Jul
15
¿En qué nos convertiremos? ¿Tenemos algún destino reservado?
por Emilio Silvera ~ Clasificado en El Futuro incierto ~ Comments (1)
En su estructura, la Vía Láctea, está conformada por dos brazos espirales principales, llamados del Escudo-Centauro y Perseo, y dos brazos secundarios, los de Norma y Sagitario. Nuestro Sistema Solar se encuentra en el brazo de Orión o Local, el cual forma parte del brazo espiral de Sagitario.
El Sistema Solar es un sistema planetario de la Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión. Según las últimas estimaciones, el Sistema se encuentra a unos 28 mil años luz del centro de la Vía Láctea. Está formado por una única estrella llamada Sol, que da nombre a este Sistema, más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea y Ceres), asteroides, cometas, así como el espacio interplanetario comprendido entre ellos. Y, no lo olvidemos, algunos planetas están acompañados de “pequeños mundos” que llamamos satélites naturales y en el caso de la Tierra Luna.
“
Hace algunos años me hallé a mi mismo en un lugar completamente inesperado: una conferencia sobre teoría de cuerdas. Mi campo de investigación es la materia condensada, el estudio de materiales como metales y superconductores a tewmperaturas próximas al cero absoluto. Esta disciplina se halla todo lo lejos de la teoría de cuerdas como podría estarlo sin salirse de la física. La Teoría de cuerdas intenta describir la Naturaleza a energía muhco mayores a las que puedan alcanzarse en los laboratorios terrestres o, de hecho, en cualquier lugar del universo conocido. Quines a ella se dedican estudian las exóticas leyes que gobiernan los agujeros negros y postulan que el universo posee otras dimensiones espaciales, además de las tres que podemos ver. Para ellos, la Gravedad constituye la interacción dominante de la Naturaleza. Para mí, no desempaña ningún papel.”
¿Un destino reservado para nosotros? ¿Acaso somos especiales?
Como el Futuro no existe, es el Tiempo por llegar, nadie puede saber lo que allí estará presente, ni lo que para entonces habrá pasado, y, como en Física se habla de la CAUSALIDAD, PARECE QUE, AL MENOS EN PARTE, SEREMOS NOSOTROS LOS QUE FORJAREMOS NUESTRO PROPIO DESTINO. Sin embargo, independientemente de lo que hagamos o dejemos de hacer, está el Universo con sus imprevistos que lo podría cambiar todo, y, siendo así (que lo es), nadie puede vaticinar lo que el Destino de la Humanidad nos aguarda.
Nada es eterno, todo en nuestro Universo tiene un Principio y un Final. No importa el Tiempo que la Naturaleza tenga asignado a cada objeto vivo o inerte, lo cierto es que hay un comienzo y un final.
Bueno, lo cierto es que sí, que tenemos reservado un destino que, por lo que a mí concierne, prefiero no pensar en él y seguir elucubrando sobre lo que podemos y no podemos hacer y aprender mientras estemos por aquí. Muchas son las cosas desconocidas que están aún en el futuro no nacido y que vendrán queramos o no. Otras, sí nos son conocidas pero no queremos pensar en ellas para que nos fastidie la digestión. Sabemos de la muerte del Sol un día muy lejano, de que nos visitará Andrómeda, la mayor galaxia del Grupo Local, de que, probablemente, antes de dos mil millones de años, la Tierra pueda no estar en la Zona habitable y, si seguimos buscando…
Nuestra incansable búsqueda del saber
Lo mejor será que continuemos con nuestra incansable búsqueda de respuestas para poder saber (si eso llega algún día a ser posible), como escapar a los fenómenos naturales que se nos vienen encima con el paso del inexorable transcurrir del Tiempo.
El universo está dentro de nuestras Mentes, formamos parte de él que nos hizo de elementos de estrellas
Sí, todo el universo infinito está dentro de nuestras mentes, allí debemos buscar para llegar a comprender. Arriba, en esa Nebulosa inmensa y maravillosa (como en otras muchas de la nuestra y otras galaxias) se forjan las nuevas estrellas y los mundos nuevos, y, en ellos, surgen formas de vida que, algunas veces, son portadoras de mentes privilegiadas que llegan a tener Consciencia de SER.
Está con todos nosotros, es la parte inmaterial que surge de la Mente
Claro que, para poder llegar a entender lo que la Conciencia es, sería preciso que entendiéramos primero como funcionan nuestros cerebros: su arquitectura, su desarrollo y sus múltiples funciones dinámicas que son posible gracias a sus características más importantes, tales como, su organización anatómica y la notable dinámica que genera y, aunque insuficiente, esta pincelada, esta imagen, este conocimiento es necesario para poder llegar a comprender de qué manera llega a surgir la Conciencia.
La Red Neuronal : Cuando las neuronas se conectan al responder a experiencias o estímulos, se crea una sinapsis. En los primeros años de vida, los más fecundos del desarrollo, hay una explosión de estas conexiones neuronales. Según los estudios, se forman alrededor de 700 conexiones neuronales por segundo
Nuestro Cerebro Contiene cerca de 100 mil millones de Neuronas y unos 100 trillones (es decir 100 millones de millones) de conexiones entre ellas, Esto destaca la posibilidad de que Podemos reconfigurar Nuestros Pensamientos Y Emociones Para Ser Co-Creadores de Nuestra Propia Vida Usando el Inmenso Poder de La Mente
¡Cien mil millones de Neuronas! Tantas como estrella tiene la Vía Láctea. Conexiones a cientos de miles que procesan la información. La actividad eléctrica del cerebro es objeto de muchos estudios e investigaciones que, por ejemplo, intentan interpretar las ondas cerebrales para saber de los mecanismos de nuestras mentes que, están clasificados entre los secretos más complejos del Universo.
Nuestro cerebro se encuentra entre los objetos más complicados del universo y es sin duda una de las estructuras más notables que haya producido la evolución. Hace tiempo ya que llegamos a comprender que el cerebro era necesario para para la percepción, los sentimientos y los pensamientos. Lo que es menos obvio es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.
En tanto que objeto y sistema, el cerebro humano es especial: su conectividad y su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo que le rodea, no se parece a nada que la ciencia conozca. Su carácter único hace que el ofecer una imagen del cerebro se convierta en una empresa extraordinaria y en un reto difícil de vencer y, aunque todavía estamos lejos de ofrecer una imagen completa (una imagen parcial siempre será mejor que nada), sí podemos dar una cierta información como para poder llegar a generar una teoría satisfactoria de la Conciencia.
Para discurrir sobre el surgimiento de la conciencia y concluir si lo clasificamos como un proceso de aparición de una propiedad emergente o si consideramos que podemos explicarlo estudiando las potencialidades de las neuronas aisladamente, es necesario conocer lo mejor posible qué entendemos por “Conciencia” y, qué procesos ha tenido que recorrer para que tenga las propiedades que en ella podemos observar. Es dinámica y en evolución y, que sepamos, sigue los mismos pasos que el Universo que la creó. Habrá que observar más detenidamente la naturaleza de la Conciencia que, con su inmensa complejidad, no nos deja llegar hasta una visión diáfana de lo que en realidad es. El Cosmos, aliado con el TIEMPO, y, el “OJO” del Universo que nos mira, siguen los progresos de esa CONCIENCIA nuestra que no podemos comprender…completamente.
¿Será su “realidad” nuestra realidad? Probablemente no. El que compartamos el mismo planeta no hace que todos tengamos las mismas percepciones, sensaciones, emociones, aspiraciones, alegrías, miedos, tristezas, penas, sentimientos, fuerza, personalidad, voluntad de hacer, fuerza para luchar, y, el caso de las conciencias está, no pocas veces condicionado por factores que el individuo no pudo elegir. Claro que, muchas veces una simple mirada, nos puede transportar a otro mundo que, para muchos “será totalmente irreal”. Pero soñar…podemos todos, otra cosa será poder realizar los sueños.
El cerebro humano adulto, con poco más de un kilo de peso, contiene unos cien mil millones de células nerviosas o neuronas. La capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de investigación más reciente, contiene alrededor de 30 mil millones de neuronas y hasta un billón de conexiones. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tenemos que habérnoslas con cifras hiper-astronómicas: 10 seguido de un millón de ceros. (En comparación con el número de partículas del universo conocido que asciende sólo a 10 seguido de 79 ceros).
¿Qué poder decir de la facultad del pensamiento? El pensamiento, el discurso interior y la formación consciente de imágenes nos recuerdan poderosamente que se puede construir una escena consciente incluso en ausencia de impresiones externas. Los sueños constituyen la demostración más palmaria de este hecho. Pese a ciertas peculiaridades, como la credulidad, la resolución y la pérdida de auto reflexión del que sueña, la ensoñación y la conciencia despierta son notablemente parecidas (“soñar despierto”). Los objetos visuales y las escenas “vividas” en el sueño, suelen ser reconocibles, el lenguaje es inteligible e incluso las historias que se desarrollan en los sueños pueden llegar a ser tan coherentes que, no en pocas ocasiones, muchas personas llegaron a tomarlas por reales.
Estar en otros mundos sin ausentarte de este, solo cerrar los ojos y viajar imaginando
La Conciencia puede ser activa o pasiva y, según qué ocasión, le pedimos o no un esfuerzo extra. La mayor parte de las veces dejamos que las impresiones sensoriales tomen posesión libremente de nuestros estados sensoriales, sin prestar especial atención a esto o aquello, la conciencia es tan receptiva y amplia como natural y libre de esfuerzo cuando, por ejemplo, visitamos una ciudad y paseando disfrutamos de sus vistas. Por otra parte, cuando buscamos específicamente un punto concreto en el flujo constante de entradas sensoriales al que estamos expuestos, la percepción se convierte en una actividad orientada a la acción concreta de esa búsqueda.
Hasta donde podremos llegar con…
Una característica clave de los patrones neuronales que se pueden observar al microscopio es su densidad y extensión. El cuerpo de una neurona mide 50 micrones (milésimas de milímetro) de diámetro, si bien la longitud del axón puede variar entre unos micrones y más de un metro. Aunque es realmente cierto que hemos podido llegar a conocer mucho de lo que ahí se fragua, mucho más cierto es que, desconocemos la mayor parte de las maravillas que en el cerebro se llegan a producir y, sabiendo el resultado final, no podemos discernir por qué caminos se llegó a allí.
Cada cual podrá llegar hasta donde su imaginación le permita
Claro que, el abanico y la variedad de la fenomenología consciente pueden llegar a abarcar tanto como la experiencia personal de cada cual y llegan tan lejos como la imaginación individual de cada persona: Allí está el teatro privado de cada uno. El dominio de la consciencia que, cuando llega a sobresalir de lo corriente, entra en ese campo que llamamos filosofía y que, algunos, al ser referida al SER, llaman metafísica.
La Bailarina estudia los pasos y, dentro de “su mundo”, tiene unas sensaciones que su conciencia archiva como experiencias personales. Cada cual, a ceando su popia consciencia de “su mundo” particular en función de las experiencias que tenga la oportunidad de vivir conforme se produzcan en función de su modo de vida, trabajo y otras circunstancias que la diversidad de una vida nos pueda presentar.
Claro que, la experiencia consciente varía en intensidad; el nivel global de alerta puede variar desde la casi nula vigilancia del sopor hasta el estado hiper-vigilante de un piloto de guerra en acción, y la percepción sensorial puede ser más o menos vívida. También tenemos esa conocida habilidad llamada atención, que nos permite seleccionar o amplificar diferencialmente ciertas experiencias conscientes en detrimento de otras experiencias coetáneas..
Estos genios, no van muy alejados de la realidad que todos tratamos de ocultarnos a nosotros mismos
Además, la conciencia se halla conectada y vinculada a ciertos aspectos de la memoria. De hecho, a menudo se equipara la memoria inmediata, que dura apenas una fracción de segundo, a la propia conciencia. Claramente, la memoria de trabajo -la habilidad de “tener presente” y manejar los contenidos conscientes, como los números de teléfonos, las frases y las posiciones en el espacio, durante unos segundos-, está estrechamente relacionada con la Conciencia.
Está claro que, en cada uno de nosotros y según en qué situaciones que representan nuestro teatro privado de cada día nos encontremos, podemos estar situados en escenarios cambiantes que, para bien o para mal, lo podríamos denominar “comedia”, “farsa” o “tragedia”, con una dramatis personal, el “yo” como protagonista. Y, así será hasta que caiga la cortina al final de la obra de la vida. Y, mientras la obra transcurre, cada uno de nosotros vive su “historia” personal de vivencias intransferibles que, en definitiva, serán las que conformen su mundo particular.
Aunque vivamos aquí, no es cierto que aquí esté “todo” nuestro “mundo” que, en realidad, escapa de este que arriba vemos y llega hasta los confines de nuestra imaginación que, dicho sea de paso, sobrepasa los confines del Universo mismo. La Imaginación es un arma muy poderosa, y, si nada la para, si la Naturaleza permite su transcurrir evolutivo…¿En qué se podrá transformar?
Han pasado algunos miles de años desde que los seres humanos vislumbraron que, además de la parte física, también estaba con nosotros, formando un todo, otra más trascendental que era la que generaba los pensamientos y nos permitía viajar más allá y con más rapidez de lo que podía hacerlo la parte material. Es cierto que el proceso ha sido lento y los avances, aunque a veces imperceptibles, han estado ahí siempre en una continuada evolución que, en cada época ha tenido un marcado signo.
Aunque puede que no sepamos que es la mente, sabemos algunas cosas sobre el cerebro. Está formado por una red, una increíble maraña de “cables” eléctricos que serpentean a través de una gran cantidad de “sustancias” neuroquímicas. Existen quizás cien mil millones de neuronas en el cerebro humano, tantas como estrellas hay en la Vía Láctea, y, cada una de ellas recibe datos eléctricos de alrededor de mil neuronas, además de estar en contacto y en comunicación con unas cien mil neuronas más. Y, como sigue evolucionando al ritmo que el universo le impone… Suponer, hasta qué punto podrá llegar es, impredecible.
Nadie sabe que podremos ser mañana, cuando la evolución alcance ese grado impensable de sabiduría y seamos simples entes de luz que podrá adaptar formas y colores de inimaginable belleza, que estarán conformados por pensamientos y sentimientos en una amalgama de materia elevada al grado máximo de la evolución, es decir: energía pura. sería como volver a los orígenes. De la energía venimos y a ella regresamos pero, para entonces, estará evolucionada y será la parte del Universo que le dará sentido a todo lo material e inmaterial, entonces no habrá preguntas y se conocerán todas las respuestas.
¡Soñar cuesta tan poco!
Emilio Silvera V.
Jul
14
Un conjunto armónico de lo bueno
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Hay obras en las que convergen una serie de cuestiones, de demostraciones de talento, que las hacen inolvidables. ¿Qué duda nos puede caber? Esta es una de ellas: La Historia bien contada, la interpretación, la música, los escenarios… Lo dicho iInolvidables!
Jul
14
Nadie pudo escribir, la Historia de la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
“Analizando la luz de las galaxias pequeñas y de brillo débil que orbitan a la Vía Láctea, un equipo de científicos cree haber descubierto la masa mínima para las galaxias en el universo: 10 millones de veces la masa del Sol. Esta masa podría ser el “bloque de construcción” más pequeño conocido de la sustancia misteriosa e invisible denominada “materia oscura”. Las estrellas que se forman dentro de estos bloques se agrupan y se convierten en galaxias.”
¿Filamentos de materia oscura? ¿Dónde?
Los científicos saben muy poco sobre las propiedades microscópicas de la hipotética “materia oscura” aunque dicen que constituye aproximadamente las cinco sextas partes de toda la materia en el universo (bueno, al menos eso es lo que se cree antes de haberlo demostrado).
Edward Lorenz ¿Padre de la Teoría del Caos?
El miércoles de 16 de abril de 2008, a los 90 años de edad, moría Edward Norton Lorenz. Los periódicos de medio mundo pronto se hicieron eco de la noticia. Todos los obituarios recogieron que había muerto “el Padre de la Teoría del Caos”. Lorenz, escribían, fue el primero en reconocer el comportamiento caótico de ciertos sistemas dinámicos, como el atmosférico. El estudio de este comportamiento altamente inestable y errático le condujo, continuaban, a formular una de las principales características de lo que hoy se llama “caos determinista”: la dependencia sensible a las condiciones iniciales, popularmente conocida como “efecto mariposa”. Lorenz, concluían, fue el artífice de la tercera revolución científica del siglo XX, después de la Teoría de la Relatividad y la Mecánica Cuántica.
Pero, alto ahí, ¿ha sido realmente Edward Lorenz el “creador” de la Teoría del Caos? ¿O acaso su papel de estrella protagonista se debe más bien a una inusitada alianza entre mérito y fortuna? El propósito de esta nota es ofrecer una panorámica de la Historia de la Teoría del Caos que complique su nacimiento y enriquezca su evolución, sacando a la luz la figura de ciertos científicos que el gran talento de Lorenz ha ensombrecido y ocultado.
Son muchas las cosas que no sabemos y, de cada una de ellas, nosotros los humanos, creamos hipótesis y hacemos conjeturas, construimos modelos y, con los datos que hemos podido reunir, dejamos expuesta una teoría de lo que pudo ser. De esa manera hemos creado la “historia” de cómo se formó nuestro Sistema solar a partir de una explosión de supernova que creando una nebulosa sería el origen, hace algunos miles de millones de años, de todo el sistema planetario en el que está la Tierra y nos cobijamos nosotros.
A mayor escala y viajando mucho más lejos en el Tiempo, también hemos “recreado” el escenario que suponemos que pudo existir cuando “nació” el universo, cuando dio comienzo la existencia del Tiempo y apareció el Espacio, se creó la materia y comenzaron a formarse los objetos que hoy podemos contemplar por todo el inmenso Cosmos. De todo ello, de manera “misteriosa” (nadie sabe a ciencia cierta como fue), apareceron los primeros signos de vida, primero en forma de rústicas criaturas y más elaboradas después, cuando con el paso de los años, pudieron evolucionar.
En nuestra región, situada en el interior del brazo de Orión a unos 30.000 años-luz del centro galáctico, las cosas se pudieron suceder, más o menos, como nos dicen al margen de la imagen, con algunas dudas y algunas preguntas sin contestar, así pudieron suceder, a grandes rasgos las cosas. Sin embargo, no es ese el tema que el título nos señala, nos vamos a centrar en la “vida” esa explosión de imaginación que ha tenido el universo para que, al menos en nuestro caso, haya alguien que comente sobre él y también, sobre esa maravilla que representamos: Seres Conscientes en un universo de materia, de explosiones y cambios, de energías sin fin.
Lo cierto es que, el recuerdo de los miles de millones de años de la historia de la vida, no ha podido ser inscrito en la memoria de los seres que la representan, al igual que los últimos millones de años no están grabados en la memoria de los seres humanos, los primeros naturalistas que se sintieron intrigados por los fósiles que encontraban, no pudieron presentir de qué manera aquello que estaban sacando a la luz del día, acabaría por servir para reconstruir el pasado a través de los archivos sedimentarios de la tierra.
De nada sirvieron los razonamientos poéticos y religiosos que les habían preparado para lo contrario. La realidad nos hizo descubrir un mundo distinto, una cronología distinta y una historia distinta. Resulta fácil comprender, en qué medida, los primeros descubrimientos paleontológicos les pudieron parecer (en aquellos tiempos), por tanto, maravillosos y también, desconcertantes, hasta que punto aquella extraordinaria diversidad de formas de vida desaparecidas, su frecuente extravagancia y rareza y el encadenamiento asombroso que parecían ir revelando poco a poco, les debieron fascinar, pero también confundir.
Y, de esa manera, nuestra innata curiosidad, nos llevó a descubrir muchas clases de vida que existió en el pasado, incluso de seres monstruosamente grandes que extinguidos, sirvieron para que todos, antes sus descomunales restos, dejaran volar la imaginación y pudieran construir escenarios ya desaparecidos hacia millones de años. Claro que, todos aquellos descubrimientos, vinieron a ensanchar la mente de lo posible y la concepción de la historia de la vida en la Tierra y también, de manera paralela, hemos ido creando una historia más profunda, de unos 13.750.000 millones de años para la historia del propio universo. Pero, la historia que nos interesa, la de la vida, se remonta a unos 4.000 millones de años (al menos en nuestro planeta), que es el tiempo que tienen los fósiles más antiguo hallados en las rocas más viejas del planeta.
Ya el hombre de Neanderthal se interesaba por los fósiles
El descubrimiento de edades anteriores a la aparición del hombre tuvo una enorme repercusión, a finales del siglo XIX, mucho más allá de los círculos científicos, en buena parte porque reveló paisajes desaparecidos y poblados por criaturas extrañas, predominantemente monstruosas. Incluso en nuestros días los grandes vertebrados del pasado ejercen a menudo una especie de fascinación: ¿no se ha convertido acaso el mamut en el emblema de una cadena de supermercados y no resultan los nombres de muchos dinosaurios mucho más familiares, incluso para los niños, que los numerosos animales actuales?.
Esa familiaridad relativa con criaturas que hasta hace dos siglos, su existencia era inimaginable, es así mismo, un gran logro de la paleontología de los vertebrados sacados a la luz por la ciencia. Claro que, si hablamos de vida, no sólo de grandes animales se compone la gran relación que podríamos hacer de todas aquellas especies que poblaron nuestro planeta y de las que, el 99% están desaparecidas. Ahora, sólo el 1% de todas las especies vivientes siguen presentes y, las demás, por una u otra causa, quedaron extinguidas al no poder adaptarse, al ser eliminadas en las grandes extinciones… ¡y vaya usted a saber cómo!
Cuentan que, durante uno de sus viajes por el Mediterráneo, san Pablo, según la leyenda que circula, naufragó ante las costas de Malta. Habiendo logrado llegar a esa isla, fue mordido por una vibora. Encolerizado, maldijo entonces a todas las serpientes maltesas, por lo que sus lenguas bífidas se transformaron en piedra. Esas lenguas petrificadas, llamadas a veces “lenguas de san pablo”, son muy comunes en Malta; no son otra cosa que los dientes de los tiburones del período mioceno, cuyas formas evocan las lenguas bífidas de las serpientes.
El relato ilustra muy bien la fascinación que han ejercido desde tiempos inmemoriales ciertos fósiles sobre la imaginación humana y la forma en que pueden ser explicados los orígenes de esos objetos misteriosos, más allá de toda hipótesis científica, en los sistemas de pensamientos tradicionales. Sin embargo, jamás conoceremos las más antiguas de esas leyendas explicativas, ya que el interés por los fósiles se remonta a la prehistoria lejana, tal como nos lo demuestran los diversos descubrimientos arqueológicos.
En el transcurso de sus excavaciones en las cuevas de Arcy-sur-Cure, en Borgoña, el célebre prehistoriador francés André Leroi Gourhan descubrió en un estrato correspondiente qal paleolítico medio una pequeña pero muy antigua “colección paleontológica” ; se trataba de un polípero y de un gasterópodo fósiles, y habían sido llevados a esa cueva por un hombre de Neardenthal. Hará más de 50.000 años posiblemente, que la atención de un “hombre fósil” se vio atraida por esos objetos curiosos, hasta el punto de que se los llevó consigo. No cabe duda de que nunca sabremos cuáles eran las interpretaciones que los hombres prehistóricos daban a los fósiles que recogían. En todo caso, ciertas conchas profundamente enterradas, le pudieron recordar a sus conchas actuales, y bien pudiera ser que se hubieran preguntado en aquel entonces qué hacían sobre las rocas unos animales que se encuentran habitualmente en el agua.
Es cierto que siempre, a lo largo de la Historia, hemos tenido pensadores y naturalistas. La Historia natural es un término cuya definición es problemática, en tanto que diversas disciplinas la abordan de manera diferente. Muchas de estas concepciones incluyen el estudio de las cosas vivientes (por ejemplo, la biología, incluyendo botánica, zoología y ecología); otras concepciones extienden el término al campo de la paleontología, la geografía y la bioquímica, así como a la geología, astronomía y la física. Lo cierto es que, al final del camino, todas esas disciplinas se encuentras, es decir, están de una u otra manera relacionadas. Todo en el Universo tiene una conexión que no siempre podemos ver o comprender.
Claro que, algunos pensadores griegos ya especularon con las viejas conchas fósiles que se hallaban dentro de las piedras y que eran el origen de especulaciones “geológicas” de algunos que, como Jenófanes o Heródoto, quiénes habían comprendido la naturaleza auténtica de ciertas conchas fósiles y habían sacado conclusiones pertinentes, aquellos restos de organismos marinos, encontrados tierra adentro, demostraba que los mares, se extendían en otras épocas mucho más allá de sus límites actuales.
Lo cierto es que, hacer historia de la vida en nuestro planeta es imposible, sólo podemos ir atando cabos a medida que se encuentran huellas de ella en las viejas rocas, y, como la vida consciente tardó mucho más en llegar… ¡Carece de historia, toda vez que no existieron cronistas para escribirla! Así, nos vemos abocados a especular juntando todos los datos que hemos podido reunir y, de esas especulaciones, hemos formado un conjunto, si no plausible en su totalidad, sí aceptable mientras no encontremos más respuestas a la gran pregunta: ¿Cómo surgió la vida en la Tierra, y, es nuestro planeta el único lugar del Universo que la contiene?
Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.
Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.
Nunca nadie ha sabido explicar lo que es la Vida a pesar de que también siempre nos lo hemos preguntado. Cuál es su origen y cómo surgieron los seres vivos que conocemos y que tenemos a nuestro alrededor, así como aquellos que con el paso de tiempo no supieron adaptarse y se extinguieron. La especie humana, la única que en nuestro planeta alcanzó la plenitud de conciencia, siempre ha tratado de responder a esa pregunta: ¿Qué es la Vida? Pero siempre también, resultó un gran problema el poder responderla y las Ciencias Naturales nunca pudo confeccionar una respuesta plausible. Hemos podido llegar a saber que sin los materiales fabricados en las estrellas, la vida no sería posible en nuestro Universo. Así muchos, dicen que somos…
¡Polvo de estrellas! Las estrellas fusionaron materiales (elementos) sencillos en otros más complejos para que, miles de millones de años después, en algún mundo situado en la zona habitable de su estrella… ¡Surgiera la Vida! El C.H.O.N. (Carbono, Hidrógeno, Oxígeno y Nitrógeno está presente en el sustento de todas las especies vivas de la Tierra).
La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura.
Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.
¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo –nos preguntamos- la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la Ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.
Claro que, sabiendo que el Universo es igual en todas partes, sin importar lo alejada que estén las regiones en las galaxias, todo está regido por las mismas leyes fundamentales y las mismas constantes universales, y si es así (que lo es), ¿por qué no habría cientos o miles de mundos con la presencia de Vida?
La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja.
Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de condiciones nuevas aparecieron para hacer posible el surgir de la vida.
Distribución de los continentes hace 260 millones durante el Pérmico. El supercontinente con forma de “C” es Pangea; dentro de la C se localizan los océanos Paleo-Tetis al norte y Tetis al sur; separando ambos océanos se sitúa el continente Cimmeria; cerrando la “C” al noreste se sitúan los microcontinentes de China del Norte y China del Sur; mientras que el resto del globo está ocupado por el océano Panthalassa.
Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.
A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿Qué tipo de planeta podemos recomponer y qué procesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.
Los estromatolitos forman parte del registro fósil y son los responsables del oxígeno de la Tierra
Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de años. Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos–Arqueanos). La edad de la Tierra como planeta acrecionado se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del registro fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica fototrófica.
En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que para entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.
Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.
En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.
Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?
Ademas de las cianobacterias, la microflora puede incluir algas (verdes y diatomeas), hongos, crustáceos, insectos, esporas, polen, rodofitas, fragmentos y sedimentos de todo tipo. La variedad biológica de cada comunidad estromatolitica dependerá de condiciones ambientales e hidrológicas: hipersalino, dulceacuicola, intermareales, submareales, fuertes corrientes, moderadas nulas, cálidos, templado, altitud (afecta a la exposicion de la luz uv). En la superficie, es rugosa, porosa y cubierta por mucilago, filamentos, etc. Las particulas de carbonato van quedándose atrapadas, hasta que la cementación por crecimiento de cristales, forma una capa mas, de esta forma la estructura aumenta de tamaño.
La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, condiciones imprescindibles para el desarrollo de la vida.
La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biológica.
Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Necesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.
ESTRUCTURA DE LA CELULA BACTERIANA
Unas moléculas, en fin, que pudieran iniciar una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.
El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.
Los enzimas de ARN (llamadas “ribozimas” o “aptazimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de forma mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.
En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del origen de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas condiciones, dio lugar a que lo sencillo se convirtiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.
Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su famoso experimento. Como los ácidos nucleicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.
Hay teorías para todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función proto-biológica. Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.
En el árbol de la vida, nosotros (“tan importantes”), sólo somos una pequeña ramita
Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosinteéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CH4 frente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas 20 o 25 partes por 1.000 en los ambientes donde el metano es abundante. ¿Habéis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El festín está servido!
Los océanos de metano de titán podrían ser una buena fuente de vida
La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) como dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.
Otra característica es que los organismos foto-sintéticos anoxigénicos contienen bacterio-clorofila, un tipo de clorofila exclusiva de los foto-organótrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterio-clorofila. El color de estos pigmentos dan el nombre a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.
Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la Naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra sed de sabiduría y alejar la ignorancia que nos abruma.
No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas parte por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.
Valles en Marte. (ESA) La región de Valles Marineris, que tiene una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.
Basándose en este descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. Para sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra también como en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.
Es difícil imaginarse hoy una Tierra sin oxígeno
Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años antes del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipo con la que hoy conocemos.
El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues forma óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.
En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente desde niveles prácticamente despreciables.
El mundo bacteriano es fascinante
Es frecuente escuchar a muchas personas hablar sobre virus, bacterias, anticuerpos, vacunas, entre otros temas relacionados a la microbiología. Sin embargo, existe confusión en la comunidad con respecto a distinguir correctamente entre los diferentes tipos de microorganismos. Generalmente, asociamos los términos «virus» o «bacteria», por mencionar algunos, a enfermedad o malestar, a algo que puede dañar o perjudicar nuestra salud. Pero, ¿realmente son tan malas las bacterias?, ¿todas lo son?, ¿Qué se sabe al respecto?, ¿es mito o realidad?
Bueno, nosotros los seres humanos vivimos en simbiosis con las bacterias sin las que no podríamos vivir. No todos los “seres” infinitesimales son malos para nosotros, sino todo lo contrario.
Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la parte donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.
¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.
Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.
En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado este punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.
De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. Desde ese momento, la Tierra comenzó a convertirse en nuestro mundo.
Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo para poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.
Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear como las bacterias. Sólo existe un equivalente del núcleo, el centroplasma, que está rodeado sin límite preciso por el cromatoplasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o forma filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.
Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de tipo A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.
Sin descanso se habla de que nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.
Desde que la Tierra se considera un planeta… ¡Siempre se produjeron cambios climáticos naturales?
Y, cuando esos cambios se producían, nosotros no estábamos aquí.
Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿Qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus condiciones. Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.
De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinariamente bien conservados en siles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.
Azolla, el asombroso helecho de agua
Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una forma que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.
La resistencia general de las bacterias a la extinción es bien conocida, las bacterias que hayan sobrevivido al cepillo de dientes, a media tarde se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar.
Nosotros tenemos un “convenio” de simbiosis con muchas bacterias que conviven con nuestra especie que sin ellas, no podría existir. ¿Os acordáis de aquel trabajo sobre las mitocondrias? El cuerpo humano, en seco, tiene un diez por ciento de bacterias.
Emilio Silvera V.
Jul
14
Sometidos por los agujeros negros
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
XMM-Newton fue lanzado al espacio por el cohete europeo Ariane 5 el 10 de diciembre de 1999. Se situó en una órbita poco frecuente que da la vuelta a la Tierra cada 48 horas a altitudes que oscilan entre los 7000 y los 114 000 km. La misión se llamó XMM por su diseño provisto de múltiples espejos (X-ray Multi-Mirror).
El observatorio europeo de rayos X denominado XMM-Newton, fue lanzado al espacio a finales de 1999. Desde entonces, un complejo sistema de espejos cilíndricos que permiten enfocar la luz de alta energía ha estado observando numerosas fuentes luminosas de todo el Universo. Y, entre ellas, el misterioso conglomerado de materia que existe en el centro de la Vía Láctea. Los rayos X se generan en procesos muy energéticos, cuando la materia se somete a temperaturas de millones de grados o, también, cuando se aceleran partículas a temperaturas cercanas a la de la luz por la acción gravitatoria y de campos magnéticos. Algo muy violento está sucediendo en el centro de nuestra galaxia.
Agujeros negros binarios que caminan hacia su fusión
Seis exoplanetas con orbitas rítmicas que desconciertan a los astrónomos
Cada día se descubren nuevas cosas que antes ignorábamos, y, según se deduce de los hechos a lo largo de la historia.. La Ciencia está en un callejón sin salida, no puede hacer nada para evitarlo, y, lo único que le queda… ¡Es crecer u crecer! Lo que ayer no se sabía… ¡hoy se sabe! Cada día, los científicos del mundo en todas las ramas del saber humano avanzan y descubren nuevos secretos de la Naturaleza, del Universo en fin.
En el mismo centro de la Vía Láctea vive un monstruo llamado Sagitario A que, engulle toda la materia circundante y destruye las estrellas vecinas para hacerse más y más grande cada día. En octubre de 2002, un equipo de científicos del Instituto Max Planck de Astrofísica (Garching, Alemania), consiguió observar el movimiento de alguna de las estrellas que orbitan en torno al centro de nuestra galaxia y, calculando el periodo, tener una estimación directa de la masa del agujero negro central. El valor que obtuvo el equipo de Rainer Schoedel es de entre 2,6 y 3,7 millones de masas solares.
Comparación de los agujeros negros M87 y Sagitario A.
En abril de 2019, un equipo internacional de 200 investigadores mostró al mundo la primera imagen de un agujero negro . Situado en el centro de la galaxia Messier 87 , a 55 millones de años luz de distancia de la Tierra, este objeto masivo es equivalente a 7.000 millones soles y tiene un núcleo de 40.000 millones de kilómetros de diámetro. Fotografiarlo fue tan difícil como captar una naranja en la superficie de la Luna. Hicieron falta ocho telescopios repartidos por el planeta para recoger sus ondas de radio.
Entonces se intentó fotografiar también el agujero negro en el centro de nuestra galaxia, llamado Sagitario A* , pero no fue posible. No ha sido hasta hoy que hemos podido verlo por primera vez, gracias al mismo equipo científico del Event Horizon Telescope (EHT).
Pero, ¿por qué es tan difícil ver el agujero negro en el centro de nuestra galaxia? ¿Por qué hemos visto primero uno tan lejano, a 55 millones de años luz, si el de la Vía Láctea está a ‘solo’ a 25.000? La cuestión es que estar más cerca no significa necesariamente ser más fácil de fotografiar.
Precisamente, M 87 resultaba una mejor opción porque está muy lejos. Eso significa que tiene una posición más fija y no se mueve de su lugar en el cielo en comparación con Sagitario A*, mucho más cercano pero, con cuatro millones de masas solares, mucho más pequeño y débil. Por si fuera poco, tiene una característica única, unas llamaradas parpadeantes en el material que lo rodea que alteran el patrón de luz cada hora, lo que ha supuesto serios desafíos para los astrónomos.
Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genoma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…
Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.
Esa potentísima fuerza de gravedad que parece ubicarse en el centro de todas las galaxias mantiene a las estrellas unidas pero también es una fatal fuerza destructora.
Los científicos están cada vez más cerca de confirmar que todas las galaxias, esencialmente las espirales y elípticas, mantienen sus cientos de miles de millones o billones de estrellas unidas gracias a una potentísima fuerza de gravedad que se ubica en el centro de cada una de ellas.
Es de destacar que las estrellas de las galaxias espirales giran en torno al núcleo de la galaxia, donde se aglutina el mayor número de estrellas por unidad cúbica, pero parece insuficiente que este grupo constituido de millones de estrellas puedan mantener unidas y girando a su alrededor al resto de las estrellas componentes de una galaxia, en algunos casos, como la galaxia elíptica M 87, con más de un billón de estrellas. Hay algo más, justo en el centro de los núcleos de las galaxias que posee una fuerza superior y que además de mantener compacto el núcleo de la galaxia, mantiene estrellas girando a su alrededor a distancias de cientos de miles de años luz (un año luz equivale a 9,6 billones de km).
La galaxia elíptica M87 (también conocida como Galaxia Virgo A, Messier 87, M87, o NGC 4486) es una galaxia elíptica gigante fácil de ver con telescopios de aficionados. Se trata de la mayor y más luminosa galaxia de la zona norte del Cúmulo de Virgo, hallándose en el centro del subgrupo Virgo A.
Nuestra galaxia, la Vía Láctea, mide 100.000 años luz, es como un disco con brazos espirales, muy aplastada y fina, excepto hacia el centro, cuyo bulbo en forma de esfera mide 30.000 años luz de diámetro, pero dentro de esta enorme bola de estrellas viejas, se encuentra el núcleo, aún más denso y compacto, cuyas estrellas se amontonan en espesa multitud, concretamente unos 85 millones de estrellas, que determinó el telescopio de infrarrojos VISTA, un telescopio capaz de atravesar las inmensas nubes de polvo que hay entre nosotros y el núcleo galáctico que es invisible con telescopios ópticos normales. Mientras más nos acerquemos al núcleo galáctico, las estrellas estarán más cerca las unas de las otras.
Cuando comenzaron a formarse las galaxias, algunas estrellas supermasivas comenzaron a agotar su combustible nuclear. Estas estrellas decenas o cientos de veces más masivas que el Sol duran pocos millones de años; el Sol, 10.000 millones de años. Comenzaron a estallar y se convirtieron en brillantísimas supernovas. En todo el Cosmos las supernovas se sucedían y dieron paso a la formación de agujeros negros supermasivos.
La inmensa fuerza de gravedad de estos agujeros negros comenzó a atraer a las estrellas jóvenes en formación o con pocos millones de años de edad. Como si de vórtices se trataran, las estrellas comenzaron a girar alrededor de los agujeros negros, así dice una teoría que se agruparon las estrellas para formar las galaxias.
No es de extrañar. Se han encontrado agujeros negros en los núcleos de casi todas las galaxias, incluso agujeros negros dobles uno girando alrededor del otro. Aquellas galaxias que no suelen contener agujeros negros supermasivos en sus núcleos son galaxias irregulares, cuya estructura amorfa no obedece a las formas bellísimas de las galaxias espirales o elípticas, cuyos agujeros negros les dan la forma.
Los agujeros negros no sólo están en los núcleos de las galaxias, sino en diversas regiones de éstas, aunque estos no suelen ser muy masivos, varias veces la masa del Sol, como el descubrimiento de uno de ellos, de 10 masas solares, en uno de los brazos espirales de la vecina galaxia de Andrómeda, a 2,3 millones de años luz, descubierto gracias a que en ese momento estaba engullendo una estrella emitiendo una poderosa fuente de rayos X. La Vía Láctea posee varios agujeros negros detectados, quizás el más famoso sea Cygnus X-1, un agujero negro de unas 15 masas solares a cuyo alrededor gira una estrella supergigante a la que continuamente roba las capas más externas.
A. N. -Como sumideros cósmicos. Atrae y engulle la materia circundante aunque sean estrellas
Un agujero negro en una galaxia actúa casi de la misma forma que cuando quitamos el tapón del lavabo y el agua comienza a desaparecer formando una espiral. Los agujeros negros no tragan con tanta rapidez, a pesar de su poderosa fuerza de gravedad, las estrellas están muy distantes y van cayendo poco a poco, mientras que el resto de estrellas sometidas a la fuerza de gravedad del agujero negro supermasivo giran en torno a él esperando su turno.
Los agujeros negros son tan poderosos y dominantes que cuando la materia comienza a caer hacia ellos, se calientan y emiten tanta radiación que equivale a la energía de toda una galaxia de 100.000 millones de estrellas.
Objeto NGC 4845 está ubicado exactamente en el centro de la imagen
Astrónomos europeos tuvieron la ocasión de ver por primera vez cómo un agujero negro de 300.000 masas solares situado en la galaxia NGC 4845 a 47 millones de años luz, arrancaba las capas exteriores de un planeta 15 veces mayor que Júpiter, un planeta errante expulsado de su sistema solar, que ahora gira en torno al agujero negro. Solo el hecho de arrancarle el 10% de la masa puso en alerta a los investigadores, pues se produjo una importante emisión de rayos X.
Grandes emisiones de Rayos X
El agujero negro supermasivo de nuestra galaxia, de 4,5 millones de masas solares, posee una gran actividad. Prácticamente y a diario, se observan explosiones, aunque no extremas, ello indica que todos los días engulle algo. El telescopio espacial Herchel, ha comprobado que una nube de gas compacta, se dirige hacia nuestro agujero negro y probablemente caiga en él este mismo año. Por otro lado estrellas cercanas al mismo, giran a velocidades de vértigo y serán su próxima comida. El Sistema Solar que se encuentra a 28.000 años luz del agujero negro gira gracias a éste y alrededor de nuestra galaxia a una velocidad de 960.000 km/h.
Los agujeros negros, forman las galaxias, mantienen unidas a sus estrellas, pero a cambio, se nutren de ellas. ¿Será el destino de las galaxias acabar en el interior del agujero negro supermasivo que contienen?
Agujeros negros supermasivos distorsionan las galaxias, y emiten poderosos jets de energía y materia a cientos de miles de años luz de distancia, es el caso del agujero negro de la galaxia M 87 con 3.000 millones de masas solares. M 87 sigue engullendo otras galaxias menores y el agujero negro no para de alimentase. Los astrónomos creen que el límite de un agujero negro puede ser el de una masa de 50.000 millones de soles, es decir, la mitad de la masa de nuestra propia Galaxia. Un agujero negro de estas características no tendría límites y podría absorber una galaxia tranquilamente, por lo que se convertiría en el mayor destructor del Universo.
Pero, ¿Qué es un agujero negro?
Un agujero negro se produce cuando las estrellas muy masivas, a partir de 6/8 veces la masa solar, llegan al final de su vida, se detienen las reacciones termonucleares que hacen que la estrella se expanda y la gravedad se encarga de encoger a la estrella hasta el tamaño de la Tierra (enana blanca), si la gravedad consigue aplastar aún más a la estrella, se convertirá en una estrella de neutrones, del tamaño de una ciudad, donde un cm cúbico pesa millones de toneladas. Pero si no consigue pararse en ese tamaño, se aplastará aún más convirtiéndose en un objeto diminuto, pero con la masa de varias, decenas, cientos o miles de soles.
Si la Nave no alcanza esa velocidad de escape… ¡Volverá a caer al planeta!
Para escapar de la Tierra hace falta una velocidad de 11,2 km/s. Si no conseguimos alcanzarla caeremos otra vez a nuestro planeta. Pero un agujero negro posee tanta fuerza de gravedad, que ni siquiera la luz, que es lo más rápido y que viaja a 300.000 km/s podría escapar del agujero negro. Si nos pudiéramos poner en un agujero negro (vamos a imaginarlo porque no es muy probable) y encender una linterna, veríamos cómo la luz de la linterna intentaría escapar del agujero negro, pero se doblaría y volvería hacia nosotros. Así son los objetos más poderosos del Universo.
Los agujeros negros hunden el Espacio y distorsionan el Tiempo. En estudio está que estos objetos sean atajos espaciales que en un futuro nos lleven a lugares muy distantes del Universo sin que apenas pase el tiempo.
Emilio Silvera V.
Jul
14
Si no se ha verificado experimentalmente… ¡Es una Teoría!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Hemos construido un Modelo de Universo en el que hemos ido añadiendo todos y cada uno de los datos que pudimos contrastar mediante el estudio y la observación, y, en aquellos huecos que no podíamos rellenar por falta de fatos fidedignos, dejamos reseñadas las ideas que vinieron a nuestra imaginación y que, de alguna manera, concordaban con aquellas otras verificadas. De esa manera, tenemos un escenario plausible de lo que pudo ser el “nacimiento” del Universo hace algunos miles de millones de años a lo largo de los cuales se conformaron la materia, aparecieron los átomos, se formaron las estrellas y, a pesar de la expansión de Hubble, “nacieron” las galaxias.
¿Podemos estar seguros de las certezas que dicho Modelo nos señala?
Lo cierto es que NO. Simplemente tenemos que tomarnos el Modelo del Big Bang como el que más se aproxima y concuerda con los datos obtenidos en la Observación.
Así las cosas, no son pocas las dudas que tenemos acerca de otras muchas cuestiones y, sobre todo, con la presencia de la Vida en nuestro Universo (digo en nuestro universo porque estimo que podrían existir otros muchos).
La conclusión es que no todo lo que creemos que sabemos se ajusta a la realidad, y, la mejor prueba de ello es la denominada “materia oscura” que, como decía aquel Premio Nobel de Holanda: “Es la alfombra bajo la cual, los quieren barrer su ignorancia”.
No podemos negar lo mucho que hemos avanzado en los distintos campos del saber humano. Sin embargo, siendo cierto dichos logros y triunfos, descubrimientos e intuiciones confirmadas… ¡Las preguntas siguen ganando a las respuestas!
Emilio Silvera V.