Abr
7
¡Nuestra curiosidad! Siempre desvelando misterios
por Emilio Silvera ~ Clasificado en El Universo ~ Comments (9)
En cierta ocasión, Leonardo da Vinci contaba:
“Arrastrado por mi apasionado deseo, anhelante de ver la gran confusión de las variadas y extrañas formas creadas por la ingeniosa Naturaleza, vagué durante un tiempo entre los oscuros acantilados y llegué a la entrada de una gran caverna. Permanecí delante de ella por un tiempo, estupefacto, e ignorante de la existencia de algo semejante, con la espalda curvada y la mano izquierda apoyada en las rodillas, y protegiéndome los ojos con la derecha, con los párpados bajos y semi-cerrados, inclinándome a menudo de un lado y otro para ver si podía distinguir algo del interior; pero no pude por la gran oscuridad que allí había. Y después de permanecer así un rato, de pronto surgieron en mí dos sentimientos, temor y deseo; temor de la amenazante caverna oscura, y deseo de ver si había dentro algo milagroso.”
La historia es un fiel reflejo metafórico de lo que sentimos cuando, ante nosotros, se nos presenta algo que no llegamos a comprender y que nos da miedo abordar pero, prevalece el deseo y la curiosidad que sentimos por desvelar aquel misterio y llegar a conocer que, se esconce dentro de él. Ese impulso, es el que ha llevado a muchos físicos a realizar descubrimientos que han hecho posible el avance del conocimiento del “mundo”.
Aquí vemos la entrada a otra “Gruta” en la que no sabemos que fuerzas y energías podrían estar presentes y que fuerzas de marea nos arrastrarían hacia lugares ignotos situados en otros universos o, por el contrario, en lugar de ser la entrada hacia un mundo maravilloso, sólo se trata del camino que nos lleva hacia la destrucción.
Lo cierto es que cuanto más aprendamos acerca del mundo y cuanto más profundo sea nuestro aprendizaje, tanto más conscientes, específico y articulado será nuestro conocimiento de lo que no conocemos, nuestro conocimiento de nuestra ignorancia. Pues, en verdad, la fuente principal de nuestra ignorancia es el hecho de que nuestro conocimiento sólo puede ser finito, mientras que nuestra ignorancia es necesariamente infinita.” Así lo escribió el gran filósofo de la ciencia Karl Popper.
Hay una difundida y errónea suposición de que la ciencia se ocupa de explicarlo todo, y que, por ende, los fenómenos inexplicados preocupan a los científicos al amenazar la hegemonía de la visión del mundo. El técnico en bata del Laboratorio, en la película de bajo presupuesto, se queda mirando para el techo, pensativo y, de pronto, se da una palmadita en la frente cuando se encuentra con algo nuevo, y exclama con voz temblorosa, entrecortada: “¡Pero, no hay explicación para esto!”. En realidad, por supuesto, cada científico digno se apresura a abordar lo inexplicado, pues es lo que hace avanzar la ciencia. Son, a veces, los grandes sistemas místicos de pensamientos, envueltos en terminologías demasiado vagas para ser erróneas, los que explican todo, raramente se equivocan y no crecen.
El mayor misterio del Universo es la presencia de “esa máquina” que llamamos cerebro y que nos hace comprender, ser conscientes de SER
La ciencia es intrínsecamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema de Gödel demuestra que la plena validez de cualquier sistema inclusive un sistema científico, no puede demostrarse dentro del sistema. En otras palabras, la comprensibilidad de una teoría no puede establecerse a menos que haya algo fuera de su marco con lo cual someterla a prueba, algo más allá del límite definido por una ecuación termodinámica, o por la anulación de la función de onda cuántica o por cualquier otra teoría o ley. Y si hay tal marca de referencia más amplio, entonces la teoría, por definición, no lo explica todo. En resumen, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse. Estamos inmersos en una Naturaleza en la que estará siempre presente ¡la incertidumbre!
Sí, tratar de saber es bueno. Sin embargo, nunca llegaremos a saberlo todo
Tal planteamiento, al menos como lo veo yo, es bueno y saludable. Pensemos en el infierno que sería un universo pequeñito al que pudiéramos explorar y comprender totalmente. Alejandro Magno, se dice , lloró cuando le dijeron que había infinitos mundos (“¡Y nosotros no hemos conquistado ni siquiera uno!”, exclamó sollozando), pero la situación parece más optimista a quienes se inclinan a desatar, no a cortar, el nudo gordiano de la Naturaleza.
Ningún hombre, o mujer, realmente reflexivo deberían desear saberlo todo, pues cuando el conocimiento y su análisis son completos, el pensamiento se detiene y (cosa que no nos conviene), comienza a desaparecer la curiosidad y el interés por las cosas que, al conocerlas, no encierran ningún misterio que desvelar, con lo cual, la degradación comienza su camino en el interior de nuestras mentes.
La falta de interés nos hace caer en la melancolía, el aburrimiento, nada llama ya nuestra atención
La paradoja del más conocido cuadro de la serie La trahison des images (1928–1929) de René Magritte. Serie sobre la que Foucault escribió un no menos conocido ensayo.
René Magritte, en 1926, pintó un cuadro de una pipa y escribió debajo de él con una cuidadosa letra de escolar (lo que arriba podéis leer) y que, traducido, decía “Esto no es una pipa”. Esta pintura podría convertirse apropiadamente en el emblema de la Cosmología científica. La palabra “Universo” no es el Universo; ni lo son las ecuaciones de la teoría de la súper-simetría, mi la ley de Hubble ni la métrica de Friedmann-Walker-Robinson. Generalmente, la ciencia tampoco sirve de mucho para explicar lo que algo, y mucho menos el universo entero, realmente “es”.
La Ciencia describe y predice sucesos, pero paga por este poder al tener que, rectificar muchas veces, dado que las predicciones que se hacen, son aproximaciones de la realidad que buscamos y que, poco a poco, tratamos de perfeccionar depurando los defectos de aquellas más viejas con estas otras más nuevas que llevan incorporados nuevos parámetros después descubiertos.
¿Por qué, pues, la Ciencia tiene éxito? La respuesta es que nadie lo sabe. Es un completo misterio-quizá el completo misterio- por qué la mente humana puede comprender algo del vasto universo. Como solía decir Einstein “Lo más incomprensible del universo es que lo podamos comprender”.
El Universo evoluciona y… ¡Nuestras Mentes también!
Quizá como nuestro cerebro evoluciona mediante la acción de las leyes naturales, éstas resuenan y vibran de alguna manera, por nosotros desconocida en él. La Naturaleza nos presenta una serie de repeticiones -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de modo universal- y estas pueden proporcionar el vínculo entre lo que ocurre dentro y fuera de nuestras mentes. Pero, el misterio, realmente no es que coincidamos de alguna manera con el universo, sino que en cierta medida estamos en conflicto con él, y sin embargo podemos comprender algo de él. ¿Por qué esto es asó? Sin lugar a ninguna duda es por el simple hecho de que somos “una parte del universo” ¡La que piensa! y, al estar a él conectados con esos hilos invisbles de la Mente, nos llegan mensajes que despiertan la intuición que nos lleva de la mano de los nuevos pensamientos que surgen hacia ese mundo mágico del saber.
Claro que, el teorema de Gödel indica que siempre estaremos limitados en el saber del universo u, esos limites subyacen, muy posiblemente en aquella ruptura de las simetrías cósmicas en el momento de la génesis o de lo que fuera lo que allí pasó, si fluctuación de vacío, a un cambio de fase especatacular que, desde otro iniverso, nos envió a éste nuestro creado en la transición.
¡Sabemos tan poco!
Emilio Silvera
Abr
7
Dos verdades incompatibles
por Emilio Silvera ~ Clasificado en Sin categoría ~ Comments (27)
Trabajo presentado en la XIX Edición del Carnaval de la Física
El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:
Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.
El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisenberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como las familias de los Leptones y Quarks.
Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.
Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.
Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.
Abr
7
Desde la materia inerte…a los pensamientos
por Emilio Silvera ~ Clasificado en La Mente - Filosofía ~ Comments (0)
Una parte de la ciencia estudia la estructura y la evolución del Universo: La cosmología.
La cosmología observacional se ocupa de las propiedades físicas del Universo, como su composición física referida a la química, la velocidad de expansión y su densidad, además de la distribución de Galaxias y cúmulos de galaxias. La cosmología física intenta comprender estas propiedades aplicando las leyes conocidas de la física y de la astrofísica. La cosmología teórica construye modelos que dan una descripción matemática de las propiedades observadas del Universo basadas en esta comprensión física.
La cosmología también tiene aspectos filosóficos, o incluso teológicos, en el sentido de que trata de comprender por qué el Universo tiene las propiedades observadas.
La cosmología teórica se basa en la teoría de la relatividad general, la teoría de Einstein de la gravitación. De todas las fuerzas de la naturaleza, la gravedad es la que tiene efectos más intensos a grandes escalas y domina el comportamiento del Universo en su conjunto.
El espacio-tiempo, la materia contenida en el Universo con la fuerza gravitatoria que genera y, nuestras mentes que tienen conocimientos de que todo esto sucede.
De manera que, nuestro consciente (sentimos, pensamos, queremos obrar con conocimiento de lo que hacemos), es el elemento racional de nuestra personalidad humana que controla y reprime los impulsos del inconsciente, para desarrollar la capacidad de adaptación al mundo exterior.
Al ser conscientes, entendemos y aplicamos nuestra razón natural para clasificar los conocimientos que adquirimos mediante la experiencia y el estudio que aplicamos a la realidad del mundo que nos rodea.
Abr
6
Observando las estrellas, vemos evolucionar al Universo
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Las Hiper-gigantes son las estrellas más luminosas conocidas en nuestro Universo
Hace algún tiempo que salió la noticia en los medios: “Un equipo de científicos europeos, entre ellos investigadores del Instituto de Astrofísica de Canarias (IAC), ha hecho públicos los resultados de 30 años de investigación sobre la estrella hiper-gigante HR 8752, que han revelado el eslabón perdido en la evolución de este tipo de astros. Concretamente, han descubierto que, la región inestable conocida como Vacío Evolutivo Amarillo, puede cambiar profundamente la evolución de una estrella ya que, en estas tres décadas, HR 8752 ha aumentado de forma espectacular su temperatura superficial en 3.000 Kelvin (K) a su paso por esta región.”
Los resultados obtenidos venían a desvelar algunos misterios que antes, no tenían explicación.
“Una hipergigante (hypergiant en inglés) es una estrella excepcionalmente grande y masiva, incluso mayor que una supergigante. Su masa puede ser de hasta 1000 veces la masa de nuestro Sol, próxima al límite máximo teórico, el cual establece que la cantidad de masa en una estrella no puede exceder las 120 M☉ (masas solares). Este límite en masa está asociado a la luminosidad de Eddington, por el que estrellas más masivas simplemente no pueden estar en equilibrio al vencer la presión de radiación interna a la fuerza gravitacional: producirían tanta energía que se desprenderían de la masa en exceso de las 120 M☉. Aun así, algunas hipergigantes aparentan tener más de 100 M☉ e, inclusive, haber tenido, inicialmente, entre 200 y 250 M☉, al contrario de lo que predicen las teorías actuales sobre la formación y evolución estelar.”
Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”.
“R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.”
A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbono–oxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.çç
Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla desde 520 a.l. de distancia y tiene una compañera enana. Su color es el rojo intenso.
Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente forma parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 a.l., aproximadamente la mitad de la distancia del cúmulo.
Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante tipo M2 que es una variable semirregular. Se dice que está a unos 400 a.l. de la Tierra y su luminosidad es 5000 veces superior a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión (como algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.
Arthurus es la estrella Alfa Boötis, magnitu -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.
Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 situada a 1 400 a.l., su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.
Al lado de estas gigantes, el Sol y otras estrellas resultan minúsculos como podemos ver en la imagen y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene para hacer posible la vida en la Tierra.
¡No por pequeño se es insignificante! Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!
El grupo de tres estrellas gigantes Pismis 24-1 (CSIC).
Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.
Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Por ejemplo, de Eta Carinae (antes mencionada y cuya imagen tenéis arriba), es una variable irregular hiper-gigante, que llegó a ser la segunda estrella más brillante del cielo.
Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, en tiempos se llegó a creer que era la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida de masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.
Estrellas masivas como Eta Carinae, Betelgeuse, Arthurus, Antares y tantas otras que ahora sabemos que existen nos llevan a saber que, cuando mueren, se pueden convertir en otros objetos distintos como, por ejemplo:
Estrellas de Neutrones
Estrellas que se forman a partir de estrellas masivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese momento, la estrella comienza a contraerse bajo su propio peso, de forma tal que, los protones y electrones se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de exclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos como estrella de neutrones de intenso campo electromagnético y rápida rotación. Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.
¿Estrella de Quarks?
Nadie sabe si las estrellas de quarks existen, pero se publicó en Science un artículo que muestra cómo distinguirlas de las estrellas de neutrones cuando …
Es hipotética, aún no se ha observado ninguna pero se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad que sería frenada por los Quarks que también, son fermiones.
Si la estrella no es masiva, y tiene una masa como la del Sol, su final será la de convertirse en una ¡Estrella Enana Blanca!
Nuestro Sol es de esta clase de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, como ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo número cuántico, y, siendo así, se degeneran y hace que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.
El fenómeno de convertirse en enana blanca ocurre cuando la estrella original tiene una mása máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.
Nos despediremos con estas bellas imágenes de sendas Nebulosas Planetarias como, un día lejano aun en el futuro, nos mostrará nuestro Sol al llegar al término de su vida. Ese será su final: Una bonita Nebulosa Planetaria con una estrella enana blanca en en el centro.
Claro que, tampoco ese será el final para el Universo en el que, nuevas estrellas seguirán naciendo para hacer posible que, mundos como la Tierra puedan, con su luz y su calor, hacer surgir formas de vida que, como la nuestra, pueda alcanzar la consciencia de Ser y, a partir de ahí… comenzará otra nueva aventura que será digna de contar.
emilio silvera
Abr
5
Evolución por la energía
por Emilio Silvera ~ Clasificado en Energías de la Tierra ~ Comments (1)
El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.
La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber.
De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.
Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.
Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.
Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.
La progresión lógica se realiza siguiendo una secuencia progresiva desde los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.
Los que han leído algunos de mis trabajos saben que aquí podrán encontrarse con datos y materias diversas, y aunque el tema central, como he reseñado por título, es la evolución por la energía, también podrán leer sobre la entropía, las fuerzas de la naturaleza, el átomo, o incluso, del Sol, los vientos, radiación solar o cualquier dato que, en realidad, pueda estar conectado con el concepto de energía.
Operamos con unidades
El conocimiento, las peculiaridades y las complejidades de las diferentes formas de energías, así como su almacenamiento y transformación, requiere que cuantifiquemos esas cualidades y procesos. Para ello debemos introducir cierto número de conceptos científicos y medidas, así como sus unidades correspondientes.
Al hablar sobre energía nos encontramos con el problema de que el uso en el habla común de muchos términos científicos está equivocado. Como dice Henk Tennekes, “hemos creado una terrible confusión con los conceptos físicos simples en la vida ordinaria”. Pocos de esos malentendidos son tan generales y molestos como los relacionados con los términos energía, potencia y fuerza.
Definimos fuerza como la intensidad con la que intentamos desplazar – empujar, tirar, levantar, golpear… – un objeto. Podemos ejercer una fuerza enorme sobre la roca que sobresale en una montaña incluso si ésta permanece inmóvil. Sin embargo, sólo realizamos trabajo cuando el objeto que empujamos se mueve en la dirección de la fuerza aplicada. De hecho, se define el trabajo realizado como el producto de la fuerza aplicada por la distancia recorrida. La energía, como se define en los libros de texto, es “la capacidad de hacer trabajo”, y así, ésta se medirá con las mismas unidades que el trabajo.
Si medimos la fuerza en unidades denominadas newton (N), llamada así en honor de Isaac Newton, y la distancia en metros (m), el trabajo se mide en la malsonante unidad de newton-metro. Para simplificar, los científicos llaman al newton-metro julio (J), en honor de James Prescot Joule (1818 – 1889), quien publicó el primer cálculo preciso de la equivalencia entre trabajo y energía. El julio es la unidad estándar de trabajo y energía.
La potencia es simplemente la tasa de trabajo, es decir, un flujo de energía por unidad de tiempo. A un julio por segundo lo llamamos vatio (W) en honor de James Watt (1736 – 1819), inventor de la máquina de vapor mejorada y el hombre que estableció la primera unidad de potencia, que no fue el vatio sino el caballo de vapor (CV), una unidad aproximadamente igual a 750 W.
Seguimos con algunas tablas para documentarnos:
Almacenamiento de energía | |
Energía de | Magnitud |
Reservas mundiales de carbón | 200.000 EJ |
Reservas mundiales de masa vegetal | 10.000 EJ |
Calor latente de un tormenta | 5 PJ |
Carga de carbón de un camión de 100 t | 2 TJ |
Barril de petróleo crudo | 6 GJ |
Botella de vino de mesa blanco | 3 MJ |
Garbanzo pequeño | 5 KJ |
Mosca en la mesa de la cocina | 9 mJ |
Gota de agua de 2 mm en una hoja de árbol | 4 μJ |
Flujos de energía | |
Energía de | Magnitud |
Radiación solar | 5.500.000 EJ |
Fotosíntesis mundial neta | 2.000 EJ |
Producción mundial de combustibles fósiles | 300 EJ |
Huracán típico en el Caribe | 38 EJ |
La mayor explosión de bomba H en 1961 | 240 PJ |
Calor latente de un tormenta | 5 PJ |
Bomba de Hiroshima en 1945 | 84 TJ |
Metabolismo basal de un caballo grande | 100 MJ |
Ingesta diaria de un adulto | 10 MJ |
Pulsación de una tecla del ordenador | 20 mJ |
Salto de una pulga | 100 nJ |
Para avanzar un poco más tenemos que pasar de empujar y tirar (lo que llamamos energía mecánica o energía cinética) a calentar (energía térmica). Definimos una unidad llamada caloría como la cantidad de calor necesario para elevar la temperatura de un gramo de agua desde 14’5 a 15’5 ºC. Usando esta unidad podemos comparar energías térmicas, pero una vez más, esta unidad no nos permite comparar todas las clases diferentes de energías.
Si nos preguntamos ¿qué es la energía?, esta pregunta no es fácil de contestar. Incluso uno de los más grandes físicos modernos resulta de poca ayuda: “es importante darse cuenta de que en física, en realidad, no se sabe muy bien qué es la energía. No tenemos una idea de por qué la energía está formada por pequeños pulsos de una cantidad definida”, decía Richard Feynman en su libro Lectures on Physics.
David Rose, para definir la energía, decía: “es un concepto abstracto inventado por los físicos en el siglo XIX para describir cuantitativamente una amplia variedad de fenómenos naturales”.
E: representa la energía
m: la masa
c: la velocidad de la luz en el vacío ¡casi 300 000 km/s!
Einstein nos dijo: “la masa y la energía son manifestaciones de una misma cosa”.
El conocimiento moderno de la energía incluye un número de descubrimientos fundamentales: la masa y la energía son equivalentes; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).
El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo como una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como E = mc2; la ecuación más conocida de la física.
El segundo descubrimiento se demuestra continuamente en miles de trasformaciones energéticas que se producen en el universo. La energía gravitatoria mantiene las galaxias en movimiento, a la Tierra girando alrededor del Sol y confinada la atmósfera que hace nuestro planeta habitable. La transformación de la energía nuclear en el interior del Sol produce el continuo flujo de energía electromagnética, llamada radiación solar. Una pequeña parte de esa energía llega al planeta Tierra que, a su vez, libera energía geotérmica. El calor producido en ambos procesos pone en movimiento la atmósfera, los océanos y las gigantescas placas tectónicas terrestres.
Una pequeña parte de la energía radiante del Sol se transforma, a través de la fotosíntesis, en reservas de energía química, que son utilizadas por muchas clases de bacterias y plantas. Los seres heterótrofos (organismos que van desde las bacterias, los protozoos y los hongos hasta los mamíferos), ingieren y reorganizan vegetales de las plantas en nuevos enlaces químicos y los utilizan para crear energía mecánica (cinética).
La energía química almacenada durante millones de años en los combustibles fósiles se libera por combustión en calderas y máquinas como energía termal (térmica), la cual, a través de muchos procesos se convierte en energía mecánica, química o electromagnética.
La colisión entre las placas terrestres lleva a que las rocas conformantes de la corteza puedan romperse (fallarse) o bien plegarse. Este último proceso ocurre en aquellos estratos rocosos que se ven sometidos a altas presiones y temperaturas, que permiten que las rocas se tornen dúctiles. Las cadenas montañosas o cordilleras se generan por la colisión de las placas tectónicas y, por lo general, se localizan cerca de sus márgenes.
Potencia de fenómenos de corta duración | ||
Flujos de energía | Duración | Potencia |
Terremoto de magnitud 8 en la E. Richter | 30 s | 1’6 PW |
Gran erupción volcánica | 10 h | 100 TW |
Energía cinética de una tormenta | 20 min | 100 GW |
Gran bombardeo de la 2ª Guerra Mundial | 1 h | 20 GW |
Tornado medio en EE.UU. | 3 min | 1’7 GW |
Los cuatro motores del Boeing 747 | 10 h | 60 MW |
La mayor máquina de vapor de Watt | 10 h | 100 KW |
Carrera de 100 m | 10 s | 1’3 KW |
Lavadora doméstica | 20 min | 500 W |
Audición de un CD | 60 min | 25 W |
Una vela | 2 h | 5 W |
El vuelo de un colibrí | 3 min | 0’7 W |
El segundo principio de la termodinámica se refiere a la inevitable realidad de que a lo largo de la cadena de transformación de la energía se va perdiendo la capacidad de realizar un trabajo útil. Hay una magnitud asociada con esta pérdida de utilidad de la energía que se llama entropía; en cada transformación la energía se conserva, pero la entropía del sistema en su conjunto sólo puede aumentar. No hay nada que podamos hacer contra esta disminución de utilidad. Un barril de petróleo es un almacén de energía muy útil y de baja entropía que se puede transformar en calor, electricidad, movimiento y luz. Las moléculas calientes de aire emitidas por el tubo de escape de un motor o la luz que rodea una bombilla representan un estado de alta entropía en el que se producen irrecuperables pérdidas de utilidad.
En un sistema cerrado, este proceso unidireccional de disipación entrópica tiene la inevitable consecuencia de una pérdida de la complejidad y un aumento de la homogeneidad. Esto se puede ver si usted compara la multitud de moléculas orgánicas que componen el petróleo con la monotonía de unos pocos tipos de moléculas sencillas que forman los gases del tubo de escape.
Por el contrario, todos los organismos vivos (desde las bacterias hasta las civilizaciones humanas) son sistemas abiertos, que están importando y exportando energía constantemente; son capaces de mantenerse en estado de desequilibrio químico y termodinámico, creciendo y evolucionando hasta una mayor heterogeneidad y complejidad. Desafían temporalmente la tendencia entrópica.
No conviene utilizar unidades inadecuadas para medir esta gran variedad de procesos, porque casi siempre las cifras estarían seguidas o precedidas de muchos ceros. Tanto el julio como el vatio representan respectivamente cantidades muy pequeñas de energía y potencia. Aproximadamente 30 microgramos de carbón o 2 segundos de metabolismo de un ratón de campo equivalen a 1 julio. Un vatio es la potencia de una pequeña vela encendida o el vuelo rápido de un colibrí.
Emilio Silvera