Jul
17
¿Podremos algún día comprender al “mundo” cuántico?
por Emilio Silvera ~ Clasificado en General ~ Comments (2)
Un día de 1.900, el físico alemán Max Planck, publicó un artículo de 8 páginas y, dejó sembrada la semilla de lo que más tarde sería la Mecánica Cuántica, ese “universo” de lo infinitesimal, donde suceden cosas que no hemos llegado a comprender, allí donde el sentido común se contradice con resultados increíbles y asombrosos.
Jul
17
El placer de Descubrir: Aventurarse por nuevos caminos.
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
La molécula de agua es polar en virtud principalmente de su geometría angular. H2O. El agua es un compuesto formado por dos átomos de hidrógeno y uno de oxígeno, por lo que su fórmula química es H2O. Los enlaces entre el oxígeno y los átomos de hidrógeno forman un ángulo de 45º.
Podemos decir que el átomo se divide en 100.000 partes y, una de ellas es el núcleo atómico que contiene el 99,9% de toda la masa atómica, Pero lo asombroso del caso es que, en esa pequeña parte infinitesimal que es el núcleo, se encuentran los nucleones, que partículas de la familia de los Hadrones en su rama bariónica, es decir, son Bariones.
Estos Bariones son los protones y los Neutrones que, en su interior, están conformados por tripletes de Quarks. El Protón está compuesto por dos quarks up y un quark down, mientras que el Neutrón está formado por dos quark down y un Quark up.
Así que los Quarks están confinados dentro de los nucleones que son partículas sometidas al Principio de exclusión de Pauli, es decir, son Fermiones, y, están retenidos por la fuerza nuclear fuerte que es transmitida por Bosones, los emisarios llamados Gluones que actúan como el pegamento y, si los Quarks tratan de separase unos de otros, la fuera aumenta y lo impide.
La fuerza nuclear fuerte trabaja al contrario de las otras tres fuerzas de la Naturaleza, es decir, cuanto más es la distancia más fuerte se manifiesta, mientras que, la Gravedad, por ejemplo, se relaja y manifiesta de manera más suave a medida que los cuerpos se alejan.
Otra de las maravillas de la Naturaleza (entre las muchas que podemos encontrar), es el proceso estelar, es decir, como nacen, viven y mueren las estrellas, y, en que se convierten finalmente dependiendo de sus masas.
Estrellas como el Sol fusionan elementos durante 10.000 M de años, y llega un momento en el que se convierten en Gigantes rojas y fusiona Carbono y Oxígeno, y, cuando va llegando al hierro, la imposibilidad de continuar produciendo elementos más complejos, hace que eyecte al Espacio Interestelar las capas exteriores y forme una Nebulosa planetaria. El resto de la masa, comienza a comprimirse más y más, hasta que los electrones (que son Fermiones sometidos al Principio de exclusión de Pauli, se degeneran).
Al degenerarse, los electrones se mueven frenéticamente, como protestando de que los quieran empaquetar tan juntos, y, dicho movimiento hace que la compresión se detenga, y, lo que queda es una estrella enana blanca.
Si la estrella tiene más masa que el Sol, el final será una estrella de neutrones y, si la estrella es super-masiva, lo que resulta es una explosión supernova y un agujero negro.
Todo lo que existe está hecho de Quarks y Leptones, desde un átomo a una galaxia y a los seres vivos
Maravillas como las anteriores proliferan por el Universo para nuestro asombro y, sobre todo, para que nuestro entorno sea como el que podemos observar, y, también a ello contribuyen las Constantes Universales.
Como cada día desde hace ya algún tiempo, aquí dejamos un retazo sobre el saber del mundo, del Universo y del estudio de los cuerpos celestes y sus movimientos, los fenómenos ligados a ellos y, sin duda, es la ciencia más antigua que nuestra especie conoce. También venimos hablando de Física, esa disciplina que nos hace ver el mundo tal como es. Por otra parte, también hablamos, maravillados, de la capacidad de nuestras mentes, la máquina más compleja que se conoce y que, para nuestro propio asombro, es capaz de generar pensamientos, rememorar el pasado e imaginar el futuro que llegará.
Conocemos la Vida que representamos y la que nos acompaña en el planeta, y, según todos los indicios de probabilidades que podemos conocer… ¡Lo más probable es que existan mundos llenos de vida!
La vida, también ha ocupado una buena parte de nuestro tiempo en este lugar y hemos hablado de ella, de la que está presente en nuestro planeta y, de la posible “vida extraterrestre”, posibilidad enorme en este universo nuestro, y, con esas y otras cuestiones de interés, hemos hecho camino juntos, en armonía y siempre tratando de conseguir ese saber que es el sustento de nuestra enorme curiosidad. Claro que, la Física, esa disciplina que nos dice como funciona la Naturaleza, ocupó una gran parte del recorrido.
Estamos empeñado en acercar el Universo a todos, y, aquí, al menos lo procuramos. “El Universo para que lo conozcas”. Aquella fue la frase emblemática del Año Internacional de la Astronomía celebrado en 2009. Hemos logrado (al menos así lo creo) que muchos hayan adquirido nuevos conocimientos a través de este lugar (también nosotros lo hemos adquirido de ellos), y, siendo así (que lo es), el esfuerzo ha valido la pena. Veamos ahora, otro pasaje del saber del mundo.
Aunque parezca extraño, todos los seres vivos de la Tierra, estamos hechos de la misma cosa y basados en el mismo elemento. De alguna manera, estamos emparentado con todos los seres vivos. Nosotros tuvimos la suerte de poder generar pensamientos. Tenemos que pensar que las moléculas de la vida, están presentes en cualquier Nebulosa del Espacio Interestelar.
Y, como las reglas que rigen son iguales para todo el Universo, en cualquier parte (por alejada que esté), sucederán los mismos acont4ecimientos que sucedieron por nuestra región. No es de extrañar y sería lógico pensar que la vida prolifera por todo el Universo con las variantes que puedan darse conforme a los parámetros de cada mundo o lugar.
¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (Big Bang, teoría del estado estacionario, etc.
Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.
En ese tiempo por venir, tendremos naves espaciales que despegaran de la Tierra y podrán abrir “puertas” que las dejen entrar en el Hiperespacio para realizar viajes a estrellas muy lejanas, situadas lejos de nuestro Sistema solar. Para cuando eso ocurra, los habitantes de nuestro planeta en el presente serán recordados como aquellos pioneros que intentaron los primeros viajes espaciales fuera del planeta, los habitantes de la Tierra de ese tiempo futuro sabrán de nosotros por la historia, y, en las escuelas estudiaran cómo construimos una Estación Espacial Internacional, un Telescopio llamado Hubble y un Acelerador de partículas denominado LHC para intentar comprender, qué era la materia.
En ese escenario del futuro las ciudades espaciales estarán repartidas por todo el Sistema solar y los habitantes de la Tierra viajaran a ellas como cosa cotidiana, de la misma manera que ahora nos trasladamos a otras ciudades y continentes en nuestro planeta, así serán las Sociedades de aquel tiempo que comerciaran las riquezas situadas en las lunas de Júpiter y Saturno como cosa natural y realizaran viajes a otros mundos fuera de nuestro entorno, a muchos años-luz de distancia para celebrar reuniones planetarias con otros gobiernos que, como el nuestro, dominan sistemas planetarios enteros y tienen esparcidos por el espacio lejano flotas de naves con equipos científicos investigando estrellas lejanas, captando in situ como se forman los mundos, o, incluso rodando a prudente distancia explosiones supernovas y el giro vertiginoso de los horizontes de suscesos de agujeros negros gigantes.
Marco Aurelio
“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma ”.
Erupciones volcánicas tomadas desde el Espacio
Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, las estaciones, el frío y el calor, el río muerto por la sequía o aquel que, cristalino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad… Y, también, el Hombre y la Mujer. Así ha sido desde que podemos recordar y, así continuará siendo.
Los poetas hablan en voz baja consigo mismos, y, el mundo, los oye por causalidad.
Para fugarnos de la tierra
un libro es el mejor bajel;
y se viaja mejor en el poema
que en más brioso corcel.
Whitman
La causalidad
“Todo presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.”
Leibniz
Niels Bohr, citando a Gohete preguntaba: ¿Cuál es el camino? No hay ningún camino. Está claro el mensaje que tal pregunta y tal respuesta nos quiere hacer llegar, el camino, tendremos que hacerlo nosotros mediante la exploración hacia el futuro en el que está lo que deseamos encontrar. Hay que explorar y arriesgarse para tenemos que ir más allá de las regiones habituales y conocidas que nos tienen estancados siempre en el mismo lugar. ¡Hay que arriesgarse!
Homero nos contó como Ulises de Ítaca se arriesgó a oír el canto de las sirenas amarrado al palo de la vela mayor de su embarcación. Él no que´ria ser atraído por aquellas fuerzas malignas pero quería sentir los efectos de aquella llamada en lugar seguro. Eso nos lleva a pensar que hay un mensaje en el pasaje de Homero: Arriesgarse… ¡Sí! Pero con las precauciones necesarias. Así que, cuidado con los Robots, con los experimentos científicos de todo tipo, y, sobre todo, no debemos creer que lo sabemos todo. Tenemos que ser conscientes de que, el peligro nos acecha por todas partes.
Pero, no cabe duda alguna de que, el acto de exploración modifica la perspectiva del explorador; Ulises, Marco Polo y Colón habían cambiado cuando volvieron a sus lugares de partida . Lo mismo ha sucedido en la investigación científica de los extremos en las escalas, desde la grandiosa extensión del espacio cosmológico hasta el mundo minúsculo y enloquecido de las partículas subatómicas.
Una bella galaxia espiral de cien mil años-luz de diámetro que podemos comparar con…¡Un átomo!
En ambos “universos” existe una descomunal diferencia en los extremos de las escalas. Sin embargo, la inmensa galaxia de arriba no sería posible sin la existencia de infinitesimal átomo de abajo. ¡Todo lo grande está hecho de cosas pequeñas!
Así que, cuando hacemos esos viajes, irremediablemente nos cambian, y, desde luego, desafían muchas de las concepciones científicas y filosóficas que, hasta ese momento, más valorábamos. Algunas tienen que ser desechadas, como el bagaje que se deja atrás en una larga travesía por el desierto. Otras tienen que ser modificadas y reconstruidas hasta quedar casi irreconocibles, ya que, lo que hemos podido ver en esos viajes, lo que hemos descubierto, nos han cambiado por completo el concepto y la perspectiva que del mundo teníamos, conocemos y sabemos.
La exploración del ámbito de las galaxias extendió el alcance de la visión humana en un factor de 1026 veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquianismo en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.
La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a 10-15 de la escala humana, y también significó una revolución. fue la Física cuántica que, transformó todo lo que abordó.
La teoría cuántica nació en 1900, Max Planck comprendió que sólo podía explicar lo que llamaba la curva del cuerpo negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de energía es continua, y lo reemplazó por la hipótesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades.
1) Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. 2) En la gráfica se representa la intensidad de la radiación emitida por el cuerpo negro en función de la longitud de onda a diferentes temperaturas. El máximo de la curva aumenta al ir hacia menores longitudes de onda (Ley de Wien). Se compara con el modelo clásico de Rayleigh-Jeans a altas temperaturas (5000 K) comprobándose la llamada catástrofe del ultravioleta
La constante de Planck es una constante física que desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, Max Plancc, uno de los padres de dicha teoría. Denotada como , es la constante que frecuentemente se define como el cuanto elemental de acción. Planck la denominaría precisamente «cuanto de acción»
Fue inicialmente propuesta como la constante de proporcionalidad entre la energía de un fotón y la frecuencia de su onda electromagnética asociada. Esta relación entre la energía y la frecuencia se denomina «relación de Planck»:
Dado que la frecuencia , la longitud de onda , y la velocidad de la luz cumplen lambda . f = c ” la relación de Planck se puede expresar como:
- l
Otra ecuación fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal de una partícula con la longitud de onda de De Broglie λ de la misma:
En aplicaciones donde la frecuencia viene expresada en términos de radianes por segundo o frecuencia angular, es útil incluir el factor 1/2 dentro de la constante de Planck. La constante resultante, «constante de Planck reducida» o «constante de Dirac», se expresa como ħ (“h barra“):
De esta forma la energía de un fotón con frecuencia angular omega” />, donde se podrá expresar como
Por otro lado, la constante de Planck reducida es el cuanto del momento angular en mecánica cuántica.
Planck definió a “sus”0 cuantos en términos del “cuanto de acción”, simbolizado por la letra h que ahora, se ha convertido en el símbolo de una constante, la constante de Planck, h. Planck no era ningún revolucionario – a la edad de cuarenta y dos años era un viejo, juzgado por patrones de la ciencia matemática y, además, un pilar de la elevada cultura alemana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena de la física clásica a la que había dedicado la mayor parte de su carrera. “Cuanto mayores sean las dificultades -escribió-…tanto más importante será finalmente para la ampliación y profundización de nuestros conocimientos en la física.”
Sus palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de , la física cuántica pronto se expandió practicamente a todo el ámbito de la física, y el cuanto de acción de Planck, h llegó a ser considerado una constante de la Naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.
Dos buenos amigos, dos genios
Max Planck es uno de los científicos a los que más veces se le han reconocido sus méritos y, su , está por todas partes: La Constante de Planck, las Unidades de Planck, El cuanto de Planck, la Radiación de Planck, El Tiempo de Planck, la masa de Planck, la Energía de Planck, la Longitud de Planck… ¡Todo merecido!
Confinados en nuestro pequeño mundo, una mota de polvo en la inmensidad de una Galaxia grandiosa que, a su vez, forma parte de un universo “infinito”, hemos podido darnos traza para poder saber, a pesar de las enormes distancias, sobre lo que existe en regiones remotas del Universo. Un Universo formado por Supercúmulos de galaxias que formadas en grupos conforman la materia visible, y, dentro de cada una de esas galaxias, como si de universos se tratara, se reproducen todos los objetos y fenómenos que en el Universo son.
The Scale of the Universe 2 – HTwins.net
sigamos con la escala del Universo conocido y hagamos un pequeño esquema que lo refleje: El Universo Observable, la mayor escala que abarca más de 100 mil trillones de kilómetros (según nos cuenta Timothy Ferris:
Radio en metros Objetos característicos
1026 Universo observable
1024 Supercúmulos de Galaxias
1023 Cúmulos de Galaxias
1022 Grupo de Galaxias (por ejemplo el Grupo Local)
1021 Galaxia La Vía Láctea
Nube Molecular gigante muy masiva, de gas y polvo compuesta fundamentalmente de moléculas con diámetro típico de 100 a.l. Tienen masa de diez millones de masas solares (moléculas de Hidrógeno (H2) el 73% en masa), átomos de Helio (He, 25%), partículas de polvo (1%), Hidrógeno atómico neutro (H I, del 1%) y, un rico coctel de moléculas interestelares. En nuestra galaxia existen al menos unas 3000 Nubes Moleculares Gigantes, estando las más masivas situadas cerca de la radiofuente Sagitario B en el centro Galáctico.
1018 Nebulosas Gigantes, Nubes Moleculares
1012 Sistema Solar
1011 Atmósfera externa de las Gigantes rojas
Aunque a una Unidad Astronómica de distancia (150 millones de Kilómetros de la Tierra), el Sol caliente el planeta y nos da la vida
109 El Sol
108 Planetas Gigantes Júpiter
107 Estrellas enanas, planetas similares a la Tierra
105 Asteroides, núcleos de cometas
104 Estrellas de Neutrones
Los seres humanos son parte del Universo que queremos descubrir.
1 Seres Humanos
10-2 Molécula de ADN (eje largo)
10-5 Células vivas
Células vivas
10-9 Molécula de ADN (eje corto)
10-10 Átomos
10-14 Núcleos de átomos pesados
10-15 Protones y Neutrones
10-35 Longitud de Planck: cuanto de espacio; radio de partículas sin dimensiones =
la cuerda.
Es la escala de longitud a la que la descripción clásica de la Gravedad cesa de ser válida y debe ser tenida en la mecánica cuántica. Está dada por la ecuación de arriba, donde G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz. El valor de la longitud de Planck es del orden de 10-35 m (veinte órdenes de magnitud menorque el tamaño del protón 10-15 m).
Me llama la atención y me fascina la indeterminación que está inmersa en el mundo cuántico. La indeterminación cuántica no depende del aparato experimental empleado investigar el mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra.
Por muy avanzados que pudieran estar, ellos también estarían supeditados al Principio de Incertidumbre o Indeterminación cuántica, y, como nosotros, cuando trataran de encontrar (sea cual fuese las matemáticas o sistemas que emplearan para hallarlo) el resultado de la constante de estructura fina, el resultado sería el mismo: 137, puro y adimensional.
Todo esto nos ha llevado a la más firme convicción definir la visión del mundo de la física que nos revelaba que no sólo la materia y la energía sino que también el conocimiento están cuantizados. Cuando un fotón choca con un átomo, haciendo saltar un electrón a una órbita más elevada, el electrón se mueve de la órbita inferior a la superior instantáneamente, sin tener que atravesar el espacio intermedio. Los mismos radios orbitales están cuantizados, y el electrón simplemente deja de existir en un punto para aparecer simultáneamente en otro. Este es el famoso “salto cuántico” que tanto desconcierta, y no es un mero problema filosófico, es una realidad que, de , no hemos llegado a comprender.
No, esto no es un salto cuántico. Simplemente le tocó la Lotería
Pero, ¿quién sabe? Quizás un día lejano aún en el tiempo, cuando descubramos el secreto que salto cuántico nos esconde, poderemos aprovechar la misma técnica que emplea la Naturaleza con los electrones hacer posible que se transporten de un lugar a otro sin tener que recorrer las distancias que separan ambos destinos. Algunos experimentos se han realizado consiguiendo teletransportar partículas a kilómetros de distancia. ¡Ya veremos que pasa!
Estaría bien poder trasladarse las estrellas por ese medio
Bueno, pongamos los pies en el suelo, volvamos a la realidad. La revolución cuántica ha sido penosa, pero podemos agradecerle que, nos haya librado de muchas ilusiones que afectaban a la visión clásica del mundo. Una de ellas era que el hombre es un ser aparte, separado de la naturaleza a la que en realidad, no es que esté supeditado, sino que es, ella. ¡Somos Naturaleza!
Está claro, como nos decía Immanuel Kant que:
“La infinitud de la creación es suficientemente grande como para que un mundo, o una Vía Láctea de mundos, parezca, en comparación con ella, lo que una flor o un insecto en comparación con la Tierra.”
Algún día podríamos desaparecer en una especie de plasma como ese de la imagen y salir al “otro lado” que bien (¡Por qué no) podría ser otra galaxias lejana. Creo que la imaginación se nos ha dado para algo y, si todo lo que podemos imaginar se realizar, la conclusión lógica es que sólo necesitamos ¡Tiempo!
Sí, amigos míos, la Naturaleza vive en constante movimiento, y, nosotros, que formamos de ella…También. Tenemos que llegar a conocerla.
Existen muchos mundos con dos soles, ¿Cómo será vivir en uno de ellos?
En tiempos y lugares totalmente inciertos,
Los átomos dejaron su camino celeste,
Y mediante abrazos fortuitos,
Engendraron todo lo que existe.
Maxwell
Doy las gracias a Timothy Ferris de cuyo libro, la Aventura del Universo, he podido obtener bellos pasajes que aquí, quedan incluidos.
Emilio silvera V.
Jul
16
El Gran Colisionador de Hadrones busca los secretos del Universo
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Hemos conseguido construir máquinas poderosas que emplean enormes energías y llegan hasta las entrañas de la materia, hace mucho tiempo (desde Demócrito), que estamos tratando de saber de que están hechas las cosas. El LHC nos ha llevado hasta los límites inimaginables de todos esos secretos y, continúa intentando contestar a preguntas que, hasta el momento, nadie ha sabido contestar.
Jul
16
¿No estaremos perdiendo el Tiempo?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Jul
15
¿Qué habrá más allá del Modelo Estándar?
por Emilio Silvera ~ Clasificado en El Modelo Estánfar ~ Comments (3)
El Modelo tenía unos veinte parámetros metidos con calzador, el Bozón de Higgs era uno de ellos hasta que apareció, el resto sigue ahí para que cuadren las cuentas.
Durante los años ochenta del siglo XX los físicos que trabajaban en partículas elementales vinieron a coincidir en que la materia consiste, por una parte, en tres pares de leptones (partículas muy ligeras o incluso casi sin masa) y sus antipartículas. Los ejemplos por antonomasia son el electrón y el correspondiente neutrino electrónico.
Por otra de tres pares de quarks y sus antipartículas, que son los que forman la llamada materia bariónica, como los protones o los neutrones. Para mantener los quarks unidos existe una fuerza, la llamada interacción fuerte, que se expresa en ocho clases de gluones. Para unir a los leptones entre sí y con los quarks está la interacción electrodébil que consiste en el fotón (para la parte “electro”) y tres partículas (bosones), W+, W– y Z0(para la parte “débil”).
La detección de las partículas W y Z en el bienio 1982-1983 y del quark cima (top)en 1995completaron la identificación experimental de los elementos del modelo estándar (a falta del bosón de Higgs). Los éxitos del modelo dieron lugar a las teorías de gran unificación (TGU), orientadas a unificar las interacciones fuerte y electrodébil, y a alentar los sueños de lograr una teoría de todo (TT).
Algunos físicos de partículas, especialmente Steven Weinberg, llegaron a afirmar que una vez que las “tripas” de las TGU (un juego de palabras en inglés entre “guts”, tripas, y GUTs, teorías de gran unificación) estaban en su sitio era de esperar que la TT definitiva fuese inminente. Sin embargo, un vistazo a los “modelos estándares” de la historia, si supusiesen un patrón por el que regirse, hace que este optimismo no esté del todo justificado.
Los bosones W y Z son las partículas mediadoras de la interacción nuclear débil, una de las cuatro interacciones fundamentales de la naturaleza.
“… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones.”
La Física actual busca una teoría más amplia que el modelo estándar . Una teoría que dé una descripción completa, unificada y consistente de la estructura fundamental del universo. ¿Será la compleja Teoría de cuerdas, que integra también la interacción gravitatoria?
Explorando el modelo estándar de física de partículas con aceleradores
El modelo estándar es una poderosa herramienta pero no cumple todas las expectativas; no es un modelo perfecto. En primer lugar, podríamos empezar por criticar que el modelo tiene casi veinte constantes que no se pueden calcular. Desde luego, se han sugerido numerosas ideas para explicar el origen de todos estos parámetros o números inexplicables y sus valores, pero el problema de todas estas teorías es que los argumentos que dan nunca han sido enteramente convincentes. ¿Por qué se iba a preocupar la naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero no queremos abandonar todos los demás principios que ya conocemos. Ésos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar. El mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, construimos máquinas como el LHC para que nos diga lo que no sabemos.
Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.
Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón?
Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.
El ajuste Fino del Universo y sus constantes esencial para la Vida
Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿Cómo podemos modificar el Modelo Estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.
Más allá del modelo estándar habrá otras respuestas que nos lleven a poder hacer otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos. Si no conociéramos que los protones están formados por Quarks, ¿Cómo nos podríamos preguntar si habrá algo más allá de los Quarks?
El gobierno de Estados Unidos, después de llevar gastados miles de millones de dólares, suspendió la construcción del super-colisionador superconductor de partículas asestando un duro golpe a la física de altas energías, y se esfumó la oportunidad para obtener nuevos datos de vital importancia para el avance de este modelo, que de momento es lo mejor que tenemos.
Se han estado inventando nuevas ideas, como la supersimetría y el technicolor. Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones. Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman “materia oscura”.
Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta. Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia: “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡Mi ecuación es más inteligente que su inventor!”. Este último comentario es para poner un ejemplo de cómo los físicos trabajan y buscan caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar. Así pasó también con las ecuaciones de Einstein de la relatividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.
Se piensa que al principio del comienzo del tiempo, cuando surgió el Big Bang, las energías eran tan altas que allí reinaba la simetría total; sólo había una sola fuerza que todo lo englobaba. Más tarde, a medida que el universo se fue expandiendo y enfriando, surgieron las cuatro fuerzas que ahora conocemos y que todo lo rigen. Tenemos los medios, en los super-colisionadores de partículas, para viajar comenzando por 1.000 MeV, hasta finalizar en cerca de 1019 MeV, que corresponde a una escala de longitudes de aproximadamente 10–30 cm. Howard Georgi, Helen Quinn y Steven Weinberg descubrieron que ésta es la región donde las tres constantes de acoplamiento gauge se hacen iguales (U(1), SU(2) y SU(3)); resultan ser lo mismo. ¿Es una coincidencia que las tres se hagan iguales simultáneamente? ¿Es también una coincidencia que esto suceda precisamente en esa escala de longitud? Faltan sólo tres ceros más para alcanzar un punto de retorno. Howard Georgi y Sheldon Glashow descubrieron un modelo genuinamente unificado en el dominio de energías de 1019 MeV tal que, cuando se regresa de allí, espontáneamente surgen las tres fuerzas gauge tal como las conocemos. De hecho, ellos encontraron el modelo; la fórmula sería SU(5), que significa que el multiplete más pequeño debe tener cinco miembros.
Materia y Energía Oscura… Un Misterio…Sin resolver.
Y, a todo esto, ¿dónde está esa energía oculta? ¿Y donde la materia? Podemos suponer que la primera materia que se creo en el Universo fue la que llamamos (algún nombre había que ponerle) “Materia Oscura”, esa clase de Ylem o sustancia cósmica primera del Universo que mejor sería llamarla invisible, ya que, de no ser así, difícil sería explicar cómo se pudieron formar las primeras estrellas y galaxias de nuestro Universo, ¿Dónde está el origen de la fuerza de Gravedad que lo hizo posible, sino en esa materia escondida?
¡Lo dicho! Necesitamos saber, y, deseo que de una vez por todas, se cumpla lo que dejó dicho Hilbert en su tumba de Gotinga (Alemania): “Tenemos que saber, ¡sabremos!. Pero…
¡Que sea pronto!
Publica: Emilio Silvera V.
Fuente: El trabajo está conformado por las ideas de muchas fuentes