Jun
28
¿Será igual el Universo en todas partes?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
La vieron caer y corrieron hasta el lugar. La escena era la que se podía esperar después de la caída de una extraña nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron a personal especializado en este tipo de investigaciones.
Cada vez se acercaban más curiosos que eran retenidos por las autoridades cerrándoles el paso
“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él recogía muestras de aquella extraña nave accidentada y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.
Nuevas formas de aleaciones de los metales nos hacen descubrir otras posibilidades
Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia?
Tiene y encierra tantos misterios la materia que estamos aún a años-luz de saber y conocer sobre su verdadera naturaleza (Hayer el contertulio Nelson nos dio una pista en su comentario). Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.
“Los elementos transuránicos (conocidos también como elementos transuránidos) son elementos químicos con número atómico mayor que 92, el número atómico del elemento uranio. El nombre de trans-uránidos significa “más allá del uranio”.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
El radio clásico del electrón, también conocido como radio de Lorentz o longitud de difusión Thomson, se basa en un modelo relativista clásico del electrón (es decir, no cuántico). Su valor se calcula como
donde y son la carga eléctrica y la masa del electrón, es la velocidad de la luz, y es la permitividad del vacío o espacio libre.
En unidades CGS, esto se simplifica
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Se han captado imágenes reales de un electrón y de dos átomos
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.
¡No por pequeño, se es insignificante! De todas las maneras, las medidas dependen del contexto en el que se estén midiendo. El conjunto de la imagen de arriba nos parecerá grande pero, ¿cómo de grande es si lo comparamos con la Galaxia?
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
La primera imagen de la partícula de luz… ¡El Fotón!
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
El Bosón intermediario de la fuerza de Gravedad, parece burlarse de nosotros y sigue escondido
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
El Gravitón lo hemos querido imaginar de muchas maneras. Sin embargo, nunca lo pudimos ver
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.
Ahora resulta que el “vacío”… ¡No existe”! Siempre hay
Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…
Es este caso parece que el éxito fue el final de la búsqueda
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.
De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿qué cosa es?
Antes se denominaba éter LUMINÍFERO (creo) a toda esa inmensa región. Más tarde, nuevas teorías vinieron a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón (que dicen haber hallado pero que yo, no estoy muy seguro de que así sea) que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándard de la Física de Partículas se afiance más.
Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.
Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.
Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas
Emilio Silvera V.
Jun
28
El Tiempo transcurre, las ideas fluyen, la comprensión se acerca
por Emilio Silvera ~ Clasificado en General ~ Comments (3)
Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho así, ¿cómo habríamos aprendido lo que sabemos? Muchos han sido los sabios y grandes pensadores que nos señalaron el camino a seguir.
Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad.
El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta clase de paradoja y, si no existe tal barrera, debería existir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.
¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez? Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la persona amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales, pensaremos como nos mostró Einstein, a una mayor escala, en la utilidad de un espacio y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.
Hay en todas las cosas un ritmo que es parte de nuestro Universo
“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede encontrar ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”
De “Frases escogidas de Muad´Dib”, por la Princesa Irulan.
Siempre hemos imaginado estar en otros niveles
Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí. Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un viaje en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias auto-consistentes. En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.
Siempre nos ha gustado imaginar
Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquina que envía “fax”, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.
Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde en el que miremos las cosas.
“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”
Douglas Adams
Todavía los hay que creen, que la vida, es única en la Tierra
Lo cierto es que, siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en donde las constantes son diferentes y la vida no puede existir?
En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno número 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!
Nuestro Universo es como es porque las constantes son las que son
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación peligrosa para la vida.
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El número puro y adimensional, 137!!
Un nuevo estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el nombre dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el espacio llamada la constante cosmológica, originalmente propuesta por Albert Einstein, sería la verdadera causa.
En nuestro planeta, como en otros, en cualquier charca caliente podría surgir la vida
Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión.
Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y continuar así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Crunch cataclísmico en el futuro lejano. El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal (que hoy parece descartado).
Todo dependerá de cual sea el valor de la densidad de materia.
De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la predicción válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar.
Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.
Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la formación de estrellas y planetas… y ¡vida!
Gráfico: Sólo en el modelo de universo que se expande cerca de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la ideal (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.
No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que marca la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).
Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Historia del Universo.
Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página anterior que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de condiciones de partida especiales.
Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el espacio, cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.
Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estado de evolución en el que nos encontramos, las estrellas tuvieron que trabajar más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.
Situada a 12.900 millones de años-luz, descubren la Galaxia más lejana
Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los datos obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.
emilio silvera
Jun
28
Observan la ruptutura de simetría en el Tiempo en las leyes de la Física
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Hace unos años que pude leer este artículo
“Una investigación liderada por el Instituto de Física Corpuscular (centro mixto del Consejo Superior de Investigaciones Científicas y la Universidad de Valencia) ha obtenido evidencias de la ruptura de la simetría en el tiempo en las leyes de la Física.
El hallazgo, que se publica esta semana en la revista Physical Review Letters, ha sido realizado por la colaboración internacional BABAR, del laboratorio SLAC (Stanford Linear Accelerator Center, de sus siglas en inglés) del Departamento de Energía de Estados Unidos en la Universidad de Stanford (California).”
El tiempo discurre inexorablemente. En la historia del universo y en los sistemas complejos, la evolución temporal está asociada al aumento de entropía. Dicho de otro modo, con el paso del tiempo, el desorden siempre crece a partir de una situación inicial más ordenada.
Para explicarlo, podemos imaginar que vemos hacia atrás una película en la que un jarrón cae al suelo y se rompe en pedazos. Nos percataríamos muy rápido de que lo que observamos es imposible desde el punto de vista de las leyes físicas, porque sabemos que no es posible que los pedazos vuelen del suelo y se ordenen formando un jarrón. Y eso es porque desde nuestro punto de vista, “la flecha del tiempo” transcurre sin interrupción desde el pasado al futuro.
Ahora bien, para una partícula aislada, el paso del tiempo parece el mismo hacia delante y hacia atrás, es decir, su movimiento es reversible o temporalmente simétrico. Imaginemos que ahora vemos una película en la que aparece una bola de billar que choca contra una banda. Si no nos lo dicen, no seríamos capaces de saber si la proyección de la película va hacia delante o hacia atrás. Esto se debe a que, en ambos sentidos temporales, el movimiento de la bola de billar cumple las mismas leyes físicas.
Este concepto se conoce como simetría bajo inversión temporal y nos dice que, en el mundo de las partículas, las teorías físicas son válidas tanto para un sentido de su movimiento como para su inverso, lo que equivale a decir que funcionan igual hacia delante como hacia atrás en el tiempo.
El tiempo tiene una dirección preferente
Las leyes de Newton, la mecánica cuántica, el electromagnetismo y la relatividad general de Einstein son exactamente las mismas en un universo el que el tiempo fluyese en la dirección contraria. El hecho de que nosotros tengamos la impresión de que exista una diferencia entre el pasado y el futuro, ¿sólo una ilusión subjetiva? Diferentes hechos objetivos de la física indican que sí que existe una flecha del tiempo y que probablemente tengan algo en común que permita explicar la existente asimetría del tiempo.
José Bernabéu explica que “la ruptura de la simetría temporal o simetría T en física de partículas está relacionada con la asimetría CP existente entre materia y antimateria, necesaria para generar el universo actual de materia en algún momento de su historia. La simetría C afirma que, sabiendo que a cada partícula de la naturaleza le corresponde una antipartícula con carga opuesta, las leyes de la física serían las mismas al intercambiar las partículas con carga positiva con las de carga negativa”.
“La simetría CP se basa en la composición de la simetría C y la simetría P. La simetría C o simetría de carga afirma que las leyes de la Física serían las mismas si se pudiesen intercambiar las partículas con carga positiva con las de carga negativa. La simetría P o simetría de paridad dice que las leyes de la física permanecerían inalteradas bajo inversiones especulares, es decir, el universo se comportaría igual que su imagen en un espejo. La simetría CP es el producto de ambas.”
La simetría P señala que las leyes de la física permanecerían inalteradas bajo inversiones especulares, es decir, el universo se comportaría igual que su imagen en un espejo. Estas dos simetrías combinadas dan lugar a la simetría carga-paridad o simetría CP. Experimentos previos con partículas conocidas como mesones K y B han observado que no se cumple la simetría CP. Y el teorema CPT indica que, para cualquier sistema de partículas, las simetrías deben mantenerse equilibradas. O lo que es lo mismo, si la simetría CP no se cumple, la simetría T tampoco.
El investigador Fernando Martínez-Vidal añade:
“el experimento BABAR, que fue diseñado para el estudio en profundidad de la asimetría entre materia y antimateria, nos ha permitido ahora observar directamente por primera vez la ruptura de la simetría T”.
Correlación cuántica
Entre 1999 y 2008, se produjeron más de 500 millones de mesones B en el acelerador de partículas del SLAC, y sus contrapartidas de antimateria, llamados B-bar. Así, los científicos observaron cómo estas partículas incumplían la simetría CP. El problema para observar la ruptura de la simetría T residía en que los mesones B se desintegran irreversiblemente en pocas billonésimas de segundo, impidiendo invertir su situación inicial y final.
La solución se ha encontrado mediante la correlación cuántica entre los dos B, que permite que la información de la partícula que se desintegra primero se utilice en ese momento para determinar el estado de su partícula compañera que aún vive. Los investigadores han descubierto que el estado de este último mesón B se transforma en otro unas seis veces más a menudo en un sentido que en el inverso.
Bernabéu aclara que “este hecho demuestra inequívocamente la ruptura de la simetría bajo inversión temporal en las leyes fundamentales de la Física”. Estos resultados son tan contundentes que la probabilidad de que sean una casualidad es similar a la de obtener la misma cara de un dado al lanzarlo 55 veces seguidas, 14 sigma en lenguaje estadístico. Los físicos de partículas consideran que a partir de 5 sigma se trata de un descubrimiento.
La investigación cuenta con el apoyo del Ministerio de Economía y Competitividad (MINECO), a través del Programa Nacional de Física de Partículas, y de la Generalitat Valenciana, a través del Programa de Excelencia PROMETEO.
En los medios:
“Observan la ruptura de la simetría en el tiempo en las leyes de la Física“, Europa Press (19/11/2010)
“El CSIC se topa con el tiempo asimétrico“, La Razón (19/11/2012)
“Time-reversal asymmetry in particle physics has finally been clearly seen“, Physics Today (noviembre 2012)
“Backward ran sentences…“, The Economist (septiembre 2012)
Jun
28
Noticias del Cosmos
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Esta es una combinación de imágenes de ALMA y del telescopio VLT (Very Large Telescope). El objeto central es una galaxia muy lejana, llamada BDF 3299, que se ve cuando el universo tenía menos de 800 millones de años de edad. La nube roja en la parte inferior izquierda es la detección de ALMA de una enorme nube de material a partir de la cual se está formando la joven galaxia. Crédito: ESO/R. Maiolino.
El Atacama Large Millimeter/submillimeter Array (ALMA) se ha utilizado para detectar las nubes de gas con formación estelar más distantes encontradas hasta ahora en galaxias normales del universo temprano. Las nuevas observaciones permiten a los astrónomos empezar a ver cómo se construyeron las primeras galaxias y cómo despejaron la niebla cósmica en la época de reionización. Esta es la primera vez que pueden verse este tipo de galaxias como algo más que manchas difusas.
Grupo de galaxias que se creía desaparecido y cuya existencia contribuirá a entender el origen de las estrellas. / Efe
La carencia de metales caracteriza la formación de las estrellas de las primeras galaxias, según sugiere un estudio del Observatorio Astrofísico Arcetri en Florencia (Italia) que se publica en la revista Nature. El estudio apoya un mecanismo propuesto recientemente sobre el crecimiento de galaxias en los inicios del Universo.
Cuando las primeras galaxias se empezaron a formar, unos cuantos cientos de millones años después del Big Bang, el universo estaba poblado por una niebla de gas de hidrógeno. A medida que empezaron a aparecer y a aumentar las fuentes brillantes — tanto estrellas como cuásares alimentados por enormes agujeros negros — estas despejaron la niebla e hicieron el universo transparente a la luz ultravioleta. Los astrónomos llaman a esto la época de reionización, pero poco se sabe sobre estas primeras galaxias y, hasta ahora, sólo se han visto como manchas muy tenues. Sin embargo, gracias a nuevas observaciones que utilizan las capacidades de ALMA, esto está empezando a cambiar.
“Un equipo de investigadores observó, gracias al Atacama Large Millimeter/submillimeter Array(ALMA), señales de oxígeno, carbono y polvo en una galaxia del Universo primitivo, 13.000 millones de años atrás. Esta es la galaxia más antigua donde se ha detectado esta combinación de señales. Al comparar las diferentes señales, los investigadores llegaron a la conclusión de que en realidad se trata de dos galaxias en colisión, las más antiguas descubiertas a la fecha.”
ALMA detecta galaxias en c olisión en los comienzos del Universo
“Un equipo de investigadores observó, gracias al Atacama Large Millimeter/submillimeter Array(ALMA), señales de oxígeno, carbono y polvo en una galaxia del Universo primitivo, 13.000 millones de años atrás. Esta es la galaxia más antigua donde se ha detectado esta combinación de señales. Al comparar las diferentes señales, los investigadores llegaron a la conclusión de que en realidad se trata de dos galaxias en colisión, las más antiguas descubiertas a la fecha.”
A pesar de lo que dice la noticia, lo cierto es que, no las tenemos todas consigo en cuanto a la formación de las galaxias se refiere, ya que, una de las incógnitas que habría que despejar, es, ¿Cómo se pudieron formar a pesar de la expansión de Hubble?
ALMA consiguió captar una señal tenue, pero clara, de carbono (que brillaba intensamente) de una de las galaxias, llamada BDF2399. Sin embargo, este resplandor no provenía del centro de la galaxia, sino más bien de uno de sus lados.
El coautor, Andrea Ferrara (Escuela Normal Superior, Pisa, Italia) explica el significado de los nuevos descubrimientos: “Se trata de la detección más distante hecha hasta ahora de este tipo de emisión de una galaxia ‘normal’, vista menos de mil millones de años después del Big Bang. Nos da la oportunidad de ver la acumulación de las primeras galaxias. Por primera vez estamos viendo galaxias tempranas, no sólo como pequeñas manchas, ¡sino como objetos con estructura interna!”.
Recopiló información: Emilio Silvera V.