May
22
Noticias Boletín de la R.S.E.F.
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Científicos japoneses inauguran el observatorio más alto del mundo en Chile. En la cima del cerro Chajnantor, a 5640 metros de altitud, el Observatorio Atacama de la Universidad de Tokio (TAO) pretende desvelar los orígenes de planetas, estrellas primordiales y galaxias con nuevos instrumentos infrarrojos.
Transcribe Emilio Silvera V., para los visitantes al Blog.
Como miembro honorario de la R.S.E.F., y, adscrito a los Grupos Especializados de Física Teórica y Astrofísica.
May
22
¿La masa perdida? ¿O no entendemos nada?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.
La masa perdida
La materia perdida del Universo estaría a 400 millones de años luz de la Tierra
El hallazgo fue posible gracias a observaciones de rayos X en el borde de un agujero negro
Un equipo de científicos ha encontrado evidencias de la “materia perdida” en el Universo cercano utilizando dos telescopios de rayos X (el Chandra y el XMM-Newton). Esta materia, compuesta por gas caliente difuso conocido como WHIM (medio intergaláctico templado-caliente), ha sido uno de los persistentes misterios cosmológicos de los últimos tiempos.
Para obtener estos resultados, los investigadores analizaron la luz de rayos X procedente de un lugar del cosmos que se encuentra a 400 millones de años luz de la Tierra.
La masa perdida o que no entendemos nada
Misterio y predicción
La materia perdida está compuesta por bariones, una familia de partículas subatómicas (como protones o neutrones) presente también en la Tierra, las estrellas, las galaxias, etc.
Hasta ahora, las mediciones realizadas de nubes de gas distantes y galaxias habían proporcionado una buena estimación de la cantidad de esta materia presente en el Universo cuando éste tenía sólo unos pocos miles de millones de años.
Aquí nos hemos hecho un cuadro de lo que podría ser
Sin embargo, un recuento del universo cercano mucho más antiguo ha revelado siempre sólo alrededor de la mitad de la materia normal presente en él, lo que ha supuesto una deficiencia demasiado amplia en las estimaciones.
Según publica la NASA en un comunicado, el misterio era, por tanto, dónde residía la materia perdida del universo cercano.
En predicciones anteriores se había establecido que la mayoría de ella debía encontrarse en forma de gas difuso y caliente, bautizado como Warm-Hot Intergalactic Medium (WHIM) (“medio intergaláctico templado-caliente”).
WHIM estaría compuesto por el material generado a partir de la formación de las galaxias. Sin embargo, hasta ahora, había sido difícil de captar debido a que la materia que lo compone es tan difusa que las propias observaciones lo atraviesan.
“Los valores de las densidades de materia bariónica son: La densidad crítica es: Esto equivale a unos 5.6 átomos de hidrógeno por m3 para h=0.7. Esto significa que la densidad media del Universo hoy es 0.1 átomos por m3 o unos 300 átomos dentro de un volumen comparable a una piscina olímpica pequeña (50x25x2=2500 m3).”
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.
Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).
La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano.
Universo cerrado
Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.
En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.
Universo abierto
Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.
Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”, dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.
Universo plano
Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría euclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.
Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamente a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón, proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein y la quasipartícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.
La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..
El Big Crunch: el fin de nuestro universo (o su nuevo comienzo)
Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:
Son nuevos hallazgos astronómicos que sorprenden a los científicos con evidencias de que el Big Rip probablemente ocurra. Dicen que pruebas científicas afirman que el Universo se dirige hacia un final violento.
¿Están debidamente contrastadas dichas pruebas?
La “muerte caliente” del universo se da cuando este alcanza un estado de máxima entropía. Esto acaece cuando toda la energía se ha movido a lugares de menor energía, y todo el universo se encuentra en equilibrio térmico. Una vez esto ha sucedido, cesa el flujo de energía.
la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.
La entropía1 es el grado de desorden y de caos2 que existe en la naturaleza. Es el segundo principio de la termodinámica que puede definirse esquemáticamente como el “progreso para la destrucción” o “desorden inherente a un sistema”. Este principio establece que a cada instante el Universo se hace más desordenado.
En un sistema cerrado como el Universo, la Entropía siempre aumenta y trae el desorden
Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.
El Final del Universo no se conoce, todo son conjetura