miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Naturaleza! ¡El Universo! ¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿Estamos ahora en el punto de comprender por qué, si existieran seres vivos en otros planetas capaces de moverse a través de sus mares, de su atmósfera o de sus tierras, sería muy probable que, también ellos, tengan simetría bilateral? En cualquier otro planeta, igual que en la Tierra, actuarían los mismos factores que darían lugar a la mencionada simetría. La Gravedad produciría diferencias esenciales entre arriba y abajo, y la locomoción originaría marcadas diferencias entre frente y dorso. La ausencia de asimetrías fundamentales en el entorno permitiría que la simetría izquierda derecha de los cuerpos permaneciera inalterada.

 

¿Podemos ir más allá? ¿Podemos esperar semejanzas más concretas entre la vida extraterrestre y la vida tal como la conocemos? Creo que sí, que de la misma manera que existen planetas como la Tierra que tendrán paisajes parecidos a los que podemos contemplar en nuestro mundo, de la misma manera, dichos planetas, podrán albergar formas de vida que, habiendo surgido en condiciones similares a las nuestras de Gravedad, Magnetismo, Radiación… Habrán seguido el mismo camino que tomamos nosotros y los otros seres que en la fauna terrestre nos acompañan.

 

http://www.palimpalem.com/8/CENTROSANERGIAALICANTE/userfiles/CARACOLA-VITAL-HUMANA.jpg

En los extraños mares de otros planetas, si tienen la misma composición química, es difícil imaginar que la evolución de lugar a una forma más sencilla de locomoción que la que se produce ondulando colas y aletas. Que la propia evolución encontraría este tipo de propulsión viene avalado por el hecho de que, incluso en la Tierra, esta evolución se ha producido de manera totalmente espontánea e independiente. Los peces desarrollaron la propulsión cola-aleta; después, ellos mismos evolucionaron hasta convertirse en tipos anfibios que se arrastraban por tierra firme hasta llegar a ser reptiles.

 

Ornitorrinco: el animal más raro del mundo

Ornitorrinco: ¿Mamífero, Ave o Reptil? Lo cierto es que, sin movernos de aquí, podemos ver los mismos extraños animales que nos podríamos encontrar en cualquier lugar situado en lejanos sistemas planetarios alumbrados por otras estrellas distintas a nuestro Sol. Allí y aquí en la Tierra, predominan las mismas leyes, las mismas fuerzas, los mismos principios y los mismos ritmos que el Universo impone por el inmenso Cosmos, todas esas fuerzas fundamentales de la Naturaleza estarían presentes en cualquier lugar al que podamos ir o imaginar dentro de nuestro Universo.

Algunos  reptiles fueron evolucionando y dieron lugar a a los mamíferos. cuando algunos de estos últimos regresaron al mar (los que luego han sido ballenas y focas, por ejemplo), sus piernas volvieron a evolucionar hacia las formas de las aleta destinadas a la propulsión por el medio acuático y a la navegación.

 

Condor Bird GIF - Condor Bird - Discover & Share GIFs

 

https://www.instagram.com/reel/C9_FhXyuTvA/?utm_source=ig_web_copy_link

                                          El majestuoso vuelo del Cóndor

De la misma manera, cuesta imaginarse una manera más sencilla de volar por el aire que no sea utilizando las alas. De esos ejemplos, también en la Tierra ha habido una evolución independiente y paralela de las alas. Los reptiles las desarrollaron a causa de la evolución, y llegaron a volar.

 

         Los Pterodáctilos desaparecieron hace unos 100 millones de años

Lo mismo hicieron los insectos para liberarse de ser capturados. Algunos mamíferos, como la ardilla voladora, desarrollaron alas para  planear. El murciélago, otro mamífero, desarrolló unas alas excelentes. Algunas especies de peces, que saltan por encima del agua para evitar ser capturadas, se han provisto de alas de planeo.

 

        ¡La Naturaleza! ¿Qué no será posible en ella?

En tierra firme, ¿existe algún modelo más sencillo por el cual un animal pueda desplazarse que no sea mediante apéndices articulados? Las patas de un perro, desde el punto de vista mecánico, no se diferencian demasiado de las de una mosca, pese a haber sufrido evoluciones completamente independientes una de otra. Evidentemente, la rueda es también, una máquina muy sencilla, útil para desplazarse por tierra, pero hay buenas razones técnicas que dificultan su evolución… ¡en animales!

 

 

Recuerdo haber visto con los chicos cuando eran pequeños, aquella película en la que L. Frank Baum, en Ozma de Oz, inventó una raza de hombres, llamada “los rodadores” , con cuatro piernas como un perro pero que, una de ellas terminaba con una ruedecilla que les hacía correr velozmente para causar el pánico en la pequeña protagonista de la fantástica historia. Y, de la misma manera, si nos paramos a observar la Naturaleza y las criaturas que en ella han llegado a surgir, el asombro de tan fantástico logro, nos llega a dejar sin habla.

Pese a que ningún animal utiliza ruedas para  autopropulsarse a través del suelo o del aite, sí existen bacterias que se mueven por los líquidos haciendo rodar sus flagelos a modo de propulsores.

Existen mecanismos de rotación en el interior de las células esparcir filamentos retorcidos de ADN. Algunos animales unicelulares se desplazan a través del agua haciendo que ruede todo su cuerpo. Si estudiamos el mundo microscópico de esos infinitesimales seres, nos quedaríamos maravillados de la inmensa diversidad de mecanismos que utilizan para poder realizar sus actividades cotidianas.

Órganos sensoriales como los ojos y nariz también deben ser como son si la vida evoluciona hacia alguna clase de actividad inteligente avanzada. Las ondas electromagnéticas son ideales para dar al cerebro un cuidadoso “mapa” del mundo exterior. Las ondas de presión, transmitidas por moléculas, proporcionan pistas adicionales de gran valor sobre el entorno, y son captadas por los oídos. Las moléculas emanadas por una sustancia se detectan por la nariz.

 

             Por ahí fuera, cualquier cosa que podamos imaginar… ¡Podría ser posible!

No es imposible que puedan  existan culturas avanzadas extraterrestres inteligentes en las que el olfato y el gusto no sean solamente los sentidos dominantes, sino que también sean los que proporcionan los principales medios de comunicación entre individuos. Hasta hace muy pocos años,  los biólogos no han descubierto que, en especies animales terrestres, se transmite una gran cantidad de información mediante una transferencia directa de sustancias que se denominan feromonas.

 

 

Puesto que tanto  la luz como el sonido y las moléculas existen efectivamente en otros planetas, parece que la evolución debería crear también sentidos que explotaran éstos fenómenos como excelente medio de control de las circunstancias de la vida. Aquí en la Tierra, por ejemplo, el ojo no  ha tenido menos de tres desarrollos independientes sí: Los ojos de los vertebrados, los ojos de los Insectos y los de las diversas clases de moluscos.

 

 

                      ¡La Naturaleza! Esa maravilla y, a pesar de las diferencias, todos los seres vivos del planeta estamos hecho de los mismos ingredientes y la base: ¡El Carbono!

El pulpo, por ejemplo, tiene un ojo particularmente bueno (de hecho, en algunos aspectos es mejor que el nuestro); posee párpados, córnea, iris, pupila, retina igual que el ojo humano, ¡aunque ha evolucionado de completamente independiente del ojo de los vertebrados! Es difícil encontrar un ejemplo más sorprendente de cómo la evolución, actuando según dos líneas de desarrollo desconectadas, puede llegar a crear dos instrumentos nada sencillos que, en esencia, poseen la misma función e idéntica estructura.

 

Ambos seres están hechos de la misma materia

Los ojos, igual que otros órganos sensoriales, tienen buenas razones para constituir una forma de cara habitual. En primer lugar, constituye una gran ventaja que ojos, nariz y oídos estén situados cerca de la boca, pués así son de utilidad para buscar alimentos. Asimismo, resulta ventajoso que estén colocados en las proximidades del cerebro: la sensibilidad está allí, y debe reaccionar para conseguir alimentos, eludir peligros y atisbar el mundo que nos rodea transmitiendo, por medio de los sentidos al cerebro, lo que pasa a nuestro alrededor.

 

El propio cerebro, al evaluar e interpretar los impulsos sensoriales, lo hace mediante redes eléctricas: una especie de microcomputador de inmensa complejidad. Los filamentos nerviosos que conducen los impulsos eléctricos pueden ser esenciales el cerebro de los seres vivos avanzados (de ello hemos hablado aquí con frecuencia).

Si la vida en otros planetas llega a alcanzar el nivel de inteligencia de nuestra especie en la Tierra, parece probable que tendría al menos, algunos rasgos humanoides. La ubicación de los dedos en los extremos de los brazos reporta, evidentemente, indudables ventajas. De la misma manera y para su seguridad, el valioso cerebro debe estar fuertemente encastado y, además, tan alejado del suelo como sea posible, su seguridad es esencial.

 

 

Imaginar podemos todo lo que a nuestras mentes pueda acudir, incluso seres con ojos en las puntas de los dedos pero, la Naturaleza es racional, no pocas veces decimos que es sabia y, si pensamos en todo lo que antes hemos leído y visto, no tenemos más remedio que aceptarlo: ¡La Naturaleza es realmente Sabia! y, lo mismo que aquí en la Tierra, habrá sabido conformar criaturas en esos mundos lejanos en los que, la diversidad, será tan abundante como lo es en nuestro propio planeta y, lo mismo que en él, en esos otros mundos estará presente la evolución y la adaptación al medio que, en definitiva, son las reglas que rigen cuando la vida está presente.

Emilio Silvera V.

El Universo es una Maravilla

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

https://apod.nasa.gov/apod/image/1707/HybridSolarEclipse_Kamenew_1584.jpg

Sin tener que abandonar el planeta Tierra, podemos comprobar que el Universo es una maravilla. Aquí un eclipse parcial tomado desde Kenya, nos presenta el bello escenario que arriba podemos contemplar.

Fuente: Astronomía Pictures Of The Day

NASA Selecciona una Misión Para Estudiar los Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Qué son los agujeros negros y cómo se producen?

Los objetos más extraños del Universo: Horizonte de Sucesos y Singularidad

 

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares.

 

Resultado de imagen de Púlsares

Los púlsares, son Estrellas de Neutrones girando a gran velocidad

Los objetos tales como los agujeros negros pueden calentar los gases circundantes a más de un millón de grados. La radiación de alta energía de rayos X de este gas puede ser polarizada, vibrando en una dirección particular. La misión Imaging X-ray Polarimetry Explorer (IXPE) transportará tres telescopios espaciales con cámaras capaces de medir la polarización de estos rayos X cósmicos, permitiendo a los científicos responder preguntas fundamentales sobre estos entornos turbulentos y extremos donde los campos gravitatorios, eléctricos y magnéticos están en sus límites.

“No podemos ver directamente lo que está pasando cerca de objetos como agujeros negros y estrellas de neutrones, pero estudiar la polarización de los rayos X emitidos desde sus entornos revela la física de estos enigmáticos objetos”, dijo Paul Hertz, director de división de astrofísica de la Dirección de Misiones Científicas de la NASA en Washington. “La NASA tiene una gran historia de lanzamiento de observatorios en el Programa de Exploración Astrofísica con nuevas y únicas capacidades de observación. IXPE abrirá una nueva ventana en el universo para que los astrónomos puedan mirar a través. Hoy, sólo podemos adivinar lo que vamos a encontrar”.

 

Los problemas del programa de exploración planetaria de la NASA - EurekaLos problemas del programa de exploración planetaria de la NASA - EurekaLas mejores webs para ver las estrellas y el espacio

 

El Programa de Exploración de Astrofísica de la NASA solicitó propuestas para nuevas misiones en Septiembre de 2014. Se presentaron 14 propuestas y se seleccionaron tres conceptos de misión para su revisión adicional por un grupo de expertos y científicos externos. La NASA determinó que la propuesta IXPE proporcionaba el mejor potencial científico y el plan de desarrollo más factible.

 

Agujero-negro-mas-ligero-o-estrella-de-neutrones-mas-pesadaLas estrellas de neutrones podrían estar capturando agujeros negros  primordiales - SKYCR.ORG: NASA, exploración espacial y noticias astronómicas

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares. Image Credit: NASA

Fuente: NASA

 

Captan el nacimiento de un Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

CIENCIA-El Español

Observan desde el Teide el ‘parto’ más nítido que nunca de un agujero negro

 

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA

 

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA

 

El Instituto de Astrofísca de Canarias (IAC) acaba de hacer público un hallazgo científico de carácter mundial logrado con un pequeño telescopio robótico de 40 centímetros de la Universidad de Moscú, instalado en el Observatorio del Teide, que revoluciona toda la información de la que se disponía hasta ahora sobre las circunstancias en las que se produce un agujero negro. Un satélite de la NASA lanzó la alerta de que una superestrella estaba colapsando el Universo, dando lugar a un agujero negro.

Resultado de imagen de Telescopios terrestres de Canarias

La investigación, encabezada por la Universidad de Maryland (EEUU), detectó esa emisión a través del uso de telescopios espaciales y terrestres y esos datos les permitió describir con gran precisión uno de los fenómenos astrofísicos más esquivos. El equipo de expertos, que ha bautizado esta emisión de rayos gamma como “GRB160625B”, obtuvo detalles clave sobre su fase inicial “rápida” de ráfagas, así como de la evolución de los grandes chorros de materia y energía que generan esas primeras explosiones.

“Las ráfagas de rayos gamma son eventos catastróficos, vinculados a las explosiones de estrellas enormes, cincuenta veces más grandes que nuestro sol”, explica en un comunicado Eleonora Troja, del departamento de astronomía de la UMD. Si se elaborase una lista de las explosiones más poderosas ocurridas en el Universo, indica la experta, las de rayos gamma se situarían “justo por detrás del Big Bang”.

 

Observatorio del Teide

El telescopio robótico del Teide MASTER-IAC fue el primero de mundo que captó la alerta y apuntó hacia el lugar del parto, teniendo la oportunidad providencial de vivir en el primer instancia, es decir, en los primeros segundos, qué ocurre cuando tal fenómeno se origina. Así pudo comprobar por primera vez que cuando la estrella colapsa y el agujero negro está en fase embrionaria se desata un fuerte chorro de material y energía, equivalente a toda la energía que libera el sol a lo largo de toda su existencia. Lo que es más importante del descubrimiento del telescopio del IAC es que pudo presenciar que en ese primer instante se origina un campo magnético, extremo desconocido hasta ahora, que condiciona la polarización de la luz. “El descubrimiento nos llena de orgullo, pero sobre todo es una gran aportación a la ciencia”, declaró a DIARIO DE AVISOS el director de IAC, Rafael Rebolo. “Nuestro pequeño telescopio robótico ha tenido el honor de captar la alerta y medir por primera vez en la historia la polarización de la energía, y averiguar cómo es el campo magnético en ese momento. Esto no es cualquier cosa, sino un gran avance, porque nos permitirá seleccionar los modelos para posteriores estudios de agujeros negros, pudiendo ir a partir de ahora con más precisión que nunca”.

Inauguran por control remoto dos telescopios robóticos en el Observatorio del Teide

 

Rafael Rebolo, director del IAC. DA

 

El hallazgo del telescopio robótico de la Universidad de Moscú instalado en el Observatorio del Teide en Tenerife constituye toda una sorpresa para los investigadores especializados en agujeros negros. El pequeño instrumento inaugurado hace dos años por el rey Felipe VI consiguió este éxito mundial en junio del año pasado, y ahora ha trascendido en vísperas de su publicación mañana en la prestigiosa revista científica ‘Nature’.

 

Resultado de imagen de El satélite de la NASA Fermi

Un satélite de la NASA, llamado Fermi (en honor de uno de los físicos italianos más relevantes del siglo XX) dio la alerta sobre el nacimiento d un agujero negro. El telescopio tinerfeño fue el primero en detectar esa señal y dirigir su ojo hacia el lugar de los hechos. Pudo observar el chorro de materia y radiación que se produce en ese primer instante. Fue testigo excepcional porque se había producido una primer micro estallido de la superestrella que de inmediato fue seguido por otro estallido que duró más tiempo (medido en apenas segundos).

El robot pudo medir la polarización de la luz (filtrado de las ondas) y determinó que se genera un campo magnético. El chorro de partículas de radiación está muy polarizada ya en ese momento inicial, algo inédito hasta ahora. “Es como un cañón de altísima energía, más propio de la ficción de la Guerra de las Galaxias, pero sí ocurre en la realidad”, bromeó Rafael Rebolo, director del IAC en declaraciones a DIARIO DE AVISOS. Según Rebolo, en otras observaciones hasta ahora se sabía que había una gran explosión de rayos gamma (un estallido super masivo que se dirigió hasta nuestro Sistema Solar), pero esta vez ha sido tan intenso que cabría afirmar que es la primera vez que se ha podido divisar de modo visible.

 

Resultado de imagen de Captada explosión gamma desde el telescopio de canarias

Se trata de una medición de radiación visible. En pocos segundos se desató una liberación de energía tal que equivaldría a la del sol en toda su vida. “Hemos podido ser los primeros y afinar en la medición sobre no de los fenómenos más importantes en el Universo actual”, declaró Rebolo.

“Con telescopios pequeños se puede hacer también ciencia de primera línea”, señaló Rebolo sobre este aparato robótico de pequeñas dimensiones el MASTER-IAC de la Universidad de Moscú, instalado en el Teide y autor del hallazgo. Su especialidad es la búsqueda de fenómenos energéticos del Universo. Esta ha sido una especia de debut milagroso del telescopio según el máximo responsable del IAC. El hallazgo se produjo en junio de 2016 y se conoce ahora en vísperas de su publicación mañana en la revista ‘Nature’.

Todos lo concerniente a los agujeros negros genera una gran expectación en el mundo entero. El físico teórico Stephen Hawking mostró su interés y fascinación por los mismo durante su visita a la sede del IAC y departió sobre el fenómeno con uno de sus máximos expertos, Rafael Rebolo, uno de los directores de la investigación ahora dada a conocer. Hasta ahora se sabía que la energía estaba polarizada en etapas avanzadas de la generación de un agujero negro, “pero se desconocía que también se produjera tan temprana”.

Para Rebolo uno de los aspectos más positivos de este descubrimiento es que la alerta de estallidos de rayos gamma la produjo un satélite de la NASA (Estados Unidos) y el primer telescopio en captarla fue este pequeño instrumento robótico de la Universidad de Moscú instalado en Tenerife. “Entre Estados Unidos y Rusia hemos estado nosotros, el IAC, lo que significa un tanto para Canarias y España y demuestra que en ciencia puede establecerse una colaboración noble sin fronteras. Solo el tiempo dirá”, señaló el alcance de este hallazgo en el historia del IAC, pero ya supone la primera investigación de este año para la ciencia mundial de los agujeros negros.

Noticia de Prensa

 

El “universo” fascinante de lo muy pequeño

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Monografias.com

 
viaje

 

“Representación de la curvatura dada por la ecuación de campo de Einstein sobre el plano de la eclíptica de una estrella esférica: Dicha ecuación relaciona la presencia de materia con la curvatura adquirida por el espacio-tiempo.

{\displaystyle {\text{G}}_{\mu \nu }={8\pi {\text{G}} \over {\text{c}}^{4}}T_{\mu \nu }}

 

{\displaystyle {\text{G}}_{\mu \nu }=R_{\mu \nu }-{1 \over 2}Rg_{\mu \nu }+\Lambda g_{\mu \nu }}

Y otras…

Ecuaciones de campo de Einsteinecuaciones de Einstein o ecuaciones de Einstein-Hilbert (conocidas como EFE, por Einstein field equations) son un conjunto de diez ecuaciones de la teoría de la relatividad general de Albert Einstein que modelan la interacción fundamental de la gravitación como resultado de que el espacio-tiempo está siendo curvado por la materia y la energía.”

 

 

Todo el universo es energía

El Universo siempre sorprendente : Blog de Emilio Silvera V.
Secretos del Universo : Blog de Emilio Silvera V.
El Universo! Que tratamos de conocer : Blog de Emilio Silvera V.
También todo el Universo es misterioso

Átomo de hidrógeno - Wikipedia, la enciclopedia libre

 

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el . El electrón es una partícula elemental clasificada como leptón. Están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo, y, cuando son arrancados del átomos se llaman electrones libres. Su antipartícula predicha por Dirac, es el positrón. Fue descubierto en 1897 por el físico británico Joseph John Thomson. El problema de su estructura (si la hay) aún no ha sido resuelto. El electrón es considerado como una carga puntual, su auto energía es infinita y surgen dificultadades de la ecuación de Lorentz-Dirac. Lo cierto es que el electrón, a pesar de su infinitesimal tamaño, es importantísimo para nosotros, para que el universo sea tal como lo podemos contemplar.

 

 

El núcleo atómico es la parte central de un átomo tiene carga positiva, y concentra más del 99.99% de la masa total del átomo. fuerza es la responsable de mantener unidos a los nucleones (protón y neutrón) que coexisten en el núcleo atómico venciendo a la repulsión electromagnética los protones que poseen carga eléctrica del mismo signo (positiva) y haciendo que los neutrones, que no tienen carga eléctrica, permanezcan unidos entre sí y también a los protones.

Hasta ahí, lo que es el nucleo. Sin embargo, la existencia de los átomos que las moléculas y los cuerpos -grandes y pequeños- que conforman los objetos del universo, es posible gracias a los electrones que, rodean el núcleo atómico y, al tener carga negativa similar a la positiva de los protones, crean la estabilidad necesaria que todo nuestro mundo sea como lo podemos observar.

 

              Los cuantos forman cosas bellas y útiles como el ozono atmosférico

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

 

Según la física clásica, la energía radiada debería ser igual todas las longitudes de onda, y al aumentar la temperatura, la radiación debería ser uniformemente más intensa. Para explicar esto, Planck supuso que cada una de las partículas que constituyen la materia, está oscilando y emitiendo energía en forma de radiación electromagnética; esta energía emitida no tomar un valor cualquiera, sino que debe ser múltiplo entero de un valor mínimo llamado cuanto o paquete de energía.

La energía de un cuanto viene dada por la expresión:
donde:
v (ni) es la frecuencia de la radiación emitida; y h es una constante llamada constante de acción de Planck, cuyo valor es:
La hipótesis de Planck introduce el concepto de discontinuidad en la energía, igual que hay discontinuidad en la materia.

Einstein con su fórmula de la relatividad especial, que describe cómo el tiempo y el espacio no son conceptos absolutos, sino relativos, dependiendo de la velocidad del observador. La ecuación anterior muestra cómo el tiempo se dilata, o se ralentiza, cuanto más o menos rápido se mueva una persona en cualquier dirección. En la otra ecuacuón de la relatividad general, nos describe el Cosmos. Pero sigamos con la radiación y el electromagnetismo.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

 

Lo que Planck propuso fue simplemente que la radiación podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva , el resultado coincidió perfectamente con las observaciones.

 

El efecto fotoeléctrico

 Sabemos que la corriente eléctrica es el movimiento de electrones, siendo éstos portadores de cargas eléctricas negativas. Cuando los electrones se mueven, se origina una corriente eléctrica. La corriente es igual al de cargas en movimiento entre un intérvalo de tiempo.

 

Pin page

Poco tiempo después, en 1905, Einstein formuló teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los de luz deberían verse como una clase de partículas elementales: el fotón. Todas demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza.

 

También en el movimiento de los átomos dentro del núcleo, presente la simetría y la belleza de la Naturaleza.

 

Dualidad onda-corpúsculo de De BroglieTEMA 8. Teoría cuántica | 8.14. Hipótesis de De Broglie | Dualidad  onda-corpúsculo

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

 

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir , y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica que, dicho sea de paso, con la que no todos están de acuerdo.

 

 

leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y , por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

 

 

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma cualquier objeto en cualquier sitio, es decir, debe ser una constante universal, no importa en qué galaxia la podamos medir.

 

La función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la red

Función de onda de Schrödinger

Einstein y otros pioneros de la M.C., tales como Edwin Schrödinger…, creían que hay más de lo que se ve

reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

Las cuatro claves fundamentales que necesitas para comprender la física  cuántica

 

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

 

Gedankenexperiment: Einfacher Versuch verblüfft sofort - Futurezone

               Que salgan los números que deseamos… ¡Es muy incierto!

 

Gedankenexperimente - scinexx.de

 

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

Emilio Silvera V.