centímetos cúbicos de agua… Finalmente, en 1799 se construyó una barra de metro prototipo junto con una masa kilogramo patrón, que fueron depositadas en los Archivos de la nueva República Francesa. Incluso hoy, la masa kilogramo de referencia se conoce como el “Kilogramme des Archives”.

Contar la historia aquí de todas las vicisitudes por las que han pasado los patrones de pesos y medidas en todos los paises, sería demasiado largo y hasta tedioso. Sabemos que en Francia, en 1870, cuando se creo y reunió por primera vez en Paris la Comisión Internacional del Metro, con el fin de coordinar los patrones y supervisar la construcción de nuevas masas y longitudes patrón. El Kilogramo era la masa de un cilindro especial, de 39 milímetros de altura y de diámetro, hecho de una aleación de platino e iridio, protegido bajo tres campanas de cristal y guardado en una cámara de la Oficina Internacional de Patrones en Sèvres, cerca de Paris. Su definición es simple:

 

 

El kilogrtamo es la unidad de masa: es igual a la masa del prototipo internacional del kilogramo.

Esta tendencia hacia la estándarización vio el establecimiento de unidades científicas de medidas. Como resultado medimos habitualmente las longitudes, masas y tiempos en múltiplos de metro, kilográmo y segundos. Cada unidad da una cantidad familiar fácil de imaginar: un metro de tela, un kilogramo de patatas. esta conveniencia de tamaño testimonia inmediatamente su pedigrí antropocéntrico. Pero sus ventajas también se hacen patentes cuando empezamos a utilizar dichas unidades para describir cantidades que corresponden a una escala superior o inferior a la humana:

 

 

Los átomos son diez millones de veces más pequeños que un metro. El Sol tiene una masa de más de 1030 kilogramos. Y, de esa manera, los humanos hemos ido avanzando en la creación, ideando patrones para todo y, no digamos en la medida de las distancias astronómicas en las que, el año-luz, la Unidad Astronómica, el Parsec, el Kiloparsec o el Megaparsec nos permiten medir las distancias de galaxias muy lejanas.

 

 

Lo que decimos siempre: Nuestra curiosidad nunca dejará de querer saber el por qué de las cosas y, siempre tratará de racionalizarlo todo para hacernos fácil nuestras interacciones con el mundo que nos rodea. Y, aunque algunas cosas al principio nos puedan parecer mágicas e ilusorias, finalmente, si nuestras mentes la pensaron… ¡Pueden llegar a convertirse en realidad!

Emilio Silvera

El fino equilibrio que permite la presencia de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad.  En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

 

 

Hasta el momento sólo sabemos de la vida en la Tierra.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar.  Poco a poco hemos llegado a apreciar cuán precaria es.  Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas.  Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Era del Mesozoico: todo lo que debes saber | Meteorología en Red

Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron.  Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo.  Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos.  Se desarrollo la diversidad una vez desaparecidos los grandes depredadores.  Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que, hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros.  Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

 

 

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

 

 

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

 

Creo que la clave está en  los compuestos del carbono, toda la vida terrestre actualmente conocida exige también el Agua como disolvente. Y como para el carbono, se supone a veces que el agua es el único producto químico conveniente para cumplir este papel. El amoníaco (el nitruro de hidrógeno) es la alternativa ciertamente al agua, la más generalmente posible propuesta como disolvente bioquímico. Numerosas reacciones químicas son posibles en disolución en el amoníaco, y el amoníaco líquido tiene algunas semejanzas químicas con el agua. El amoníaco puede disolver la mayoría de las moléculas orgánicas al menos así como el agua, y por otro lado es capaz de disolver muchos metales elementales. A partir de este conjunto de propiedades químicas, se teorizó que las formas de vida basada en el amoníaco podrían ser posibles. También se dijo del Silicio. Sin embargo, ninguno de esos elementos son tan propicios para la vida como el Carbono y tienen, como ya sabemos, parámetros negativos que no permiten la vida tal como la conocemos.

 

 

Hasta el momento, todas las formas de vida descubiertas en la Tierra, están basadas en el Carbono.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que a su vez forman agregados moleculares y éstos los diversos organelos celulares. Los elementos constitutivos de las biomoléculas más importantes son:
  • C: Carbono
  • H: Hidrógeno
  • O: Oxígeno
  • N: Nitrógeno
También son importantes los siguientes:
  • P: Fósforo
  • Fe: Hierro
  • S: Azufre
  • Ca: Calcio
  • I: Yodo
  • Na: Sodio
  • K: Potasio
  • Cl: Cloro
  • Mg: Magnesio
  • F: Flúor
  • Cu: Cobre
  • Zn: Zinc
Las biomoléculas pertenecen a cuatro grupos principales denominados:
  1. Glúcidos o Hidratos de Carbono
  2. Lípidos
  3. Proteínas
  4. Ácidos Nucleicos

El el gráfico de arriba  están resumidas sus funciones.

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Leer no mata | La lectura te lleva a mundos inimaginables, ¡Atrévete a entrar!mundos magicos de hadas - Buscar con Google | Illustration, Fantasy, Fantasy art

Magia al leer | DomestikaLa magia de leer, cómo y para qué transmitirla a nuestros hijos | UNO Internacional

Sí, imaginamos demasiado pero… ¿Qué hay más poderoso que la imaginación?

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

La mecánica cuántica - YouTubeEl problema de la medida en mecánica cuántica - Vega 0.0

ELECTROMAGNETISMO - Definición - SignificadoCalaméo - La Gravedad

Constante de Estructura Fina | StargazerUna enana blanca para estudiar la constante de estructura fina | Ciencia en sí misma

¿Cuántos secretos están en esos números escondidos? La mecánica cuántica (h), la relatividad (c), el electromagnetismo (e), Gravedad G. Todo eso está ahí escondido. El número 137 es un número puro y adimensional, nos habla de la constante de estructura fina alfa (α), y, el día que sepamos desentrañar todos sus mensajes… ¡Ese día sabremos!

 

  Extraños mundos que pudieran ser

 

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

 

 

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”  – Dirac

 

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

 

 

Ahora, cuando miramos el Universo, comprendemos, en parte, lo que ahí está presente.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por Mde espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

 

 

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más.

Estructura del átomo y características - ¡¡RESUMEN FÁCIL!!Logotipo molecular química adn molécula estructura científica átomo negocio marca vector concepto | Vector Premium

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina a, que es aproximadamente 1/137.  Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar.  Incrementemos b demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (aF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  a> 0,3 a½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros.  Por el contrario, si adecreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:

 

 

Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.

Como podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?

 

La vida en el universo | Investigación y Ciencia | Investigación y CienciaY si solo puede haber vida en nuestra región de Universo?

La Astrobiología. Un viaje al origen de la vida en el Universo | Cultura con C de Cosmos C³Bloques básicos de construcción de moléculas biológicas | Khan Academy en Español - YouTube

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más natural en el universo y estará presente en miles de millones de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.

Emilio Silvera

El Tiempo que transcurre inexorable

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La Tumba de Hilbert

En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:

Debemos saberSabremos.

Estoy totalmente de acuerdo con ello. El ser humano está dotado de un resorte interior, algo en su mente que llamamos curiosidad y que nos empuja (sin que en muchas ocasiones pensemos en el enorme esfuerzo y en el alto precio que pagamos) a buscar respuestas, a querer saber el por qué de las cosas, a saber por qué la naturaleza se comporta de una u otra manera y, sobre todo, siempre nos llamó la atención aquellos problemas que nos llevan a buscar nuestro origen en el origen mismo del universo y, como nuestra ambición de saber no tiene límites, antes de saber de dónde venimos, ya nos estamos preguntando hacia dónde vamos. Nuestra osadía no tiene barreras y, desde luego, nuestro pensamiento tampoco las tiene, gracias a lo cual, estamos en un estadio de conocimiento que a principios del siglo XXI, se podría calificar de bastante aceptable para dar el salto hacia objetivos más valiosos.

Es mucho lo que hemos avanzado en los últimos ciento cincuenta años.  El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.

Resultado de imagen de La tecnología del siglo XX!

El crecimiento es exponencial; cuanto más sabemos más rápidamente avanzamos. Compramos ordenadores, teléfonos móviles, telescopios y microscopios electrónicos y cualesquiera otros ingenios e instrumentos que, a los pocos meses, se han quedado anticuados, otros nuevos ingenios mucho más avanzados y más pequeños y con muchas más prestaciones vienen a destituirlos.

¿Hasta dónde podremos llegar?

Con el tiempo suficiente por delante… no tenemos límite. Todo lo que la mente humana pueda idear… podrá hacerlo realidad. A excepción, claro está, de las imposibilidades físicas que, en este momento, no tenemos la capacidad intelectual para enumerar. La verdad es que nuestra especie es inmortal. Sí, lo sé, a nivel individual morimos pero…, debemos tener un horizonte más amplio y evaluar una realidad más global y, sobre todo, a más largo plazo. Todos dejamos aquí nuestro granito de arena, lo que conseguimos no se pierde y nuestras antorchas son tomadas por aquellos que nos siguen para continuar el trabajo emprendido, ampliar los conocimientos, perfeccionar nuestros logros y pasar a la fase siguiente.

Resultado de imagen de Adelantos del futuro

Este es un punto de vista que nos hace inmortales e invencibles, nada podrá parar el avance de nuestra especie, a excepción de nuestra especie misma.

Ninguna duda podemos albergar sobre el hecho irrefutable de que venimos de las estrellas* y de que nuestro destino, también está en las estrellas.**

La humanidad necesita más energía para continuar avanzando. Los recursos naturales fósiles, como el petróleo, el gas o el carbón, son cada vez más escasos y difíciles de conseguir. Se ha llegado a un punto en el que se deben conseguir otras energías.

Imagen relacionada

Dentro de unos treinta años estaremos en el camino correcto. La energía de fusión sería una realidad que estará en plena expansión de un comenzar floreciente. Sin residuos nocivos peligrosos como las radiaciones de la fisión nuclear, la fusión nos dará energía limpia y barata en base a una materia prima muy abundante en el planeta Tierra.

Nuestro Sol fusiona hidrogeno en helio a razón de 4.654.000 toneladas por segundo. De esta enorme cantidad de hidrógeno, 4.650.000 toneladas se convierten en helio. Las 4.000 toneladas restantes son lanzadas al espacio en forma de luz y calor, energía termonuclear de la que, una parte, llega al planeta Tierra y hace posible la vida.

Resulta pues que el combustible nuclear de las estrellas es el hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía.  Así lleva el Sol unos 4.500 millones de años y se espera que al menos durante un período similar nos esté regalando su luz y su calor.

Los 5 océanos de la Tierra | LaReserva.comOcéanos del mundo: características e importancia | Océanos del mundo, Masas de agua, Imágenes

Un Inmenso Océano Energético Llamado Vida | Gran Hermandad BlancaAlguna vez vieron al mar de esta forma? – Nuestroclima

Pero ¿tenemos hidrógeno en el planeta Tierra para tal empresa de fusión nuclear? Todo el que nos ofrecen los océanos

La verdad es que sí. La fuente de suministro de hidrógeno con la que podemos contar es prácticamente inagotable…

¡El agua de los mares y de los océanos!

Todos sabemos que el hidrógeno es el elemento más ligero y abundante del universo. Está presente en el agua y en todos los compuestos orgánicos.  Químicamente, el hidrógeno reacciona con la mayoría de los elementos.  Fue descubierto por Henry Cavendisch en 1.776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales, el refinado del petróleo, la producción de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme para su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrólisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.

Resultado de imagen de El Hidrógeno es la materia prima del Universo

Bueno, tantas explicaciones sólo tienen como objeto hacer notar la enorme importancia del hidrógeno. Es la materia prima del universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin ese preciado elemento.

Cuando dos moléculas de hidrógeno se junta con una de oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.

Así las cosas, parece lógico pensar que conforme a todo lo antes dicho, los seres humanos deberán fijarse en los procesos naturales (en este caso el Sol y su producción de energía) y, teniendo como tiene a su disposición la materia prima (el hidrógeno de los océanos), procurar investigar y construir las máquinas que sean necesarias para conseguir la fusión, la energía del Sol.

Neal Welch and Bill DeWitt Faculty Advisor: Philip T. McCreanor, Ph.D. Abstract Building a “Star in a Jar” Conclusion and PlNeal Welch and Bill DeWitt Faculty Advisor: Philip T. McCreanor, Ph.D. Abstract Building a “Star in a Jar” Conclusion and PlNeal Welch and Bill DeWitt Faculty Advisor: Philip T. McCreanor, Ph.D. Abstract Building a “Star in a Jar” Conclusion and Pl

Esa empresa está ya en marcha y, como he dicho al principio de este comentario, posiblemente en unos treinta años sería una realidad que nos dará nuevas perspectivas para continuar el imparable avance en el que estamos inmersos.

Pero no me gustaría cerrar este comentario sobre la fusión sin contestar a una importante pregunta…

¿Y por qué la fusión?

Porque tiene una serie de ventajas muy significativas en seguridad, funcionamiento, medio ambiente, facilidad en conseguir su materia prima, ausencia de residuos peligrosos, posibilidad de reciclar los escasos residuos que genere, etc.

Resultado de imagen de Centrales de energía de fusión nuclearTokamak - Wikipedia, la enciclopedia libreEl ITER: arranca el gran reactor que intentará demostrar que la fusión nuclear es rentableAsorCAD participa en el proyecto ITER con su tecnología 3D -

Esquema de un reactor nuclear de fusión tipo Tokamak, como ITER

  • Los recursos combustibles básicos (deuterio y litio) para la fusión son abundantes y fáciles de obtener.
  • Los residuos son de helio, no radiactivos.
  • El combustible intermedio, tritio, se produce del litio.
  • Las centrales eléctricas de fusión no estarán expuestas a peligrosos accidentes como las centrales nucleares de fisión.
  • Con una elección adecuada de los materiales para el propio dispositivo de fusión, sus residuos no serán ninguna carga para las generaciones futuras.
  • La fuente de energía de fusión es sostenible, inagotable e independiente de las condiciones climáticas.

sun_diagram

Para producir la energía de fusión sólo tenemos que copiar lo que hace el Sol. Tenemos que hacer chocar átomos ligeros de hidrógeno para que se fusionen entre sí a una temperatura de 15 millones de grados Celsius, lo que, en condiciones de altas presiones (como ocurre en el núcleo del Sol) produce enormes energías según la formula E = mc2 que nos legó Einstein demostrando la igualdad de la masa y la energía.

Ese estado de la materia que se consigue a tan altas temperaturas, es el plasma, y sólo en ese estado se puede conseguir la fusión.

Aunque en Europa la aventura ya ha comenzado, y para ello se han unido los esfuerzos económicos de varias naciones, la empresa de dominar la fusión no es nada fácil, pero…, démosle…

https://lamentiraestaahifuera.files.wordpress.com/2011/12/sunelements.png

Siempre será la Naturaleza la que nos indique el camino a seguir. En las estrellas se “fabrican” los elementos mediante la fusión nuclear, los elementos sencillos se han cada vez más complejos a medida que avanza el proceso y, finalmente, son las explosiones supernovas las que nos traen los elementos más complejos como el Uranio, el nº 92 de la Tabla Periódica.

¡TIEMPO!

Sí, es el tiempo el factor que juega a nuestro favor para conseguir nuestros logros más difíciles, para poder responder preguntas de las que hoy no tenemos respuesta, y es precisamente la sabiduría que adquirimos con el paso del tiempo la que nos posibilita para hacer nuevas preguntas, más profundas que las anteriores y que antes, por ignorancia, no podríamos hacer.  Cada nuevo conocimiento nos abre una puerta que nos invita a entrar en una nueva región donde encontramos otras puertas cerradas que tendremos que abrir para continuar nuestro camino. Sin embargo, hasta ahora, con el “tiempo” suficiente para ello, hemos podido franquearlas hasta llegar al momento presente en el que estamos ante puertas cerradas con letreros en los que se puede leer: fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, otros universos, materia oscura, y otras dimensiones.

A puerta cerrada: el trabajo creativo requiere silencioA puerta cerrada: el trabajo creativo requiere silencioJulio Verne #julioverne #Fernandovicente #yomequedoencasa | Arte cerebro, Ilustración del cerebro, Julio verne

       Siempre estaremos delante de puertas cerradas de las que no tenemos la llave, sin saber a donde ir, carentes de nuevas ideas, necesitados de nuevos indicios que nos lleven hacia ese futuro que presentimos.

Todas esas puertas y muchas más nos quedan por abrir. Además, tenemos ante nuestras narices puertas cerradas que llevan puesto el nombre de: genética, nanotecnología, nuevos fármacos, alargamiento de la vida media, y  muchas más en otras ramas de la ciencia y del saber humano.

Aunque es mucho lo que se ha especulado sobre el tema, en realidad, el tiempo sólo transcurre (que sepamos) en una dirección, hacia delante. Nunca ha ocurrido que unos hechos, que unos sucesos, se pudieran borrar, ya que para ello habría que volver en el tiempo anterior al suceso para evitar que sucedieran. Está claro que en nuestro universo, el tiempo sólo transcurre hacia lo que llamamos futuro.

Imagen relacionadaResultado de imagen de La rotación de la Tierra disminuye por las fuerzas de mareas

Siempre encontramos las huellas del paso del tiempo, aparecen sutiles efectos que delata el sentido del paso del tiempo, aunque es algo que no se puede ver ni tocar, su paso se deja sentir, lo nuevo lo va convirtiendo en viejo, con su transcurrir, las cosas cambian. La misma Tierra, debido a las fuerzas de marea, con el paso del tiempo va disminuyendo muy lentamente su rotación alrededor de su eje (el día se alarga) y la distancia media entre la Tierra y la Luna crece. El movimiento de un péndulo, con el tiempo disminuye lentamente en su amplitud por las fuerzas de rozamiento. Siempre está presente ese fino efecto delator del sentido del paso del tiempo que va creando entropía destructora de los sistemas que ven desaparecer su energía y cómo el caos lo invade todo.

Nos podríamos hacer tantas preguntas sobre las múltiples vertientes en que se ramifica el tiempo que, seguramente, este libro sería insuficiente para poder contestarlas todas (de muchas no sabríamos la respuesta).

Resultado de imagen de El Tiempo rige nuestras vidasResultado de imagen de La misma persona con 25 y 60 años

                                         El Tiempo pasa, o, ¿En realidad pasamos nosotros?

  • ¿Por qué consideramos que el Tiempo rige nuestras vidas?
  • ¿Cómo explicarías “qué es el Tiempo”?
  • ¿Por qué unas veces te parece que el Tiempo “pasa rápido” y otras veces “muy lento”?
  • ¿Crees que el Tiempo estaba allí antes del Big Bang? ¿Por qué?
  • ¿En algún momento se acabará el Tiempo?
  • ¿Cómo el ser humano “fue consciente” de la existencia del Tiempo?
  • ¿Qué cosa es el Tiempo?
  • ¿Por qué no lo vemos ni tocamos pero notamos sus efectos?
  • ¿Por qué la velocidad relativista puede frenar el transcurrir del Tiempo?

Resultado de imagen de Nuestro sistema solar

En realidad, si nos detenemos a pensar detenidamente y en profundidad en el entorno en que nos encontramos, una colonia de seres insignificantes, pobladores de un insignificante planeta, de un sistema solar dependiente de una estrella mediana, amarilla, del tipo G-2, nada especial y situada en un extremo de un brazo espiral, en la periferia (los suburbios del Sistema Solar) de una de entre miles de millones de galaxias… si pensamos en esa inmensidad, entonces caeremos en la cuenta de que no somos tan importantes, y el tiempo que se nos permite estar aquí es un auténtico regalo. Ese tiempo, corto espacio de tiempo en relación al tiempo cosmológico, es por cierto un espacio suficiente para nacer, crecer, aprender, dejar huella de nuestro paso por este mundo a través de nuestros hijos y a veces (si somos elegidos) por nuestro trabajo, tendremos la oportunidad (casi siempre breve) de ser felices y muchas oportunidades para el sacrificio y el sufrimiento, y así irán pasando nuestras vidas para dejar paso a otras que, al igual que nosotros, continuaran el camino iniciado en aquellas cuevas remotas del pasado, cuando huyendo del frío y de los animales salvajes, nos refugiábamos en las montañas buscando cobijo y calor.

De qué estás hecho? 73% del cuerpo humano proviene de la explosión de estrellas masivas | RPP Noticias

El Observatorio Chandra  de Rayos X de la NASA  publicó una imagen del origen de los elementos químicos. De hecho, cerca del 99% de nuestro cuerpo está hecho de cuatro elementos químicos: Carbono, Hidrógeno, Oxígeno y Nitrógeno. El resto son pequeñas trazas de otros elementos. Esencialmente somos seres hechos de agua.


* El material de que estamos hechos se formó hace miles de millones de años en estrellas lejanas que explotaron en supernovas y dejaron el espacio regado de la materia que somos.

** El final del Sol, dentro de 4.000 millones de años, nos obligará a que antes tengamos que emigrar a otros mundos lejanos.

Emilio Silvera