jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Naturaleza? ¡Simetría dentro de la Diversidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Simetrías    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Tierra vista desde el espacio: las fotografías históricas ...160 ideas de La tierra vista desde el espacio | vistas ...

                                      Nuestro planeta visto desde el Espacio

Nuestro mundo, aunque en la Galaxia existan muchos como él (que no los hemos podido encontrar), es un lugar privilegiado que conforma un Ecosistema superior en su conjunto formado por muchos ecosistemas locales aislados los unos de los otros y sin embargo, todos conexionados. La Diversidad de regiones diferentes que existen dentro del mismo planeta es asombrosa y, lo mismo nos podemos encontrar en un lugar como ese que vemos arriba, o en una isla paradisíaca, una selva, un desierto, o perdidos en un inmenso y embravecido océano, en la ventisca de nieve de inmensas montañas y, también, en grutas enormes en las profundidades del planeta.

Un Planeta Privilegiado | PDF

 

“”La posición de la Tierra en el sistema solar también es privilegiada, ya que tiene un cuerpo gigante, Júpiter, que la protege de cometas y asteroides. Tiene, además, una atmósfera casi única que hace posible la vida, un efecto invernadero y un campo magnético que la protege de las radiaciones.”

Pero todos esos climas diferentes son el resultado de la diversidad y, en cada uno de esos lugares ocurren cosas y, la vida, aunque parezca imposible, está allí presente. Es la consecuencia de que el planeta Tierra esté situado en la zona habitable del Sol, ni demasiado cerca para que la vida perezca achicharrada, ni demasiado lejos para que resulte congelada por el frío. Aquí el agua discurre líquida y cantarina por multitud de lugares y hace posible que, entre el preciado líquido y los rayos del Sol que nos envían la luz y el calor necesarios para la fotosíntesis y la vida… ¡Podamos estar aquí!

 

Resultado de imagen de Electromagnetismo

 

“El electromagnetismo es la rama de la física que estudia las relaciones entre los fenómenos eléctricos y magnéticos, es decir, entre el campo magnético y la corriente eléctrica.”

Fuente: https://concepto.de/electromagnetismo/#ixzz5sIhuRCgE

                        La imagen especular de la montaña en el lago es simetría

Todos sabemos que la materia en nuestro Universo adopta muchas formas distintas: Galaxias de estrellas y mundos que, en alguna ocasión, pueden incluso tener seres vivos y algunos han podido evolucionar hasta adquirir la consciencia. Sin embargo, no me quería referir a eso que es bien sabido por todos, sino que, trato de pararme un poco sobre una curiosa propiedad que la materia tiene en algunas ocasiones y que, la Naturaleza se empeña en repetir una y otra vez: ¡La Simetría!

Las Galaxias espirales, la redondez de los mundos, las estrellas del cielo, los árboles y las montañas, los ríos y los océanos, las especies animales (incluida la nuestra) que, se repiten una y otra vez y, en general, salvando particularidades, todas repiten un patrón de simetría.

Recuerdo aquí aquel pensamiento de Paul Valery en el que nos decía:

“El Universo está construido según un plan cuya profunda simetría está presente de algún modo en la estructura interna de nuestro intelecto.”

 

                                       La Naturaleza está llena de simetrías

La simetría es una propiedad universal tanto en la vida corriente, como desde un punto de vista matemático desde el quehacer de la Física Teórica. En realidad, lo que observamos en la vida corriente es siempre lo repetitivo, lo simétrico, lo que se puede relacionar entre sí por tener algo común. Es siempre lo mismo dentro de una inmensa diversidad formada por grupos iguales.

En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más. Hay distintas maneras de expresarla: “Conjunto de invariancias de un sistema”, podría ser una de ellas. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas.

        Aquí hay mucho más de lo que a simple vista parece. 

La divina proporción aurea, el nñume3ro de oro (PHI)

Los físicos teóricos también se guían en sus investigaciones por motivaciones estéticas tanto como racionales. Poincaré escribió: “Para hacer ciencia, es necesario algo más que la pura lógica”. Él identificó ese elemento adicional como la intuición, que supone “el sentido de la belleza matemática”. Heisenberg hablaba de “la simplicidad y belleza de los esquemas matemáticos que la Naturaleza nos presenta”.

Resultado de imagen de Simetría por todas partes

La simetría está presente por todas partes y, cada objeto, tiene la suya que siempre, está relacionada con la de otro de la misma especie. Hay simetrías que en física incluye todos los rasgos de un sistema físico que exhibe propiedades de la simetría – eso es, que bajo ciertas transformaciones, aspectos de esos sistemas son “incambiables”, de acuerdo a una observación particular. Una simetría de un sistema físico es un rasgo físico o matemático de un sistema que es preservado sobre cierto cambio.

En matemática,  una transformación es un operador aplicado a una función tal que bajo esa transformación, ciertas operaciones sean simplificadas. En ejemplo, en la aritmética cuando se busca un algoritmo de números, el proceso de búsqueda es reducido a la suma de los algoritmos de cada factor.

 

Resultado de imagen de Recipiente con agua apunto de hervir

 

Por ejemplo, veamos la invariancia de escala: En un recipiente con agua a punto de hervor, las burbujas de vapor, nucleadas en el fondo del recipiente, crecen, se liberan, y fluctúan  hasta la superficie de donde se escapan para la atmósfera. A la temperatura de ebullición, el agua existe al mismo tiempo en dos fases distintas – líquido y gas – y a medida que las burbujas se forman las dos fases se separan en el espacio. Si cerramos el recipiente la temperatura de ebullición aumenta, como en una olla a presión. A medida que la presión aumenta, el sistema llega al punto crítico, donde las propiedades del líquido y del gas se vuelven idénticas. Por encima de esa temperatura, en el régimen supercrítico, dejan de existir dos fases distintas y existe apenas un fluido homogéneo.

Té y Agua parte II - Calidad y Temperatura | Tienda de té en Sevilla |  té&té | Pasión por el té | Venta online

Cerca del punto crítico, la materia fluctúa sin límites. Burbujas y gotas, unas tan pequeñas como unos cuantos átomos, otras tan grandes como el recipiente, aparecen y desaparecen, se unen y se separan. Exactamente en el punto crítico la escala de las mayores fluctuaciones divergen, pero el efecto de las fluctuaciones en escalas menores no es despreciable. La distribución de las fluctuaciones es invariable para transformaciones de escala.

 

 

De la figura se deduce que la teoría tiene una “simetría interna”: la figura no cambia cuando hacemos rotaciones en el plano definido por A y B. La invariancia es definida matemáticamente por transformaciones que dejan magnitudes sin cambio. Por ejemplo, la distancia entre dos puntos de un sólido que se mueve, pero no se deforma.

Simetrías locales y globales

 

Resultado de imagen de simetría global

 

Una simetría global es una simetría que sostiene todos los puntos en el tiempo-espacio bajo consideración, a diferencia de la simetría local que solo sostiene a un subconjunto de puntos.

 

Un lagrangiano

Introducción a la Ecuación de Euler-Lagrange

 

 

La mayoría de las teorías físicas son descritas por lagrangianos (En física, un lagrangiano es una función matemática a partir del cual se pueden derivar la evolución temporal, las leyes de conservación y otras propiedades importantes de un sistema físico) que son invariantes bajo ciertas transformaciones, cuando las transformaciones son realizadas en diferentes puntos del espacio-tiempo y están relacionadas linealmente – ellas tienen simetría global.

Por ejemplo, en toda teoría cuántica la fase global de una función de onda es arbitraria y no representa algo físico. Consecuentemente, la teoría es invariante bajo a cambio global de fases (Agregando una constante a la fase de todas las funciones de onda, en todos lados); esto es una simetría global. En la electrodinámica quántica, la teoría es también invariante bajo un cambio local de fase, es decir, que se puede alterar la fase de todas las funciones de onda tal que la alteración sea diferente en cada punto del espacio-tiempo. Esto es una simetría local.

 

También se habla de ruptura de simetrías temporales en la física de partículas.

Los físicos creen también que están en el camino correcto porque, de algún modo que no pueden explicar, tienen la convicción de que son correctas, y las ideas de simetría son esenciales para esa intuición. Se presiente que es correcto que ningún lugar del Universo es especial comparado con cualquier otro lugar del Universo, así que los físicos tienen la confianza de que la simetría de traslación debería estar las simetrías de las leyes de la Naturaleza. Se presiente que es correcto que ningún movimiento a velocidad constante es especial comparado con cualquier otro. De modo que los físicos tienen confianza en que la relatividad especial, al abrazar plenamente la simetría entre todos los observadores con velocidad constante, es una parte esencial de las leyes de la Naturaleza.

Resultado de imagen de La Ecuación de Euler

Se dice que esta ecuación de Euler es la más bella conocida. Aunque son muchas las ecuaciones que podríamos traer aquí y que son de todos conocidas y han quedado como símbolos en la historia de las matemáticas, la de Euler, es posible que por su elegancia y simplicidad, le pueda ganar a las demás en belleza. Ahí, en ese sencillo conjunto, los números más significativos de las matemáticas se abrazan: o, 1, e, π, y la unidad imaginaria i .

Si se fijan en la fórmula, en ella aparecen los 5 números más importantes en la historia de las matemáticas. El 0 y el 1 que, entre otras aportaciones a esta disciplina, son famosos por ser elementos neutros y, por lo tanto, indispensables en las operaciones de suma y producto; los números π y e, posiblemente, los dos irracionales más famosos (junto con φ, la razón aúrea) que existen (y que nos permiten hacer el chiste aquel de que la parte más irracional de nuestro cuerpo es el pi-e); y la unidad imaginaria, i, cuyo valor es

 

La BBC Earth le preguntó a matemáticos y físicos qué ecuaciones piensan que son las más hermosas. ¡Aquí las 12 elegidas! las ecuaciones que ellos piensan son las más bonitas.

 

Relatividad 12: ¿Qué dice realmente la ecuación de Dirac?

La ecuación de Dirac arriba. La ecuación fue descubierta a finales de los años 20 por el físico Paul Dirac, y juntó dos de las ideas más importantes de la ciencia: la mecánica cuántica, que describe el comportamiento de objetos muy pequeños; y la teoría especial de Einstein de la relatividad, que describe el comportamiento de objetos en movimiento rápido.

La ecuación fue descubierta por el físico Paul Dirac a finales de los años 20 y junta la mecánica cuántica y la teoría especial de Einstein de la relatividad, que describe el comportamiento de objetos en movimiento rápido. En otras palabras, explica cómo las partículas se comportan cuando viajan a casi la velocidad de la luz.

 

Fórmula de Riemann

                El matemático Bernhard Riemann publicó esta ecuación en 1859

 

Permite calcular los números primos por debajo de un número dado.  “Son los números más básicos e importantes en el corazón del mundo de la matemática. Pero sorprendentemente, a pesar de más de 2000 años de investigación, todavía no los entendemos”, explica Marcus du Sautoy de la universidad de Oxford.

 

Pi

Pi es la ecuación de la circunferencia, la relación entre la circunferencia y el diámetro de un círculo. Además es un número irracional, lo que significa que los dígitos pueden continuar indefinidamente sin que se repitan.

 

Las ecuaciones más bellas del universo

 

En uno de los artículos científicos revolucionarios de Albert Einstein publicado en 1905, se introdujo el concepto de E=mc2, donde “E” es energía, “m” es masa y “c” es la velocidad de la luz en el vacío.[1]Desde entonces, E=mc2 se ha convertido en una las ecuaciones más famosas del mundo. Incluso las personas que no tienen conocimiento de física al menos han oído sobre esta ecuación y saben la enorme influencia que tiene en el mundo en que vivimos. Sin embargo, la mayoría de las personas no saben exactamente qué es lo que significa. En términos simples, la ecuación representa la equivalencia entre la masa y la energía; básicamente indica que ambas son solo dos formas diferentes de la misma cosa.[2]Esta simple ecuación ha alterado la forma en la que pensamos sobre la energía y nos ha permitido crear un gran número de avances tecnológicos.

{\displaystyle \displaystyle S({\boldsymbol {q}})=\int _{a}^{b}L(t,{\boldsymbol {q}}(t),{\boldsymbol {q}}'(t))\,\mathrm {d} t}

“La ecuación de Euler-Lagrange fue desarrollada en 1750 por Euler y Lagrange como solución al problema de la tautócrona (caso general de la braquistócrona): consiste en determinar la curva de la trayectoria que describiría el descenso en la que una partícula con masa cae a cierto punto, en un tiempo dado, independiente de su posición inicial.

Lagrange resolvería el problema en 1755 y enviaría la solución a Euler. Ambos desarrollarían aún más el método de Lagrange y lo aplicarían a problemas de mecánica; cosa que a su vez conduciría a formular por vez primera la mecánica lagrangiana. Dicha correspondencia también desembocaría en el desarrollo del cálculo de variaciones, un término acuñado por el mismo Euler en 1766.”

Esta ecuación se utiliza para analizar todo. “Más que una ecuación, es una receta para generar una infinita variedad de posibles leyes de física”, comenta Andrew Pontzen de la University College London.

 

Belleza matemática: la identidad de Euler - Kumon España

La entidad de 

En matemáticas, la identidad de Euler es la igualdad: Función exponencial ez puede definirse como el límite de una secuencia (1 + z/N)N, con N tendiendo a infinito, y así e  es el límite de (1 + iπ/N)N.

La ecuación de onda.

El autor de la ecuación matemática más famosa es Leonhard Euler, de ahí que lleve su nombre: la identidad de Euler, llamada «identidad» porque en ella solo existen números. Aunque en la fórmula veamos letras, estas representan en realidad números.

La identidad más famosa de las matemáticas. La Identidad de Euler es la fórmula más famosa de las matemáticas, ya que liga los cinco números más famosos de la matemática e, i, π , 1 y 0. ¡Sólo falta Φ

Demostró el último teorema de Fermat para n = 3, donde introdujo cálculo con números algebraicos. Se puede afirmar que el análisis matemático comienza con Euler.

La fórmula de Euler es eⁱˣ=cos(x)+i⋅sin(x), y la identidad de Euler es e^(iπ)+1=0. Observa cómo se obtienen estas relaciones por medio de las series de Maclaurin de cos(x), sin(x) y eˣ. ¡Estos son algunos de los resultados más sorprendentes de las matemáticas!

 

{\displaystyle {\partial ^{2}u \over \partial t^{2}}=c^{2}\Delta u=\;c^{2}\left({\frac {\partial ^{2}u}{\partial x_{1}^{2}}}+{\frac {\partial ^{2}u}{\partial x_{2}^{2}}}+{\frac {\partial ^{2}u}{\partial x_{3}^{2}}}\right)}

“La belleza de la ecuación de la onda se manifiesta de muchas formas”, explica Ian Stewart de la universidad de Warwick del Reino Unido.  Se aplica a todo tipo de ondas, desde las de agua a las de sonido y vibraciones. Incluso a las ondas de luz y radio.

 

Resultado de imagen de Teorema de Bayes

 

Este teorema tiene más usos de los que uno se imagina, calcula la probabilidad que un evento (A) sea real, dado que otro evento (B) también lo es. Tiene muchos usos, como para detectar fallas de vigilancia, defensa militar, operaciones de búsqueda y rescate, en escáneres médicos en incluso para filtros de correos electrónicos no deseados.

Pasamos a la ecuación de campo de Einstein

 

{\displaystyle {\text{G}}_{\mu \nu }={8\pi {\text{G}} \over {\text{c}}^{4}}T_{\mu \nu }}

Tensor de curvatura de Einstein, que se forma a partir de derivadas segundas del tensor métrico gμν
Tensor momento-energía
c Velocidad de la luz
G Constante de la gravitación universal

{\displaystyle {\text{G}}_{\mu \nu }=R_{\mu \nu }-{1 \over 2}Rg_{\mu \nu }+\Lambda g_{\mu \nu }}

{\displaystyle R_{\mu \nu }-{1 \over 2}Rg_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi {\text{G}} \over {\text{c}}^{4}}T_{\mu \nu }}

{\displaystyle R-2R+4\Lambda ={8\pi G \over c^{4}}T\,}

{\displaystyle R_{\mu \nu }-g_{\mu \nu }\Lambda ={8\pi G \over c^{4}}\left(T_{\mu \nu }-{1 \over 2}T\,g_{\mu \nu }\right)}

{\displaystyle \kappa ={16\pi G \over c^{2}}\rho }

 

Esta ecuación es en realidad un sumario de diez ecuaciones. Katie Mack, de la universidad de Melbourne en Australia, explica que estas fórmulas cambiaron completamente cómo entendemos la naturaleza y evolución del Universo. La ecuación de Einstein nos puede decir cómo nuestro universo ha cambiado con el tiempo, y ofrece un vistazo de los primeros momentos de la creación.

Es un prodigio de la Mente humana 

Dirac nos hablaba de ecuaciones bellas. La estética es, evidentemente, subjetiva, y la afirmación de que los físicos buscan la belleza en sus teorías tiene sentido sólo si podemos definir la belleza. Afortunadamente, esto se puede , en cierta medida, pues la estética científica está iluminada por el sol central de la simetría.

Resultado de imagen de Las bellas simetrías de la NaturalezaResultado de imagen de Las bellas simetrías de la NaturalezaResultado de imagen de Las bellas simetrías de la Naturaleza                                                                            Resultado de imagen de Las bellas simetrías de la Naturaleza

             La Naturaleza nos la muestra por todas partes

La simetría es un concepto venerable y en modo alguno inescrutable y no podemos negar que tiene muchas implicaciones en la Ciencia, en las Artes y sobre todo, ¡en la Naturaleza! que de manera constante nos habla de ella. Miremos donde miremos…¡allí está!

Nobel Fisica 1957 > Chen Ning Yang

El físico chino-norteamericano Chen Ning Yang ganó el Nóbel de Física por su en el desarrollo de una teoría de campos basada en la simetría y, aún afirmaba: “No comprendemos todavía el alcance del concepto de simetría”. Es lógico pensar que, si la Naturaleza emplea la simetría en sus obras, la razón debe estar implicada con la eficacia de los sistemas simétricos.

En griego, la palabra simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera, como de hecho, resultan ser en las imágenes que arriba contemplamos. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético superior.

Humo simétrico y diseño de humo blanco sobre fondo negro | Foto Premium

                                           Humo simétrico

Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Escuela Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos de ese Universo de simetría.

Los planetas son esféricos y, por ejemplo, tienen simetría de rotación. Lo que quiere indicar es que poseen una característica -en caso, su perfil circular- que permanece invariante en la transformación producida cuando la Natuiraleza los hace rotar. Las esferas pueden Hacerse rotar en cualquier eje y en cualquier grado sin que cambie su perfil, lo cual hace que sea más simétrica.

La clave de la belleza está en la simetría

La simetría por rotación se encuentra en los pétalos de una flor o en los tentáculos de una medusa: aunque sus cuerpos roten, permanecen iguales. La simetría bilateral que hace que los lados derecho e izquierdo sean iguales y se presenta en casi todos los animales, incluido nosotros. Pero es uniendo estos aspectos se obtienen figuras realmente armoniosas. Si se trata de desplazamiento y rotación en un  mismo plano hablamos de una espiral, mientras que en el espacio sería una hélice, aunque ambas se encuentran por todas partes en la naturaleza.

Las simetrías se generan mediante las fuerzas que actúan sobre los cuerpos, descritas por leyes rigurosas e inequívocas, como una fórmula matemática y dependen de la existencia de fuerzas distintas que actúan en diversas  direcciones. Si éstas permanecen en equilibrio, no hay preferencia alguna hacia arriba o abajo, a la derecha o a la izquierda, y los cuerpos tenderán a ser perfectamente esféricos, como suele ocurrir en el caso de virus y bacterias, las estrellas y los mundos… las galaxias. Además, cuando el aspecto no es el de una esfera perfecta, la Naturaleza hará todo lo posible para acercarse a esta.

 

La simetría también están presentes  en  nuestros cerebros

¿Sería posible que la simetría material tuviera un paralelismo en la abstracción intelectual que son las leyes físicas? luego hace falta un esfuerzo mental considerable para pasar de lo material a lo intelectual, pero cuando se profundiza en ellla, la conexión aparece. En la naturaleza existen muchas cosas que nos pueden llevar a pensar en lo complejo que puede llegar a resultar entender cosas que, a primera vista, parecían sencillas.

Me explico:

 

Curiosidades del girasol

 

Fijémonos, por ejemplo, en una Flor de Girasol y en las matemáticas que sus semillas conllevan. Forman una serie de números en la que cifra es la suma de las dos precedentes (por ejemplo 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…) se denomina, en términos matemáticos, sucesión de Fibonacci, una ley que se cumple incluso en el mundo vegetal, como hemos podido comprobar en las semillas del girasol, dispuestas en espiral y que respetan ésta fórmula. La podemos ver por todas partes.

 

                     Lo mismo ocurre con otros ejemplares de la diversidad del mundo de las plantas

En el mundo inorgánico las leyes de la cristalización del agua congelada, determinadas por las fuerzas que actúan entre las moléculas, hacen que los cristales adopten formas que son infinitas y varían con respecto a un tema común: la estrella de seis puntas. Sin embargo, los planetas son esféricos porque han nacido en la primordial que rodeaba al Sol, atrayendo materia indiferentemente de todas partes.

 

Tiburones: Fotos, tipos de tiburones y por qué son considerados peligrososTipos y razas de caballos | Recopilación de razas y características - ZotalAbejas - características, diferencia con las avispas y por qué son  importantesEl dato clave sobre la visión del colibrí que nadie conoce | TNÁguila real, la mítica y emblemática ave de la bandera mexicana

 

Claro que, en la Naturaleza, nada ocurre porque sí, todo tiene su por qué, y, todo lo que en ella podemos contemplar posee una funcionalidad que está directamente relacionada con su mecánica, con el medio en el que habita, con lo que el Universo espera que haga en su medio y, para ello, dota a figura con aquellos “trajes” que mejor les permita realizar aquello para lo que están destinados.

Vamos a generalizar un paso más el concepto de simetría, planteándonos si es posible que una ley física se cumpla en cualquier lugar. ¿En cualquier lugar… de dónde?, ¿de nuestra ciudad?, ¿de nuestro planeta? No: del universo. Una ley que fuera válida en cualquier lugar del universo sería una ley simétrica respecto al espacio. Se cumpliría dondequiera que se hiciese un experimento para comprobarla.

 

Imágenes de Galaxia Espiral - Descarga gratuita en Freepik

La simetría de las galaxias espirales

Fíjense que nuestra idea de simetría se va haciendo más compleja y más profunda. no nos detenemos en ver si la forma material de un objeto es simétrica, ni de si la escritura de una fórmula matemática es simétrica. Ahora nos preguntamos si una ley física es válida en todo el Universo.

La otra simetría interesante para una ley física es la que se refiere al tiempo. Cierta ley física se cumple ; ¿antes también?, ¿se cumplirá pasado algún tiempo? Una ley que fuera cierta en cualquier instante de la historia del universo sería una ley simétrica respecto al tiempo.

 

Monografias.com

Lo que nos preguntamos es: ¿son simétricas o no las leyes de la física?

Hasta donde alcanzan nuestras medidas, las leyes físicas (y, por tanto, la interacción gravitatoria) sí son simétricas respecto al espacio y respecto al tiempo. En cualquier lugar y momento temporal del universo, la Naturaleza se comporta igual que aquí y ahora en lo que se refiere a estas leyes.

 

C.Nat.01-Los 5 reinos de los seres vivos

Todas las especies son simétricas entre sí

Esta simetría es un arma muy poderosa para investigar hacia el pasado y hacia el futuro, ya que nos permite suponer (y, en la medida en que confiemos en la seguridad de la simetría, conocer) locales donde jamás podremos llegar por la distancia espacial y temporal que nos separa de muchas partes del universo. Así, por ejemplo, gracias a esta simetría, podemos calcular que el Sol lleva 5.000 millones de años produciendo energía y que le quedan, probablemente, otros 5.000 millones hasta que consuma toda su masa. Esto lo podemos aventurar suponiendo que en ese enorme tramo de 5.000 + 5.000 = 10.000 millones de años las leyes físicas que determinan los procesos mediante los cuales el Sol consume su propia masa como combustible (las reacciones nucleares que le permiten producir energía), fueron, son y serán las mismas aquí en el Brazo de Orión donde nos encontramos como en los arrabales de la Galaxia Andrómeda donde luce una estrella como nuestro Sol que, también envía luz y calor a sus planetas circundantes, y, por muy lejos que podamos mirar, siempre veremos lo mismo.

       Por tanto, en cierto modo, la simetría se vuelve tan importante o más que la propia ley física.

 

Resultado de imagen de los maoríes neozelandeses se decoran el rostro

 

La regularidad de las formas de la Naturaleza se refleja incluso en la cultura humana, que desde siempre intenta inspirarse en el mundo natural conformar su propio mundo. Existen hélices en las escaleras de palacios, castillos y minaretes y en las decoraciones de esculturas y columnas. Las espirales abundan en los vasos, en los bajorrelieves, en los cuadros,  en las esculturas en los collares egipcios, griegos, celtas, precolombinos e hindúes e, incluso, en los tatuajes con los que los maoríes neozelandeses se decoran el rostro.

 

                                                                         

¿Tenía en mente Leonardo la proporción áurea a la hora de realizar su obra maestra? Afirmarlo resultaría aventurado. Menos polémico es aseverar que el genio florentino concedía gran importancia a la relación entre la estética y la matemática. Dejaremos la cuestión en el aire por el momento, no sin antes mencionar que Leonardo realizó las ilustraciones de una obra de contenido estrictamente matemático, escrita por su buen amigo Luca Pacioli, llamada “De divina proportione”, es decir, “La divina proporción”.

 

La proporción áurea en las marcas – ARQA

La proporción aurea

La búsqueda de la perfección geométrica y de las propiedades matemáticas pueden ser una guía importante en el estudio científico del mundo. Paul Dirac, una de los padres de la moderna mecánica cuántica, solía decir que “si una teoría es bella desde el punto de vista matemático, muy probablemente es también verdadera”.

A todo esto, no debemos olvidar que todo, sin excepción, en nuestro Universo, está sometido a la Entropía que nos trae el paso inexorable de eso que llamamos “Tiempo”, y que, convierte perfectas simetrias de joven belleza, en deteriorados objetos o entidades que, nos viene a recordar que nada es perpetuo, que todo pasa y se transforma. Claro que, de alguna manera, todo vuelve a resurgir.

 

Clau Su  on X: "La belleza exterior atrae, Pero procura conocer el  interior de las personas. No siempre la belleza de afuera es igual a la de  adentro. Por fuera somos

 

La Belleza más valiosa no la podemos ver. ¡Vive en el interior!

Un dolor que llevo dentro de mí es el no poder contemplar la verdadera belleza que  estando presente en los seres vivos inteligentes, en la mayoría de los casos, se nos queda oculta a nuestra percepción, toda vez que esa clase de belleza, que no podemos ver pero sí percibir, sólo la podemos captar con el trato y la convivencia y, verdaderamente, tengo que admitir que, algunas bellezas que he tenido la suerte de poder “ver con los ojos del espíritu”, llegan a ser segadoras, deslumbrantes, su esplendor es muy superior al de la estrella más brillante del cielo, y,  seguramente (estoy seguro) como a muchos de ustedes les pasa, tengo la suerte de tenerla junto a mí desde hace muchos años. y, si pienso en ello en profundidad y detenimiento, no tengo más remedio que concluir que es ese brillo y esplendor el que me da la fuerza para seguir cada dia en la dura lucha que nos ha participar.

¡Sí que es importante la Belleza! Dirac tenía toda la razón. Y, no digamos las Simetrías que nos señala el dedo de la Naturaleza el camino a seguir a muchos físicos que quieren desvelar sus secretos.

Emilio Silvera V.

 

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting