Mar
4
El límite de la información está dado por las constantes de la...
por Emilio Silvera ~ Clasificado en Sin categoría ~ Comments (5)
Einstein hizo más que cualquier otro científico por crear la imagen moderna de las leyes de la Naturaleza. Desempeñó un papel principal en la creación de la perspectiva correcta sobre el carácter atómico y cuántico del mundo material a pequeña escala, demostró que la velocidad de la luz introducía una relatividad en la visión del espacio de cada observador, y encontró por sí solo la Teoría de la Gravedad que sustituyó la imagen clásica creada por Isaac Newton más de dos siglos antes que él.
Su famosa fórmula de E = mc2 es una fórmula milagrosa, es lo que los físicos definen como la auténtica belleza. Decir mucho con pocos signos y, desde luego, nunca ningún físico dijo tanto con tan poco. En esa reducida expresión de E = mc2, está contenido uno de los mensajes de mayor calado del universo: masa y energía, son la misma cosa.
Einstein siempre estuvo fascinado por el hecho de que algunas cosas deben parecer siempre iguales, independientemente de cómo se mueva el que las ve, como la luz en el vacío, c.
Él nos dijo el límite con que podríamos recibir información en el universo, la velocidad de c.
Él reveló todo el alcance de lo que Stoney y Planck simplemente habían supuesto: que la velocidad de la luz era una constante sobrehumana fundamental de la naturaleza. También sabía el maestro que, en el proceso de nuevas teorías, la búsqueda de la teoría final que incluyera a otras fuerzas de la naturaleza distintas de la Gravedad, daría lugar a teorías nuevas y cada vez mejores que irían sustituyendo a las antiguas teorías.
Buscaba la Teoría con la que explicar todo el Universo, sus ecuaciones se exponían en un escaparate de la Quinta Avenida de Nueva York, la gente se apelotonaba para verlas asombrados sin entender nada.
De hecho, él mismo la buscó durante los 20 últimos años de su vida pero, desgraciadamente, sin éxito. Ahora se ha llegado a la teoría de supercuerdas que sólo funciona en 10. 11 y 26 dimensiones y es la teoría más prometedora para ser la candidata a esa teoría final de la que hablan los físicos. La Teoría es tan adelantada que no tenemos medio para poder verificarla, y, dicen que se necesitaría la energía de Planck (1019 GeV) para poder examinarla, y, esa es la energía de la creación que no puede estar en nuestros pobres dominios.
El físico espera que las constantes de la naturaleza respondan en términos de números puros que pueda ser calculado con tanta precisión como uno quiera. En ese sentido se lo expresó Einstein a su amiga Ilse Rosenthal-Schneider, interesada en la ciencia y muy amiga de Planck y Einstein en la juventud.
Mar
4
¿Es igual el Universo en todas partes?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (3)
La curiosidad siempre nos ha empujado a querer asomarnos al lugar del suceso, sin pensar en los posibles riesgos, los testigos del acontecimiento se acercan al lugar.
En libros de Ciencia Ficción, no pocas veces hemos leído sobre una nave extraterrestre que cae en la Tierra. La escena que describen era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡
“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él, recogía muestras de aquella extraña nave caída y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.
Veamos los materiales más densos del Universo:
El Iridio tiene una Densidad de 22.560 Kg/m3 . Es decir, es más denso que el núcleo terrestre que pesa 13.000 Kgs/m3.
Osmio que tiene una Densidad de 22.570 Kgs/m3 . Es posiblemente el metal más denso del Universo y se utiliza en aleaciones con el Platino.
Densidad de 40.700 Kgs/m3 . No es un elemento Natural
El Núcleo del Sol tiene una Densidad de 150.000 Kgs/m3 . Es la densidad media del núcleo estelar. Sin embargo, a partir de aquí, las cosas parecen de Ciencia Ficción.
Densidad de una Enana Blanca es de 10.000.000.000 kg/m3. El satélite GAIA de la ESA, pudo comprobar por primera vez como se solidifica (o cristaliza) una estrella como el Sol al final de su vida, cuando se convierte en Gigante roja primero y enana blanca después. La enana blanca es 66.000 veces más densa que el Sol.
El punto blanco del centro de la Nebulosa planetaria es la enana blanca que radia en ultravioleta e ioniza el material de la Nebulosa. A este final se llega debido al Principio de exclusión de Pauli.
“Los productos de las reacciones nucleares de fusión que tuvieron lugar durante las etapas previas en la vida de la estrella) junto a trazas de otros elementos químicos, como los isótopos 22Ne (neón), 25Mg (magnesio) y 54Fe (hierro). Las enanas blancas tienen una masa similar a la del Sol, pero un tamaño equiparable al de la Tierra. Su densidad alcanza valores formidables, del orden de una tonelada por centímetro cúbico.”“Su densidad es tan alta que si llenáramos una botella de 1 litro con el material de su corteza y la trajéramos a la Tierra, esa botella pesaría tanto como 71 millones de ballenas azules. En cambio, una botella llena de osmio, el elemento más denso de la tabla periódica, «sólo» pesaría 22,3 kilos.”“Una estrella de neutrones puede contener 500 000 veces la masa de la Tierra en una esfera de un diámetro de una decena de kilómetros.”“Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares,123a con un radio correspondiente aproximado de 12 km.4b En cambio, el radio del Sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol),c comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.5 La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m³ en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m³ aún más adentro (más denso que un núcleo atómico).6 Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.”“!Una estrella de neutrones es un tipo de remanente estelar resultante del colapso gravitacional de una estrella supergigante masiva después de agotar el combustible en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. Las estrellas de neutrones son muy calientes y se apoyan en contra de un mayor colapso mediante presión de degeneración cuántica, debido al fenómeno descrito por el principio de exclusión de Pauli. Este principio establece que dos neutrones (o cualquier otra partícula fermiónica) no pueden ocupar el mismo espacio y estado cuántico simultáneamente.”
Plasma de quarks: 10^19 kg/m3
“Seguimos con cosas increíbles. Y a partir de ahora son tan asombrosas que su presencia de forma natural no se ha observado. Empecemos esta nueva etapa con el conocido como “plasma de quarks”. Se trata de un estado de la materia que se cree que era la forma en la que se encontraba el Universo apenas unos milisegundos después del Big Bang.Todo lo que daría lugar al Cosmos estaba contenido en este plasma asombrosamente denso. Su posible existencia en los orígenes del Universo se demostró cuando, en 2011, científicos del Gran Colisionador de Hadrones consiguieron crear la sustancia en cuestión haciendo colisionar (valga la redundancia) átomos de plomo entre ellos a la (casi) velocidad de la luz.”“Llegamos a la densidad de Planck. La partícula de Planck es una hipotética partícula subatómica que se define como un agujero negro en miniatura. Y muy miniatura. Para entenderlo “fácilmente”, imaginemos esta partícula como un protón, pero 13 millones de cuatrillones de veces más pesada y varios trillones de veces más pequeña.”Partícula de Planck: 10^96 kg/m3
Y como un agujero negro es un punto del espacio en el que la densidad es tan alta que genera una gravedad de la que ni siquiera la luz puede escapar, de ahí que digamos que una partícula de Planck es un “agujero negro en miniatura”.
“El agujero negro es el objeto más denso del Universo. Y nunca nada le quitará este trono porque, básicamente, las leyes de la física impiden que haya algo más denso. Un agujero negro es una singularidad en el espacio, es decir, un punto de infinita masa sin volumen, por lo que, por matemáticas, la densidad es infinita. Y esto es lo que hace que genere una fuerza gravitacional tan alta que ni la luz puede escapar de su atracción. Más allá de esto, no sabemos (y seguramente nunca lo haremos) qué sucede en su interior. Todo son suposiciones.”
Sabiendo todo esto sobre los materiales que existen en nuestro Universo, también sabemos que lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra, llevando a cabo aleaciones con técnicas para nosotros desconocidas. Porque, en última instancia ¿es en verdad inerte la materia?
¿Os podéis imaginar que pudiéramos manejar el material de la estrella de neutrones para hacer vehículos espaciales indestructibles?
Sí, son muchas las cosas que nos quedan por aprender e incluso, el agua tan familiar en nuestras vidas esconde secretos que ahora se están desvelando, Algún día conoceremos la verdadera “personalidad” de éste líquido elemento y de la luz, y, entonces, seremos un poco más sabios,
El Agua y la Luz son esenciales para la Vida. Sin embargo, aún esconden secretos que debemos desvelar
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos. Los que están más allá del Uranio y que son artificiales, no se encuentran libres en el Universo.
Algunos son:
ATÓMICO | NOMBRE | SÍMBOLO | MASA ATÓMICA |
92 | uranio | U | 283,03 |
93 | neptunio | Np | 237,048 |
94 | plutonio | Pu | 244 |
95 | amercio | Am | 243 |
96 | curio | Cm | 247 |
97 | berquelio | Bk | 247 |
98 | californio | Cf | 252 |
99 | Einstenio | Es | 254 |
100 | fermio | Fm | 257 |
101 | mendelevio | Md | 258 |
102 | nobelio | No | 259 |
103 | laurencio | Lr | 260 |
104 | rutherfordio | Rf | 261 |
105 | dubnio | Db | 262 |
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.
¡No por pequeño, se es insignificante! La enorme complejidad del átomo lo hace importante
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
A la izquierda la imagen captada de un fotón, la otra imagen es una conjetura de como sería
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
Agujeros negros binarios. Mejor no pasar por allí
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.
Espuma cuántica
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.
Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.
De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿Qué cosa es?
El modelo estándar considera que las partículas elementales son entes irreductibles y cuantos cuya cinemática está regida por las cuatro interacciones fundamentales conocidas, excepto la gravedad, que no encaja en los modelos matemáticos del mundo cuántico.
Antes se denominaba éter luminífero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vino a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándar de la Física de Partículas se afiance más.
Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.
Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.
Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.
Emilio silvera V.
Mar
3
El enigma de la presencia de la Vida en el Universo
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
La Tierra… ¿Es un entorno único para la vida entre 700 trillones de planetas? So en todo el Universo rigen las mismas leyes y Constantes… ¿^pt qué sería la Tierra el único planeta elegido para la presencia de formas de Vida?
He leído en alguna parte:
“La vida y la Tierra misma es el producto de una inmensa casualidad, casi de un milagroso azar. Es el resultado de una lotería cósmica en la que se introdujeron 700 trillones de planetas y del bombo solo salió una bola: la Tierra. Es un astro único y las posibilidades de encontrar otro parecido en el universo con capacidad de sostener condiciones para la vida son muy remotas. Es lo que se deduce de un estudio de la Universidad de Upssala y de los Observatorios Carnegie de California que se publicará en Astrophysical Journal y cuyos resultados fueron avanzados por Scientific American.”
Siguen diciendo:
“Los investigadores, a partir del conocimiento que se tiene de los cerca de 5.000 exoplanetas descubiertos hasta el momento, localizados fundamentalmente por el telescopio Kepler, crearon un modelo en el que se simula por ordenador la formación de galaxias y planetas desde hace unos 13.800 millones de años y en el que llegaron a la conclusión de, al menos en el universo visible, existen unos 700 trillones de exoplanetas. Luego aplicaron las leyes de la física para descubrir cómo fue su evolución. Y ahí es donde advirtieron que la Tierra es, prácticamente, un lugar único, una anomalía cósmica que en poco o en nada se asemeja al resto de los astros de la Vía Láctea y de las demás galaxias conocidas.
¿Es privilegiada la situación del Sistema Solar para poder contener la Vida en el planeta Tierra?
«Ningún otro cuerpo del espacio puede acercarse a su capacidad para sustentar vida», explica el astrofísico Erik Zackrisson, de la Universidad de Upssala.
El estudio desafía el denominado principio de Copérnico, según el cual nuestro planeta no ocupa, ni mucho menos, un lugar privilegiado en el universo. De ahí que la ciencia se haya lanzado en las últimas décadas a la búsqueda de planetas potencialmente habitables más allá de nuestro sistemas.”
Saber si existe vida en otros planetas, incluso los que se ubican fuera del sistema solar (exoplanetas), es una de las preguntas abiertas de la ciencia, en especial de la astrobiología, que estudia el origen, evolución, distribución y futuro de la vida en el universo.
“Nuestra idea de la habitabilidad planetaria está basada en la vida terrestre, que de manera general requiere de la química del carbono y de agua líquida, lo que, por otra parte, están presentes en miles de millones de mundos.
Si existen miles de millones de mundos como la Tierra (o, parecidos)… ¿Qué impide allí la presencia de Vida?
Pero también es verdad que los futuros descubrimientos puedan hacer variar el modelo ahora descrito. «Es cierto que existe una gran cantidad de incertidumbre en nuestros cálculos, porque nuestro conocimiento de todas las piezas es imperfecto», advierte Andrew Benson, de los Observatorios Carnegie. El trabajo se realizó a partir de la extrapolación de los datos aportados por los cerca de 2.000 exoplanetas descubiertos, de los que una parte muy pequeña parte son rocosos y pequeños como la Tierra.
«El modelo se hizo a partir del conocimiento que tenemos. Pero el telescopio Kepler no tiene tecnología para detectar cuerpos pequeños. La muestra es muy escasa y habrá que esperar a los próximos años para que con la entrada en funcionamiento de los nuevos telescopios tengamos más datos», corrobora el astrofísico y divulgador Borja Tosar.
Creo, amigos míos, que la vida es imparable por todo el Universo, y, allí donde un planeta se sitúe en la zona habitable, el agua líquida corra rumorosa, tenga una atmósfera, reciba la radiación de su estrella y su calor… ¡La Vida estará presente!
Emilio Silvera V.
Mar
3
No, no es fácil… ¡Comprender la Naturaleza!
por Emilio Silvera ~ Clasificado en Constantes universales ~ Comments (0)
¿Cuántas veces habremos hablado aquí de las constantes de la naturaleza? Han sido muchas y todas ellas, han estado influidas por el profundo interés que en mí causan estos números misteriosos que hacen del Universo el que nosotros conocemos. Es posible, que en otros universos que pudieran ser, y, en los que las constantes fuesen diferentes a las del nuestro, hubieran nacido muertos y sin vida.
En este Universo nuestro, las constantes y el Tiempo hicieron posible que durante 10.000 millones de años las estrellas “fabricaran” el material del que están hechos los seres vivos.
Está claro que este interés que las constantes han despertado, no solo en mí, sino en muchos científicos del mundo, es que, existen muchas maneras en las que los valores reales de esas constantes ayudan a que sea posible que la vida esté presente en nuestro Universo. Más aún, a veces parece permitir su existencia por un pequeño margen. Su aumentáramos la constante de estructura fina no podría haber átomos y si hacemos mayor la fuerza de la Gravedad las estrellas agotarían sus combustibles muy rápidamente, si reducimos la intensidad de las fuerzas nucleares no habría bioquímica y así sucesivamente.
La vida se pudo formar porque las constantes de la Naturaleza son las que son y no de otra manera
Observamos la Naturaleza y no siempre la podemos comprender. Existen varias coincidencias aparentemente inusuales entre constantes de la Naturaleza no relacionadas en un nivel superficial que parecen ser cruciales para nuestra propia existencia o la de cualquier otra forma de vida concebible. Los inusuales niveles resonantes del Carbono y el Oxígeno del Proceso Triple Alfa de Fred Hoyle, son buenos ejemplos. Hay muchos otros. Cambios pequeñas en las intensidades de las diferentes fuerzas de la Naturaleza y en las masas de las diferentes partículas destruyen muchos de los equilibrios delicados que hacen posible la vida.
La fuerza nuclear fuerte “vive” en el núcleo del átomo.
“De acuerdo con la cromodinámica cuántica, la existencia de ese campo de piones que mantiene unido el núcleo atómico es solo un efecto residual de la verdadera fuerza fuerte que actúa sobre los componentes internos de los hadrones, los quarks. Las fuerzas que mantienen unidos los quarks son mucho más fuertes que las que mantienen unidos a neutrones y protones. De hecho las fuerzas entre quarks son debidas a los gluones y son tan fuertes que producen el llamado confinamiento del color que imposibilita observar quarks desnudos a temperaturas ordinarias, mientras que en núcleos pesados sí es posible separar algunos protones o neutrones por fisión nuclear o bombardeo con partículas rápidas del núcleo atómico.”
“Decaimiento β– de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón (β–) y un antineutrino electrónico.
El el Diagrama de Segrè. El color indica el periodo de semidesintegración de los isótopos radiactivos conocidos, también llamado semivida. Obsérvese que un ligero exceso de neutrones favorece la estabilidad en átomos pesados.”
“Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales.
La interacción electromagnética es una de las cuatro fuerzas fundamentales del universo conocido. Las partículas cargadas interactúan electromagnéticamente mediante el intercambio de fotones.”
“La gravedad es un fenómeno natural por el cual los objetos con masa son atraídos entre sí, efecto mayormente observable en la interacción entre los planetas, galaxias y demás objetos del universo. Es una de las cuatro interacciones fundamentales que origina la aceleración que experimenta un cuerpo físico en las cercanías de un objeto astronómico. También se denomina interacción gravitatoria o gravitación.”
La ley de la gravitación universal formulada por Isaac Newton postula que la fuerza que ejerce una partícula puntual con masa sobre otra con masa es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que las separa:”
Los distintos valores de las constantes de la Naturaleza están “escogidos” de forma bastante fortuita cuando se trata de permitir que la vida evolucione y persista. Echemos una mirada a otros ejemplos: La estructura de los átomos y las moléculas están controlada casi por completo por dos números de los que ya hemos hablado aquí alguna vez: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina α, que es aproximadamente igual a 1/137. Supongamos que permitimos que estas dos constantes cambian su valor de forma independiente y supongamos también (para hacerlo más sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué sucede al mundo si las leyes de la Naturaleza siguen siendo las mismas?
Una maravillas del Universo de la
Si deducimos las consecuencias pronto encontramos que no existe mucho espacio para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares es el pequeño valor de β el que asegura que los electrones ocupen posiciones bien definidas alrededor del núcleo atómico como en la imagen de arriba podéis contemplar y, desde luego, dichas posiciones no son porque sí, todas ellas están bien ubicadas para que todo transcurra como debe transcurrir sin que surjan anomalías que podrían impedir esa estabilidad que vemos en el átomo que forma moléculas. Si esto no fuera así, fallarían también procesos muy bien ajustados como, por ejemplo, la replicación del ADN.
El número β también desempeña un papel en los procesos de generación de energía que alimentan las estrellas. Aquí se une con α para hacer los centros de las estrellas suficientemente caliente como para inicier reacciones nucleares. Si β fuera mayor que aproximadamente 0,005 α2 entonces no habría estrellas. Si las modernas teorías gauge (cualquiera de las teorías cuánticas de campo creadas para explicar las interacciones fundamentales) de gran unificación están en la vía correcta, entonces α debe estar en el estrecho intervalo entre aproximadamente 1/180 y 1/85; de lo contrario los protones se desintegrarían mucho antes de que las estrellas pudieran formarse.
Pero… las estrellas se formaron en las Nebulosas moleculares gigantes, anomalías gravitatorias hicieron posible que surgieran grandes grumos de gas y polvo que atrajeron hacia más mucho más material, y, el núcleo densamente constituido y a grandes temperaturas hizo que surgieron los primeros brotes de luz por la fusión de los protones, así nacieron las estrellas 200 millones de años después del Nig Bang.
He recordado en este punto que tengo algún escrito por ahí con un gráfico que nos explica esto que tratamos. Su línea describe mundos en donde las estrellas tienen regiones extremas convectivas que parecen ser necesarias para formar algunos sistemas de planetas. Las regiones α y β que están permitidas y prohibidas se muestran en el gráfico que os decía y que pongo más abajo con las notas manuscritas originales.
Si en lugar de α versus β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte αF, junto con la de α, entonces a menos que αF > 0,3 α1/2, los elementos biológicamente vitales como el Carbono no existirían y no habría químicos orgánicos. No podrían mantenerse unidos. Sim aumentamos αF en sólo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo, el helio-2, hecho de dos protones y ningún neutrón, que permite reacciones nucleares directas y muy rápidas de protón + protón → helio-2.
Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si αF decreciera en aproximadamente un 10 por 100, el núcleo de Deuterio dejaría de estar ligado y se bloquearían los caminos astrofísicos nucleares hacia los elementos bioquímicos. Una vez más encontramos una región bastante pequeña en el espacio de parámetros en los que puedan existir los ladrillos básicos de la complejidad química.
Cuantas más variaciones simultáneas de otras constantes se incluyan en estas consideraciones, más restringida es la región donde la vida, tal como la conocemos. Puede existir. Es muy probable que si pueden hacerse variaciones, no todas sean independientes. Más bien, hacer un pequeño cambio en una constante podría alterar también una o más de las otras. esto tendería a hacer que las restricciones sobre la mayoría de las variaciones sean aún más rígidamente limitadas.
Hace más de doscientos mil años que la conciencia se hizo presente en el planeta Tierra al surgir en la Mente de los primeros hombres y mujeres verdaderos. Cuando evolucionados a partir de ancestros más rudimentarios, nuestra especie pudo rememorar el pasado (recordar escenas más allá del Presente atrás en el Tiempo), Cuando comenzó a plantearse preguntas que no podría contestar, En aquellos momentos que intranquilos pensamientos entraron en sus cerebros y una voz interior silenciosa les gritaba ¡Eso NO!
Llegar hasta este punto, no ha sido nada fácil y, ha sido posible gracias a que unas constantes del universo han proporcionado las condiciones bioquímicas necesarias para ello. Si las constantes fueran ligeramente diferentes, como decimos arriba, no estaríamos aquí.
Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo está directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.
Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años-luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundoshasta alcanzar una fase tecnológica avanzada.
La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.
Hemos evolucionado en muchos sentidos
Cuando a solas, pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos… hacer todo eso. y mucho más.
Sí, la Mente es una de las mayores obras del Universo, quería que lo pudiéramos comprender
que, nuestras mentes, se expanden al ritmo del Universo El Universo se expande pero, nuestras consciencias también, somos una parte integrante del todo, y como todo lo demás, evolucionamos al ritmo que el Universo nos impone, de tal manera que cada vez comprendemos con menor dificultad los mecanismos que llevan a todas las cosas a cambiar, a convertirse en otras diferentes de lo que originalmente eran, y, con el paso inexorable del Tiempo, nuestras mentes quedarán unidas, de manera inexorable, a ese todo. Entonces, y sólo entonces, podríamos decir que: ¡Tenemos el mundo en las manos!
Nuestras Mentes se desbocaron por el Universo buscando respuestas y aprendimos a pensar
Está claro que, con alguna dificultad y no con la rapidez que pudiéramos desear, vamos desvelando secretos de la Naturaleza que nos llevan a comprender la inmensidad en la que estamos inmersos y de la que formamos parte. Sabemos de qué no sabemos, y, próximamente ese conocimiento de nuestras carencias, harán posible que avancemos para vencerlas y hacer posible nuestros sueños de un mundo mejor y de un futuro en el que, la muerte del Sol, no sea un impedimento para nuestra especie que, para entonces, estará viajando entre las estrellas y habitará en otros mundos que, como la Tierra, nos ofrezca una Naturaleza de inmensa belleza que, ahora sí, sabremos respetar.
Esta imagen, ubicada en el corazón de la Sierra Macarena, el río Caño Cristales en Colombia es considerado el más bello del mundo debido a los magníficos tonos que refracta, producto de los alucinantes colores de las algas que crecen en el fondo y del agua cristalina. Pero, no nos equivoquemos, como esta belleza existen ¡tantas en nuestra Tierra!
Los 20 lugares más espectaculares del mundo – Skyscanner
- Géiser Fly, Nevada, Estados Unidos. …
- Gran agujero azul, Belice. …
- Los lagos de Plitvice, Croacia. …
- Las montañas de colores de Zhangye Danxia, China. …
- Icebergs con rayas de colores, Antártida. …
- La puerta al Infierno de Darvaza, Turkmenistán. …
- Étretat y la Costa de Albatre, Francia.
Estas son solo una pequeña muestra
Rincones de nuestro mundo que, con su simple contemplación, nos influye en los sentidos, nos transporta, nos eleva y, nos acerca a la Naturaleza de la que, ineludiblemente formamos parte y de ella pudimos surgir mediante los tránsitos de fase que sufrió la materia en las en las estrellas para crear, aquellos ladrillos químico-biológicos que, fueron posibles gracias a que las constantes universales marcaron los límites para que así fuese posible.
emilio silvera
Mar
3
Ajuste Fino: Primordial para la Vida (Primera parte)
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Ajuste fino del universo
En física, la noción de ajuste fino se refiere a la situación en la que un cierto número de parámetros deben tener un valor muy preciso para poder explicar tal o cual fenómeno observado.
En cosmología, el ajuste fino del universo o universo [bien]afinado es la proposición de que las condiciones que permiten la vida en el universo solo pueden ocurrir cuando ciertas constantes fundamentales se encuentran en un rango muy estrecho de valores, de modo que si alguna de esas constantes fuera ligeramente diferente, el universo probablemente no sería propicio para el establecimiento y desarrollo de la materia, de las estructuras astronómicas, de la diversidad elemental o de la vida, tal como se entiende.1234 Por ejemplo, la vida no puede desarrollarse si la constante cosmológica o la energía oscura tuvieran valores demasiado altos, ya que así evitarían el mecanismo de la inestabilidad gravitacional y, en consecuencia, la formación de grandes estructuras. La pequeñez del valor observado de la energía oscura, en comparación con el valor que parece más natural (correspondiente a la densidad de Planck, sea 10122 veces mayor que el valor observado) es un ejemplo de ajuste fino.
“Coloquialmente, serían algo así como el tamaño de los píxeles que conforman la realidad. En la práctica esto son, aproximadamente, 1,6 × 10−35 metros en longitud o 5,3 × 10−44 segundos en tiempo. No hay nada menor que eso. Se llaman respectivamente «longitud de Planck», «tiempo de Planck», «Masa de Planck»,”
Es posible que el recurso a la noción de ajuste fino refleje la dificultad de la ciencia para integrar a la vez la escala de Planck y la escala cósmica. De hecho, sesenta órdenes de magnitud temporales separan el tiempo de Planck, de 10-43 s, y la edad del Universo, de aproximadamente 1017 s, y los modelos teóricos generalmente aceptados al comienzo del siglo XXI son incapaces de incluir tal rango de magnitudes en un esquema unificado.5 Las propuestas como la del Multiverso resuelven el problema suponiendo que todas las elecciones se “prueban” en diferentes universos. Sin embargo, este ajuste fino puede ser una ilusión: se desconoce el verdadero número final de las constantes físicas independientes; podría reducirse o incluso limitarse a un solo valor. Y tampoco se conocen las leyes de la “fábrica de universos potenciales”, es decir, el intervalo y la ley de distribución en que sería necesario “elegir” cada constante (de las cuales, además, nuestra elección de unidad y de las combinaciones son arbitrarias).
La noción de ajuste fino del universo, a menudo utilizada para demostrar el principio antrópico fuerte, es una de las puntas de lanza de los defensores de la tesis espiritualista del diseño inteligente. Se discuten varias explicaciones posibles del ostensible ajuste fino entre filósofos, científicos, teólogos y proponentes y detractores del creacionismo. La observación de un universo finamente ajustado está estrechamente relacionada con, pero no es exactamente sinónimo del principio antrópico, que a menudo se usa como una explicación de la aparente afinación.
Historia
En 1913, el químico Lawrence Joseph Henderson (1878-1942) escribió The Fitness of the Environment, uno de los primeros libros que en que se exploraron los conceptos de afinación fina en el universo. Henderson discutía en él la importancia del agua y del medio ambiente con respecto a los seres vivos, señalando que la vida depende completamente de las condiciones ambientales muy específicas sobre la Tierra, especialmente con respecto a la prevalencia y las propiedades del agua.
En 1961, el físico Robert H. Dicke afirmó que ciertas fuerzas en física, como la gravedad y el electromagnetismo, debían estar perfectamente afinadas para que la vida exista en cualquier parte del universo.78 Fred Hoyle también abogó por un universo afinado en su libro de 1984 Intelligent Universe [Universo inteligente]. Compara «la posibilidad de obtener incluso una única proteína funcional mediante la combinación casual de aminoácidos con un sistema estelar lleno de hombres ciegos que resuelven el cubo de Rubik simultáneamente».
John Gribbin y Martin Rees escribieron una historia detallada y la defensa del argumento del ajuste fino en su libroCosmic Coincidences (1989). Según Gribbin y Rees, «las condiciones en nuestro Universo realmente parecen ser especialmente adecuadas para las formas de vida como nosotros, y quizás incluso para cualquier forma de complejidad orgánica. Pero la pregunta sigue siendo: ¿está el Universo hecho a medida para el hombre?».
Premisa
La premisa de la afirmación de un universo ajustado es que un pequeño cambio en varias de las constantes físicas adimensionales haría que el universo fuese radicalmente diferente. Como ha señalado Stephen Hawking, «Las leyes de la ciencia, tal como las conocemos en la actualidad, contienen muchos números fundamentales, como el tamaño de la carga eléctrica del electrón y la proporción de las masas del protón y del electrón… El hecho notable es que los valores de estos números parecen haber sido ajustados muy finamente para hacer posible el desarrollo de la vida».
Si, por ejemplo, la fuerza nuclear fuerte fuera un 2% más fuerte de lo que es (es decir, si la constante de acoplamiento que representa su fuerza fuera un 2% mayor), mientras que las otras constantes se mantuvieron sin cambios, los diprotones serían estables; según el físico Paul Davies, el hidrógeno se fundiría en ellos en lugar de deuterio y helio. Esto alteraría drásticamente la física de las estrellas en Desam, y presumiblemente descartaría la existencia de vida similar a la que se observa en la Tierra. La existencia del diprotón causaría un cortocircuito en la lenta fusión del hidrógeno en deuterio. El hidrógeno se fundiría tan fácilmente que es probable que todo el hidrógeno del universo se consumiese en los primeros minutos después del Big Bang.10 Este «argumento del diprotón» es discutido por otros físicos, que calculan que siempre que el aumento de la fuerza fuese inferior al 50%, la fusión estelar podría ocurrir a pesar de la existencia de di-protones estables.
La formulación precisa de la idea se ve dificultada por el hecho de que los físicos aún no saben cuántas constantes físicas independientes existen. El actual modelo estándar de la física de partículas tiene 25 parámetros ajustables libremente y la relatividad general tiene un parámetro adicional, la constante cosmológica, que se sabe que no es cero, pero que tiene un valor profundamente pequeño. Sin embargo, debido a que el modelo estándar no es matemáticamente auto-consistente bajo ciertas condiciones (por ejemplo, a energías muy altas, en las que son relevantes tanto la mecánica cuántica como la relatividad general), los físicos creen que debe estar respaldado por alguna otra teoría, como una teoría de la gran unificación, la teoría de cuerdas o la gravedad cuántica de bucles. En algunas teorías candidatas, la cantidad real de constantes físicas independientes puede ser tan pequeña como una. Por ejemplo, la constante cosmológica puede ser una constante fundamental, pero también se han hecho intentos para calcularla a partir de otras constantes, y según el autor de uno de esos cálculos, «el pequeño valor de la constante cosmológica nos está diciendo que existe una relación totalmente inesperada entre todos los parámetros del Modelo Estándar de la física de partículas, la constante cosmológica desnuda y la física desconocida».
Ejemplos de ajuste fino
El ajuste de las constantes del universo
Las características del universo en el que nosotros evolucionamos dependen de una quincena de constantes físicas, que en la actual ausencia de un principio unificador, se consideran independientes entre sí. La aparición de supercomputadoras permitió que los astrofísicos modelaran el desarrollo del universo y luego modificaran esas constantes, una por una, o al mismo tiempo, para simular nuevos universos («universo juguete»). El número de universos juguete así obtenidos es casi infinito. Algunas de esas simulaciones han mostrado que casi todos los universos juguete que resultan son estériles. Según esas simulaciones, solo un ajuste hiperfino de las constantes fundamentales permite la aparición del universo estable y viable en el que estamos. Los defensores del principio antrópico se niegan a ver ahí una simple «casualidad feliz», que sería creíble si se tratara solo del ajuste de una única constante, pero imposible en las 15 constantes independientes.
Otras simulaciones, como el programa MonkeyGod de Victor J. Stenger tienen resultados diferentes: sobre 10 000 universos simulados al variar aleatoriamente y simultáneamente varios parámetros físicos, sobre 10 órdenes de magnitud, este programa obtiene el 61% de universos en los que la duración de las estrellas y su composición permiten la aparición de la vida. Según Stenger, estos resultados diferentes se deben al hecho de que las simulaciones que conducen a la conclusión de un ajuste fino varían cada parámetro uno a uno dejando fijos los otros, una variación que la fijeza de los otros parámetros físicos no puede compensar para generar un universo viable.
Algunos ejemplos de constantes del universo que conducen a interrogantes sobre su ajuste fino se analizan a continuación.
Densidad del universo y velocidad de expansión
Barrow y Tipler han demostrado que la expansión del universo no es ni demasiado rápida ni demasiado lenta. En un universo menos denso, la expansión habría prevalecido sobre la gravitación y ninguna estructura podría haberse formado (ni galaxias, ni estrellas, ni planetas). Un universo más denso se habría colapsado demasiado rápido como para permitir que se desarrollara la complejidad. La densidad del universo está muy cerca de la densidad crítica que propicia una expansión razonable y una vida del universo compatible con la aparición de la vida. La relación entre la densidad del universo y la densidad crítica es el parámetro de densidad, Ω, igual a 1 para la densidad crítica.
El problema es que si Ω es significativamente diferente de 1, menor o mayor, ese valor no es estable y entonces diverge. Si Ω>1, la expansión del universo se ralentizaría y se invertiría, y Ω tendería al infinito. Si Ω<1, la expansión del universo continuará hasta el infinito y Ω tenderá a 0. A medida que el valor de Ω difiere, debe haber estado, durante el Big Bang, en un rango de valor extremadamente estrecho alrededor de 1, de modo que, 13 mil millones de años más tarde, en nuestro tiempo, todavía está lo suficientemente cerca de 1.
Ese rango de valores es de 10-60 alrededor de 1. Esa cifra es tan pequeña que Trinh Xuan Thuan calculó que corresponde a la probabilidad de que un arquero alcanzase un objetivo de 1 cm² situado en el otro extremo del universo, disparando a ciegas una única flecha desde la Tierra sin saber en qué dirección esta el objetivo.
Según la mayoría de los científicos, este problema se resuelve con la inflación cósmica que tuvo lugar justo después del Big Bang. Ese período de inflación tiene el efecto de suavizar una curvatura espacial aleatoria del universo en el momento del Big Bang, para hacerlo casi plano. entonces una curvatura plana corresponde, por definición, a una densidad del universo igual a la densidad crítica. Así que es lógico y natural, si el modelo de inflación cósmica es correcto, que el parámetro Ω haya sido casi igual a 1 al comienzo del universo. El modelo de inflación actualmente es bien aceptado por la comunidad científica, habiendo conducido notablemente a predicciones verificadas y medidas a propósito de las fluctuaciones en la radiación de fondo de microondas.
Las masas del neutrón y del protón
La masa del neutrón es un poco más grande que la del protón: =1.29. Esto conduce a la desintegración rápida del neutrón (libre) en un protón, mientras que el protón es muy estable (su vida útil es de al menos 1034 años). Si fuera al contrario (<0), sería el protón el que se desintegraría en un neutrón (que sería estable) y las reacciones de fusión se basarían en neutrones, que formarían núcleos desnudos de todas las masas. El único material del universo sería entonces el neutronio, los elementos químicos no podrían formarse (ver abajo) y la vida no podría desarrollarse.
Además, los neutrones en el interior de un núcleo atómico no se desintegran (aparte de la radiactividad beta), asegurando la estabilidad de los núcleos atómicos. Para que este sea el caso, es necesario que la energía del enlace sea mayor que la diferencia de masa entre un neutrón y la masa agregada de un protón y un electrón (). Esto le da otro límite, superior, a , del orden de 10 MeV.
Finalmente, otro fenómeno puede comprometer la estabilidad de los protones: si ( siendo la masa de un neutrino), los protones se desintegrarían al reaccionar con un electrón en un neutrón y un neutrino. Esto da un límite inferior de 0,511 MeV a .
En resumen, la diferencia de masa entre un protón y un neutrón debe estar en el rango de 0.511<10. El valor real de 1,29 MeV está dentro de ese rango, que es bastante amplio; el valor podría ser doble o incluso el quíntuple. De acuerdo con el modelo estándar de la física de partículas (incluido el campo electrodébil de Higgs), los neutrones y protones obtienen su masa de la interacción fuerte que no hace ninguna diferencia entre esas dos partículas: como primera aproximación, según esa teoría, los neutrones y los protones tendrían una masa igual. Si se tiene en cuenta la interacción electrodébil entre estas partículas, se obtiene mediante cálculos teóricos una diferencia de masa entre 1 y 4 MeV (la masa del Quark arriba es mal conocida en este rango), compatible con el valor real. Esta diferencia de masa se puede explicar en el contexto de la física moderna, y no necesita ser ajustada a un rango de valores muy finos.
La aparición de elementos pesados en el universo
El 98% de la materia visible está compuesto de hidrógeno y helio. Todos los demás elementos (elementos pesados: carbono, hierro, oxígeno en particular, que son los componentes de la materia orgánica del ser humano) solo representan el 2% restante. De acuerdo con la teoría del Big Bang, en ese momento solo se formaron hidrógeno y helio y todos los demás elementos se formaron en las estrellas en un periodo de varios miles de millones de años.17 Esta observación llevó a Hubert Reeves a decir que somos «polvo de estrellas». De acuerdo con los defensores del principio antrópico, el hecho de que los organismos vivos y especialmente los humanos estén hechos de la materia más rara que existe en el universo tiende a demostrar que esa sería la finalidad del proyecto cósmico.
En su versión mejorada, el principio antrópico débil se remonta a un artículo de Robert Dicke de 1961. En ese artículo, Dicke señaló que la aparición de la vida, o más generalmente, de cualquier estructura biológica compleja, requeriría la presencia de carbono, y que ello parecía ser el resultado de varias coincidencias favorables.
En ese momento se sabía que el carbono no podía producirse durante la nucleosíntesis primordial, en el momento del Big Bang, sino que tenía que sintetizarse dentro de las estrellas (ver nucleosíntesis estelar). Sin embargo, incluso dentro de las estrellas, el carbono es difícil de sintetizar. La razón es que los dos constituyentes presentes en cantidad en una estrella en el momento de su formación son el hidrógeno y el helio, y que no existe un núcleo atómico estable producido a partir de una colisión entre un núcleo de hidrógeno y un núcleo de helio o entre dos núcleos de helio. Sintetizar elementos más pesados en realidad requiere una colisión entre tres núcleos de helio. La energía de masa de los tres núcleos de helio juntos es, sin embargo, mayor que la de un núcleo de carbono. La síntesis de tal núcleo se ve así desfavorecida. Sin embargo, se encuentra que se permite gracias al hecho de que existe un estado excitado del núcleo de carbono que tiene una energía total (incluyendo la energía de masa del núcleo) que es igual a la de tres núcleos de helio. Es esa coincidencia, resultado a priori del azar, la que permite la producción de elementos más pesados que el helio en las estrellas y, por lo tanto, la vida. Además, la existencia de tal estado de excitación para el carbono fue prevista en 1953 por Fred Hoyle sobre la base de esas constataciones y luego descubierta inmediatamente después.Fue a Fred Hoyle, a quien se le debe la expresión, al principio peyorativa, de Big Bang, que introdujo en esta ocasión una nueva expresión que conocerá el éxito: «ajuste fino de las constantes universales».
Sigue en Segunda Parte