Mar
22
Mantenimiento
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Así ha sido la operación de limpieza del telescopio Euclid a 1,5 millones de kilómetros
La operación de limpieza del telescopio Euclid está en el aire a 1,5 millones de kilómetros de la Tierra. Los telescopios que han sido enviados al espacio para poder descubrir más de una galaxia que hasta la fecha no se veía o simplemente saber un poco más de nuestro planeta son una realidad.
Por lo que deben estar perfectamente conectados con nuestro planeta, además de estar listos para poder mostrar las mejores imágenes posibles, sin importar la distancia con el planeta. Euclid es uno de los telescopios enviados desde la Tierra que estaba empezando a registrar algunos problemas.
La operación de limpieza del telescopio Euclid
La realidad de este telescopio es que aún no ha podido limpiarse, o, al menos, no se sabe con total seguridad si este telescopio está en perfectas condiciones o no. En esencia estamos ante una posible suposición que podría permitir que desde la Tierra se pueda apreciar con mayor claridad lo que llega desde este elemento que está lejos, muy lejos.
La importancia de mirar al cielo es enorme, ya que, gracias a él, podremos descubrir qué es lo que está detrás de una serie de elementos que son fundamentales y que podrían dejarnos algunas novedades importantes. Seguro que podremos descubrir un poco mejor qué es lo que nos depara este telescopio.
No es fácil enviar esta tecnología a un espacio lejano que debe proporcionar unas buenas vistas de un universo que se presume que es infinito.
La realidad es que estos elementos se envían desde la Tierra con sumo cuidado, no excepto de problemas. Durante el viaje y especialmente a la salida de la atmosfera terrestre se pueden producir algunos daños importantes que podrían causar más de un problema a esta tecnología que requiere una gran precisión.
Euclid empezó a fallar nada más recibir sus primeras transmisiones. Se podía apreciar un 10% menos de precisión en estas imágenes que en la de sus predecesores o de los otros telescopios que podían apuntar a las mismas zonas. Por lo que se determinó que algo no funcionaba bien. El problema de la llegada de algunos puntos con hielo a este lugar del telescopio ha podido ser el que ha generado esta falta de visión. Algo que se podría solucionar con la ayuda de un elemento que sea capaz de eliminar el hielo.
Esta es la operación de limpieza a 1,5 millones de kilómetros
Para limpiar el telescopio Euclid desde la Tierra a 1’5 millones de kilómetros se ha optado por encender unos calefactores que podrían acabar con ese hielo. Partiendo de la base de que es una suposición. No se tiene el telescopio delante, por lo que no se sabe realmente si se está quedando limpio o no este elemento.
Cada experimento que se realiza con este tipo de elementos puede acabar dando lugar a una novedad importante. Por lo que saber cómo reparar a esa distancia un elemento tan delicado podría sentar un precedente.
Desde la Tierra y según los expertos: “»La descongelación debería restaurar y preservar la capacidad de Euclid para recoger la luz de estas antiguas galaxias, pero es la primera vez que realizamos este procedimiento. Tenemos muy buenas conjeturas sobre a qué superficie se adhiere el hielo, pero no estaremos seguros hasta que lo hagamos».
Una vez se ponga en práctica esta teoría, se deberá comprobar con otras imágenes de otro telescopio para saber si estamos ante un elemento que acabará siendo el que marque un precedente en la reparación de algo tan delicado como un telescopio a distancia.
Este procedimiento se llevará a cabo en mayo, si no se soluciona durante estas semanas por sí solo. Es decir, se consigue eliminar este hielo que ha llegado como consecuencia del agua de la atmosfera que se ha colado en un sistema tan delicado como este.
Por lo que al final de este preoceso lo que se pretende es que en verano ya se puedan recibir imágenes que estén bien enfocadas y posicionadas de este satélite. Algo que no debe ser nada fácil, pero con un poco de esfuerzo se conseguirá. El papel de los científicos desde la Tierra es estar muy pendientes de lo que pasa tan lejos.
Controlar a distancia determinadas herramientas no es nada fácil, como tampoco le es hacerlo con la ayuda de unos sistemas que apenas permiten interactuar con ellos. Además de que tampoco se puede enviar ningún tipo de artilugio que pueda limpiar este telescopio.
Queda mucho que aprender sobre la exploración espacial y todo lo que conlleva. No es nada fácil determinar qué elementos son imprescindibles y qué no, así como, la forma de conseguir mantener la integridad de los objetos enviados al espacio desde un planeta Tierra que queda muy lejos.
Mar
21
¿Habrá que ponerlo en cuarentena?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
El video podría haber sido algo más profesional, y, comentarios como: “… del Universo y sus alrededores…” no avalan su calidad (no en cuanto a la noticia), ya que, las cosas hay que exponerlas con más seriedad y facilitando datos fiables y que reflejen la realidad del tema que se trata.
De todas las maneras, vayamos a las cercanías de Próxima b, alumbrada por la estrella Próxima Centauri, situada a 4,2 años luz del Sol, es la estrella más cercana a nosotros, y, con la tecnología actual de nuestro mundo en lo que a viajes espaciales se refiere, podríamos tardar algunos miles de años en llegar a ese mundo.
De todas las maneras, ese detalle de que “una ciudad alumbrada con luz eléctrica” ha sido detectada por el Telescopio… Aunque negarlo rotundamente no podamos, si fuese cierto, nos dice que aquellos seres inteligentes no están muy adelantados, ya que, de estarlo, el Proyecto SETI habría captado señales de sus actividades que a la velocidad de la luz, habrían tardado 2,3 años luz en llegar a nuestro mundo y la respuesta habría llegado a e ellos en el mismo tiempo, con lo cual, se habría entablado una relación Inter-espacial entre sistemas planetarios.
En fin, esperemos que las investigaciones sigan y aumente el conocimiento de la certeza de todo esto.
Mar
21
Noticias del Boletín de Física
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Publicada la transcripción de noticias del Boletín por el miembro honorario de la Real Sociedad Española de Física Emilio Silvera Vázquez, adscrito a los Grupos Especializados de Física Teórica y Astrofísica.
Mar
21
¡Estamos aquí de prestado? ¿Es la vida un accidente?
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (3)
Algunas veces, cuando a solas pienso más profundamente en nuestra presencia en el mundo que habitamos, en el recorrido que ha hecho nuestra especie hasta llegar hasta aquí, en la inmensa lucha contra los elementos y las circunstancias adversas que hemos tenido que superar, sobre todo, esa enorme carga que llevamos sobre nosotros: ¡la ignorancia!, que no pocas veces nos lleva a comportamientos irracionales y contrarios a nuestros propios intereses. ¡Tántas esperanzas y sueños! Cuando, en realidad, no somos dueño de nuestro destino como especie que siempre ha estado en poder de la Naturaleza que nos creó. Las estrellas brillan en el cielo, ajenas a nuestra presencia. En realidad estamos en manos del Azar y nada impide que en cualquier momento, un gran asteroide venido del espacio pueda acabar con nuestra especie y toda la vida que pulula sobre nuestro planeta.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos (¿racionales?) de extinguirse así mismos, agotar los recursos, propagar infecciones letales y venenos mortales, hacer pruebas armamentísticas con la propia Naturaleza y un sin fin de locuras más, lo cierto es que también, aparte de los peligros que aquí nos acechan, bien sean naturales o artificiales, lo cierto es que, las amenazas externas nos acechan.
Los movimientos de cometas y asteroides constituyen una seria amenaza para el desarrollo y la continuidad de la vida inteligente en sus primeras etapas. Los impactos no son infrecuentes y en el pasado lejano han tenido efectos catastróficos sobre nuestro planeta, la Tierra. Somos afortunados por estar doblemente protegidos de estos impactos: por nuestra pequeña y cercana vecina, la Luna, y por nuestro vecino lejano y gigante Júpiter que tiene una masa mil veces mayor que la Tierra y está situado en las afueras del Sistema solar donde su poderosa atracción gravitatoria puede capturar objetos errantes que se dirigen hacia el interior.
El Hubble pudo captar ésta imagen de los fragmentos del cometa Schumacher-Levy 9 que cayeron sobre Júpiter. El mayor planeta del Sistema solar, con la inmensa fuerza de gravedad que genera, atrae a los posibles visitantes y nos preserva en la Tierra de que algunos lleguen aquí. Ahí tenemos una pantalla natural.
En el siglo XX tuvimos dos impactos importantes en la Tierra, uno en América del Sur y el otro en Tunguska, al norte de Rusia. Hemos estado haciendo trampas con la ley de los promedios pero, un día, nuestra suerte cambiará. Y, aunque es cierto que algunos gobiernos están haciendo esfuerzos económicos en proyectos encaminados a seguir y vigilar las trayectorias de algunos grandes meteoritos sospechosos, lo cierto es que el paso del tiempo acerca, de manera inexorable, el acontecimiento hacia nosotros, dado que en última instancia será inevitable.
Cien años han pasado de la explosión de origen desconocido que arrasó una zona de 50 kilómetros de diámetro en Tunguska, una remota zona de Siberia, explosión que se conoce con el nombre de evento de Tunguska. Esta explosión fue tan potente que fue detectada por sismogafos en toda Asia y Europa e incluso llegaron a medirse en Londres las variaciones de presión atmosférica que causó.
A la fecha (al menos que yo sepa), sólo una sonda ha visitado un Asteroide que se Acerca a La Tierra. Se trata de la sonda NEAR-Shoemaker (Near Earth Asteroid Rendezvous), NASA, USA. Fue lanzada el 17 de Febrero de 1996 con destino final en el asteroide de tipo orbital amor 433 Eros. Su peso total era de 805 kilogramos. En Febrero de 1998 pasó por Eros sin ponerse en órbita. El 14 de Febrero de 2000 entró en órbita alrededor de Eros y el 12 de Febrero de 2001 descendió (!!) suavemente sobre él.
La sonda sobrevivió al aterrizaje y transmitió una serie de imágenes desde la superficie de este AAT. Se observaban bloques de rocas en un suelo polvoriento semejante al de nuestra Luna. Esta sonda contaba con espectrógrafos ópticos, infrarrojos, de rayos X y Gamma, magnetómetros, una cámara óptica mulitespectral y un radar láser.
Dactylic
Algunos de estas rocas llegan a tener más de mil kilómetros (Asteroide 1 Ceres. Algunos, como el conocido por el nombre de Ida llegan a tener hasta su propia pequeña luna llamada Dáctiylic. ¿Os imagináis lo que sería la caída de uno de estos monstruos sobre nuestras cabezas?
Curiosamente, estas intervenciones externas sobre la evolución de la Tierra tienen otra cara. Es cierto que pueden producir extinciones globales de una inmensa gravedad y retrasar la evolución de la complejidad en millones de años. Pero, en ciertas circunstancias pueden tener un efecto positivo y acelerador sobre la evolución de formas de vida inteligente.
El suceso que, según todos los indicios, dio lugar a la extinción de los dinosaurios por la caída de un objeto espacial en la provincia del Yucatán hace ahora 65 millones de años, al final de la Era Mesozoica. Lo cierto es que, la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral .
La desaparición de los dinosaurios, junto con otras muchas formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Además limpió algunos nichos de competidores por los recursos naturales. Todo aquello estimuló una rápida aceleración del desarrollo de la diversidad. Quizás esos impactos desempeñen un papel vital en la puesta en marcha de nuevos mecanismos evolutivos cuando, las formas de vida se ven atascadas en caminos poco prometedores.
¿Quién sabe? Pudiera ser que sin impactos, los procesos de desarrollo pueden establecerse en un camino estable pero poco prometedores y con extinciones sistemáticas se posibilitan mutaciones y cambios que, de otra manera, nunca llegarían a producirse. Hemos oído muchas veces esa expresión que dice: ¡La Naturaleza es sabia! Pero, por otra parte, se me hace muy cuesta arriba pensar que ninguna de las estrellas que titilan en el firmamento, se puedan preocupar de nuestra efímera existencia aquí en la Tierra.
Resulta muy difícil imaginar un organismo con vida que logre sobrevivir completamente aislado de otras formas de vida. Las necesidades orgánicas de todos los seres vivos vuelve el contacto con otras especies una condición sine qua non para poder sobrevivir en lo que conocemos como ecosistemas, los cuales se definen, justamente, por la interacción de varias formas de vida.
La existencia de un ser vivo que logre vivir completamente independiente del resto de formas de vida es algo que podríamos a priori enmarcar en el contexto de la ciencia ficción. Sin embargo, un reciente descubrimiento que tuvo lugar en Sudáfrica ha dejado boquiabierta a la ciencia.
Unas condiciones duras y rápidamente cambiantes podrían estimular la adaptación y acelerar los procesos evolutivos incrementando la diversidad que es el mejor seguro de vida que puede tener un planeta contra la extinción total de su biología por un impacto futuro. Claro que, no lo veríamos de la misma manera si fuéramos dinopsaurios. Por otra parte, la vida es persistente y, como se puede leer debajo de la imagen de arriba, hasta aislada insiste en estar presente.
Por otra parte y de manera independiente de los posibles sucesos naturales que nos puedan amenazar, nuestra imaginación también crea otros que, según los rumores… pudieran ser ciertos. Tal es el caso del Planeta X, Hercóbulus, El 12º Planeta, Nibiru, son diferentes nombres que existen desde antiguo para designar a un extraño y destructor cuerpo celeste, que forma parte del Sistema Solar vecino de Tylo, pero que sin embargo su órbita tan elíptica y tan larga le lleva a cruzarse con nuestro Sistema Solar cada 3660 años.
El paso del planeta X, cruzándose por dentro de nuestro Sistema Solar, crearía unos efectos devastadores en La Tierra, encendiendo volcanes, terremotos, tsunamis, lluvias de fuego, etc… pues tendría que acercarse a unos 14 millones de millas de La Tierra, que astronómicamente se puede considerar como una distancia peligrosamente próxima.
La órbita elíptica de Nibiru, un planeta rojizo, más grande que Júpiter, le lleva a atravesar nuestro Sistema solar causando desequilibrios apocalípticos en la Tierra. Hercóbulus tiene un tamaño bastante grande, entre 2 y 5 veces mayor más que Júpiter, con lo que la fuerza de este planeta gigante altera electromagnéticamente y gravitacionalmente, a todos los niveles, a nuestro planeta; su polo norte ejerce una gran infuencia magnética al acercarse al polo norte de La Tierra, momento en el que ambos cuerpos se repelen magnéticamente y se produce una gran sacudida geo-magnética que cambia los polos en La Tierra.
Esto explicaría que la civilización humana transcurre y evoluciona en el tiempo mediante periodos cíclicos, de aproximadamente cada 4 milenios, siendo una de las visitas indeseables de Nibiru la causante de la desaparición del continente de la Atlántida. según todas estas leyendas, se calcula que el paso de Nibiru cerca de La Tierra, hacia el año 2012, podría ocasionar la muerte de 2/3 de la población mundial. (Ya tenemos aquí “hecha realidad” la predicción maya).
¡Qué gente!
Lo cierto es que no tenemos que ir tan lejos para poder constatar in situ, los cambios que los desastres naturales pueden producir en nuestro entorno que, con cada suceso catastrófico se ve transformado y hay cosas que desaparecen para dejar pasos a otras nuevas… La vida incluida.
Los cráteres volcánicos, como parece ser el caso, están frecuentemente llenos de agua de lluvia y freáticas, formando lagos. Suele ocurrir que, tras una erupción volcánica, sean destruidos miles de kilómetros cuadrados de terreno a su alrededor y cambien por completo la orografía de la zona. Parece imposible pensar que la Naturaleza pueda recuperarse tras un acontecimiento de este tipo, sin embargo, las primeras muestras de vida vegetal aparecen a unos escasos tres meses del acontecimiento en los campos cubiertos por las cenizas ricas en minerales. Poco tiempo después, vuelven los animales y la vida, se reanuda, como si allí, nada hubiese pasado.
Así es la Naturaleza, y, como tantas veces se dijo aquí, algo se destruye para hacer posible que algo nuevo surja a la vida. Cuando una estrella muere crea las condiciones necesarias para que otras surjan a la vida. La eterna rueda de los ciclos del Universo que, una y otra vez, reproduce los acontecimientos para que todo siga igual pero… diferente. Y, aunque os parezca una paradoja, así es el ritmo del Universo en el que todo muere para que todo pueda seguir el ritmo evolutivo que la Naturaleza impone.
emilio silvera
Mar
21
El Universo, su destino y la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (5)
Laniakea contiene alrededor de 100.000 galaxias como la nuestra y 100 billones de estrellas. Se extiende a lo largo de medio mil millones de años luz. De ahí su nombre, Laniakea, un término hawaiano que significa ‘cielo inmenso’
La muerte térmica del Universo
La muerte térmica (también muerte entrópica) es uno de los posibles estados finales del universo, en el que no hay energía libre para crear y mantener la vida y otros procesos. En términos físicos, el universo habrá alcanzado la máxima entropía.
La expansión del Universo lo llevará hasta una temperatura del Cero Absoluto (-273,15 ºC) “muerte fría”. La “muerte fría” del universo se da cuando este continúa expandiéndose por siempre. Debido a esta expansión, el universo se enfría cada vez más, y, eventualmente, se vuelve incapaz de albergar vida alguna. a esa temperatu5ra ni los átomos se moverán.
No podemos saber cuándo, pero sí tenemos una idea aproximada de cómo será el final. El universo es todo lo que existe, incluyendo el espacio, el tiempo y la materia. El estudio del universo es la cosmología, que distingue entre el Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría. El universo real está constituido en su mayoría por espacios aparentemente vacíos, existiendo materia concentrada en galaxias formadas por estrellas y gas.
El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes – Los objetos que se alejan, desplazan su luz hacia el rojo. Si se acercan, su luz se desplaza hacia el azul.-(Efecto Doppler).
Con la imagen de arriba, tienes un buen ejemplo del comportamiento del Efecto Doppler con cuerpos en el espacio.
Existe una evidencia creciente de que el espacio está o puede estar lleno de una materia invisible, “materia oscura” (al menos eso dicen), que puede constituir muchas veces la masa total de las galaxias visibles (materia bariónica). Sabemos que el origen más probable del universo está en la teoría conocida como del Big Bang que, a partir de una singularidad de una densidad y energía infinita, hace ahora unos 13.700 millones de años, surgió una inmensa bola de fuego que desde entonces no ha dejado de expandirse y enfriarse.
En el proceso, nació el Tiempo y el Espacio, surgieron las primeros quarks que pudieron unirse para formar protones y electrones que formaron los primeros núcleos y, cuando estos núcleos fueron rodeados por los electrones, nacieron los átomos que evolucionando y juntándose hicieron posible la materia; todo ello, interaccionado por cuatro fuerzas fundamentales que, desde entonces, por la rotura de la simetría original divididas en cuatro parcelas distintas, rigen el universo. La fuerza nuclear fuerte responsable de mantener unidos los nucleones, la fuerza nuclear débil, responsable de la radiactividad natural desintegrando elementos como el uranio, el electromagnetismo que es el responsable de todos los fenómenos eléctricos y magnéticos, y la fuerza de gravedad que mantiene unidos los planetas y las galaxias.
Dependiendo de la Densidad Crítica (la cantidad de materia que contenga el Universo -el Omega Negro-).
Pero hemos llegado a saber que el universo podrá ser plano, abierto o cerrado. Un universo que siempre se expande y tiene una vida infinita es abierto. Esto es un universo de Friedmann que postuló que el nuestro tenía una densidad menor que la densidad crítica.
El universo cerrado es el que es finito en tamaño, tiene una vida finita y en el que el espacio está curvado positivamente. Un universo de Friedman con la densidad mayor que la densidad crítica.
El universo en expansión es el que el espacio entre los objetos está aumentando continuamente. En el universo real, los objetos vecinos como los pares de galaxias próximas entre sí no se separan debido a que su atracción gravitatoria mutua supera los efectos de la expansión cosmológica (el caso de la Vía Láctea y Andrómeda). No obstante, la distancia entre dos galaxias muy separadas, o entre dos cúmulos de galaxias, aumenta con el paso del tiempo y la expansión imparable del universo.
El universo real está en función de la densidad crítica que es la densidad media de materia requerida para que la gravedad detenga la expansión del universo. Un universo con una densidad muy baja se expandirá para siempre, mientras que uno con densidad muy alta colapsara finalmente. Un universo con exactamente la densidad crítica, alrededor de 10-29g/cm3, es descrito por el modelo de universo de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. Pero la densidad media de materia que puede ser observada directamente en nuestro universo no representa la cantidad necesaria para generar la fuerza de gravedad que se observa en la velocidad de alejamiento de las galaxias, que necesita mucha más materia que la observada para generar esta fuerza gravitatoria, lo que nos da una prueba irrefutable de que ahí fuera, en el espacio entre galaxias, está oculta esa otra materia invisible, la “materia oscura”, que nadie sabe lo que es, cómo se genera o de qué esta hecha.
Así que, cuando seamos capaces de abrir esa puerta cerrada ante nuestras narices, podremos por fin saber la clase de universo que vivimos; si es plano, si es abierto e infinito, o si es un universo que, por su contenido enorme de materia es curvo y cerrado.
Pero la respuesta a la pregunta, aún sin saber exactamente cuál es la densidad crítica del universo, sí podemos contestarla en dos vertientes, en la seguridad de que al menos una de las dos es la verdadera.
Claro que, cuando hablamos de destino final…, a nadie le gusta sin importar cual pueda ser éste
El destino final será:
Mapa conceptual de la relación de entropía con la segunda ley de la termodinámica y la energía libre de Gibbs. La muerte Térmica del Universo
a) Si el universo es abierto y se expande para siempre, cada vez se hará más frio, las galaxias se alejarán las unas de las otras, la entropía hará desaparecer la energía y el frío será tal que la temperatura alcanzará el cero absoluto, -273ºK. La vida no podrá estar presente.
b) Si el universo es cerrado por contener una mayor cantidad de materia, llegará un momento en que la fuerza de gravedad detendrá la expansión de las galaxias, que poco a poco se quedarán quietas y muy lentamente, comenzaran a moverse en el sentido inverso; correrán ahora las unas hacia las otras hasta que un día, a miles de millones de años en el futuro, todo la materia del universo se unirá en una enorme bola de fuego, el Big Crunch. Se formará una enorme concentración de materia de energía y densidad infinitas. Habrá dejado de existir el espacio y el tiempo. Nacerá una singularidad que, seguramente, dará lugar a otro Big Bang. Todo empezará de nuevo, otro universo, otro ciclo ¿pero apareceremos también nosotros en ese nuevo universo?
Esta pregunta sí que no sé contestarla.
Pero, podrían ser ellos los que vinieran a rescatarnos
Así las cosas, no parece que el futuro de la Humanidad sea muy alentador. Claro que los optimistas nos hablan de hiperespacio y universos paralelos a los que, para ese tiempo, ya habremos podido desplazarnos garantizando la continuidad de la especie Humana. Bien pensado, si no fuera así ¿para qué tantas dificultades vencidas y tantas calamidades pasadas? ¿Para terminar congelados o consumidos por un fuego abrasador?
Si descubrimos como burlar la velocidad de la luz a través del hiperespacio, es posible que podamos visitar otras galaxias y, ¿por qué no? incluso Universos paralelos que, llegado el momento no podría evitar el mal trago de ese final previsto para nuestro Universo. Sin embargo, dudo mucho que podamos llegar tan lejos (no en lo del hiperespacio -que también- sino en ese final presentido que…¡nos queda tan lejos!
Una cosa está muy clara, se puede comentar sobre el tema pero, contestar a esas preguntas…¡Quién pudiera contestar a eso! Sin embargo, está bien pensar en lo que será el futuro pero, sin perder de vista lo que fue el pasado. En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Muchos fueron los parámetros y las circunstancias que tuvieron que concurrir para hacerlo posible.
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida. Partir del Hidrógeno y el Helio se formaron el Litio, Berilio, Carbono, Oxigeno y una larga lista de elementos de los que una parte, están en nosotros.
Escenas como esta son posibles gracias a que, en las estrellas se formaron los materiales que, miles de años más tarde, conformaron un planeta como la Tierra que, situado a la distancia adecuada de su estrella madre, y con una atmósfera adecuada y abundante agua líquida, posibilitó el surgir de la vida que evolucionó hasta lo que arriba contemplamos. Un alto grado de Humanidad y sentimientos.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre el tiempo de evolución de las estrellas y el tiempo de evolución de la vida que fue la consecuencia de aquella primera fase, sin los materiales estelares, la vida no podría haber aparecido tal como la conocemos.
Una atmósfera primitiva
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
Atmósfera de la Tierra
Venus tiene una atmósfera corrosiva. Cubierta por espesas nubes, la superficie de Venus está, generalmente, oculta a la vista.
La atmósfera de Marte está constituida principalmente por dióxido de carbono (95,3%), nitrógeno (2,7%), argón (1,7%), cantidades menores de agua, monóxido de carbono y oxígeno molecular, y vestigios de gases nobles como el neón, kriptón y xenón.
Fijémonos en Venus y Marte, ninguno de los dos tiene una atmósfera como la de la Tierra. La atmósfera es un sistema caótico y complejo, y la tarea científica de comprenderlo en su globalidad, y en los tres planetas hermanos, promete ser larga, aunque eso sí, apasionante. Y necesaria. Parece que Marte pudo tenerla en el pasado y, albergamos la esperanza de que en su interior, pueda albergar alguna clase de vida.
En el párrafo arriba de la imagen exponemos un simple modelo que indica indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
En el lugar adecuado puede surgir la vida a partir de los elementos que dejaron allí las explosiones supernovas. Se formaron Nebulosas que, con el Tiempo, combinan esos elementos y se conforman materiales esenciales para la vida.
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra, o, al menos eso creo (al decir parecida me refiero a que en lo básico posiblemente seamos parecidos biológicamente hablando, en las formas, ¿quién sabe? Como aquí mismo en la Tierra, en otros mundos puede existir una gran diversidad de formas de vida.
¿PODRÍA EXISTIR VIDA QUE NO ESTÉ BASADA EN EL CARBONO?
No importa a qué ecosistema pertenezcan… ¡Todos están basados en el Carbono!
Una particularidad que tienen en común todos los organismos vivos de la Tierra, desde las bacterias hasta los seres humanos, es que toda la vida que se puede encontrar en nuestro planeta es orgánica o, lo que es lo mismo, está compuesta por moléculas basadas en el carbono…
¿Quién sabe lo que podría existir ahí afuera?
Cuando preguntamos si sería posible formas de vida diferentes al Carbono: Como dice el astroquímico de la NASA Max Bernstein, no hay en toda la tabla periódica un elemento con una química más parecida a la suya que el silicio: “Está en el lugar correcto en la tabla periódica, justo debajo del carbono. Puede formar cuatro enlaces, como el carbono y moléculas tan parecidas que es posible que se pueda construir toda un química paralela”. Por desgracia, no todo el monte es orégano; el silicio también presenta sus inconvenientes. “No conocemos que la química entre el hidrógeno y el silicio sea estable como sucede con el carbono; así, mientras que los hidrocarburos son estables, los análogos de silicio no lo son. Y con el oxígeno pasa algo similar: mientras que los enlaces carbono-oxígeno se pueden hacer y deshacer, con el silicio son eternos. Esto limita fuertemente la capacidad del silicio para ser base de la vida, pero eso no quita que en la bioquímica pueda desempeñar un papel más importante que el que ahora tiene, que es prácticamente nulo”.
Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.
La Vida, en el inmenso Universo, que tiene cientos de miles de millones de mundos repartidos por las galaxias, debe ser cosa cotidiana
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
+
Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens y Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años. ¿dejaremos que sea así? o, por el contrario, pondremos todos los medios para evitarlo?
emilio silvera