miércoles, 18 de septiembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿El Modelo Estándar? ¡La perfección imperfecta!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Lagrange points2.svg

 

Demos una vuelta por el Modelo Estándar.

Resultado de imagen de El Modelo Estándar de la Física de Partículas

                    Hablar de todo esto nos lleva a recorrer un largo camino

 

Resultado de imagen de El Modelo Estándar de la Física de Partículas

 

 

 

Resultado de imagen de El Modelo Estándar de la Física de Partículas

 

Resultado de imagen de simetria en el modelo estandar

Con el título que arriba podemos leer de “La perfección imperfecta”, me quiero referir al Modelo estándar de la física de partículas y de las interacciones fundamentales y, algunos,  han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada. Tenemos un modelo que engloba todo lo que deseamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear? Los pobres ilusos no caen en la cuenta de que el tal Modelo, al que no podemos negarle su valía como una herramienta muy valiosa para la física, no deja de estar incompleto y, además, ha sido construido con algunos parámetros aleatorios (unos veinte) que no tienen justificación. Uno de ellos era el Bosón de Higgs y, según nos han contado los del LHC, ha sido hallado. Sin embargo, esperamos que nos den muchas explicaciones que no han estado presente en todas las algaradas y fanfarrias que dicho “hallazgo” ha producido, incluidos los premios Principe de Asturias y el Nobel. ¡Veremos en que queda todo esto al final!

 

 

Del modelo estándar — Cuaderno de Cultura Científica

Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entrecijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así. Muchos son los flecos sueltos, muchas las incógnitas, múltiples los matices que no sabemos perfilar.

Es cierto que, el Modelo estándar, en algunos momento, nos produce y nos da la sensación de que puede ser perfecto. Sin embargo, esa ilusoria perfección, no es permanente y en algunas casos efímera. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.

 

Resultado de imagen de El Modelo estándar

 

¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo,  tal como el proncipio de la relatividad,  pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que ha posibilitado a todos los físicos del mundo para poder construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.

 

Con esta imagen nos decían:
“Colisión del Bosón de Higgs desintegrándose en fermiones”. Primeras evidencias de un nuevo modo de desintegración del bosón de Higgs. Las primeras evidencias de la desintegración del recién descubierto bosón de Higgs en dos partículas denominadas tau, pertenecientes a la familia de partículas que compone la materia que vemos en el Universo. Hasta ahora los experimentos del LHC habían detectado la partícula de Higgs mediante su desintegración en otro tipo de partículas denominadas bosones, portadoras de las fuerzas que actúan en la Naturaleza, mientras las evidencias de desintegraciones en fermiones no eran concluyentes. Esta es la primera evidencia clara de este nuevo modo de desintegración del bosón de Higgs.”
https://youtu.be/WfzOI17JYEY
https://youtu.be/gqNjr8C78Fk

La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeñas que las que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciona de la misma manera en nuestro ámbito macroscópico  que ante ese otro “universo” cuántico de lo infinitesimal.

 

 

¿Podeis imaginar conseguir colisiones a 70.000 TeV? ¿Qué podríamos ver? Y, entonces, seguramente, podríamos oir en los medios la algarada de las protestas de algunos grupos:  “Ese monstruo creado por el hombre puede abrir en el espacio tiempo agujeros de gusano que se tragará el mundo y nos llevará hacia otros universos” Comentarios así estarían a la orden del día. Los hay que siempre están dispuestos a protestar por todo y, desde luego, no siempre llevan razón, toda vez que, la mayoría de las veces, ignoran de qué están hablando y juzgan si el conocimiento de causa necesario para ello. De todas las maneras, sí que debemos tener sumo cuidado con el manejo de fuerzas que… ¡no siempre entendemos! Cuando el LHC se vuelva a poner en marcha, se utilizarán energías que llegan hasta los 14 TeV, y, esas son palabras mayores.

 

 

¿Justifica el querer detectar las partículas que conforman la “materia oscura”, o, verificar si al menos, podemos vislumbrar la sombra de las “cuerdas” vibrantes de esa Teoría del Todo, el que se gasten ingentes cantidades de dinero en esos artilugios descomunales? Bueno, a pesar de todos los pesares, la respuesta es que SÍ, el rendimiento y el beneficio que hemos podido recibir de los aceleradores de partículas, justifica de manera amplia todo el esfuerzo realizado, toda vez que, no solo nos ha llevado a conocer muchos secretos que la Naturaleza celosamente guardaba, sino que, de sus actividades hemos tenido beneficios muy directos en ámbitos como la medicina, las comunicaciones y otros que la gente corriente desconocen.

 

Resultado de imagen de El Modelo estándar

Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas. Cuando tenemos la posibilidad de llegar más lejos, con sorpresa podemos descubrir que aquello en lo que habíamos creído durante años, era totalmente diferente. El “mundo” cambia a medida que nos alejamos más y más de lo grande y nos sumergimos en ese otro “mundo” de lo muy pequeño, allí donde habitan los minúsculos objetos que conforman la materia desde los cimientos mismos de la creación.

 

 

Encendamos nuestro super-microscopio imaginario y enfoquémoslo directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del supermicroscopio, el modelo estándar que contiene veinte constantes naturales, describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadaspara conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.

 

 

 

¿Implica el ajuste fino un diseño con propósito? ¿Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión?

Antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”.  Es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.

¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:

Curiosidades desde el CERN por Javier Santaolalla - Naukas

        Es cierto que nuestra imaginación es grande pero… No pocas veces ¡la realidad la supera!

¿Cómo podemos modificar el modelo estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las modificiaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual el modelo deja de ser válido. El Modelo estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.

¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar? La respuesta puede estar en el hecho cierto de que no disponemos de la energía necesaria para poder llegar más lejos de lo que hasta el momento hemos podido viajar con ayuda de los aceleradores de partículas.

 

Resultado de imagen de Foto de El hallazgo de una nueva partícula abre un nueva era para la física

Resultado de imagen de La encargada del proyecto Atlas en el CERN explica el hallazgo del Bosón de Higgs

   Fabiola Gianotti, un importante baluarte en el CERN

Ella se encargó de hacer la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs,  base del modelo estándar de física.

La pregunta “¿Qué hay más allá del Modelo estándar”? ha estado facinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que no necesariamente tiene que coincidir con el mundo real que no hemos podido alcanzar.

O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!

 

Cuando las posibilidades son tan reales como los hechos: una nueva teoría cuántica quiere ampliar nuestra visión de la realidad

                                       Siempre hay más de lo que el ojo ve

No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora,  no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.

Simetrías de las fuerzas y la materia | Instituto de Física Corpuscular

Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal lo conocemos actualmente, que básicamente se caracterizan así:

– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y

– nuevas partículas pesadas y nuevas estructuras a muy altas energías.

 

Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desapaercibidas hasta. La primera partícula adicional en la que podríamos  pensar es un neutrinorotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas, pero… ¡esa sería otra historia!

 

http://4.bp.blogspot.com/-HfR7qGN039Q/T5w_3J0KeKI/AAAAAAAABcY/fcJMR0S7tIw/s1600/Experimento-con-neutrinos.jpg

Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.

En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión  supernova de una estrella. sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.

 

Neutrinos, la clave para entender el poder del sol - Gaceta UNAM

 

Neutrinos, la clave para entender el poder del sol

Un grupo de científicos que participa en el experimento Borexino, en Italia, reveló los resultados de su trabajo en la edición virtual de la conferencia Neutrino 2020

El Sol produce neutrinos constantemente, cada vez que convierte hidrógeno en helio, que es la reacción que le hace emitir energía. El flujo de neutrinos solares es enorme: cada segundo, una superficie de un centímetro cuadrado es atravesada por 60.000 millones de neutrinos.

En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.

Aquí lo dejar´ñe por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.

 

 

Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

Emilio Silvera V.

¿Tiene algún sentido nuestra presencia en el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Universo y la Mente

 

Está el universo conscientemente "ajustado" para que la vida exista? -  BahaiTeachings.orgSerá la vida, un principio esencial para la coherencia del Universo? : Blog  de Emilio Silvera V.

 

 

 

Las constantes universales son como un faro en un universo dinámico, cambiante y extraño. Aún así, hay todavía mucho que no sabemos sobre ellas. Cosas que nos inquietan y nos evocan nuevas preguntas.

Puede que no seas consciente, pero en el universo en el que vives existen unas pocas cosas que son absolutas. Aunque parezca increíble, en la vorágine de estrellas, existencias, líneas temporales y amalgama de dimensiones existen una serie de constantes. Es más, constantes que deberías conocer. Y hoy te vamos a hablar de ellas.

Siete constantes para definir el universo

 

constantes universales

A día de hoy, las constantes universales son la velocidad de la luz en el vacío, que sustituye al metro; la constante de planck, que sustituiría al kilogramo; el número de avogadro, que reemplazaría al mol; la eficacia luminosa, que supliría a la candela; la constante de Boltzmann, que relevaría al Kelvin y el segundo de un reloj atómico de cesio para el segundo tradicional. Estos valores se ajustan mucho mejor a las necesidades y medidas físicas, pero recordemos que no son las únicas que le dan “vida” al universo.

 

Será verdad todo lo que nos cuentan que es… el Universo? : Blog de Emilio  Silvera V.

 

Más allá de las fuerzas que rigen y dominan la existencia, el universo posee una serie de constantes que lo caracterizan. Al menos desde el punto de vista de los seres humanos. Estas constantes, si bien no son las únicas, ya que comparten espacio con el resto de constantes fundamentales, son medidas que siempre han estado ahí. Si estas cambiaran lo más mínimo, el universo, tal y como lo entendemos, también lo haría. Pero cuidado, que no nos referimos a sus valores, algo que también cambiaría todo lo que conocemos.

De entre las constantes universales, siete se han asociado clásicamente a los valores medibles en ciencia. Estas eran la longitud, el tiempo, la temperatura, la intensidad de corriente, la intensidad luminosa, el peso y la masa (molar). Sin embargo, desde hace un tiempo, los metrólogos, los expertos dedicados a estudiar los sistemas de medidas, han decidido unificar y cambiar el sistema para darle a las constantes universales y fundamentales un valor más correcto, acorde con la realidad que ahora conocemos.

 

Las constantes de la naturaleza - John D. Barrow

 

Está muy claro que, nuestro mundo es como es, debido a una serie de parámetros que, poco a poco, hemos ido identificando y hemos denominado Constantes de la Naturaleza. Esta colección de números misteriosos son los culpables, los responsables, de que nuestro universo sea tal como lo conocemos que, a pesar de la concatenación de movimientos caóticamente impredecibles de los átomos y las moléculas, nuestra experiencia es la de un mundo estable y que posee una profunda consistencia y continuidad.
Sí, nosotros también hemos llegado a saber que con el paso del tiempo, aumenta la entropía y las cosas cambian. Sin embargo, algunas cosas no cambian, continúan siempre igual, sin que nada les afecte. Esas, precisamente, son las constantes de la naturaleza que, desde mediados del siglo XIX, comenzó a llamar la atención de físicos como George Johnstone Stoney (1.826 – 1.911, Irlanda).
Recordando a George J. Stoney : Blog de Emilio Silvera V.
Stoney
Resultado de imagen de Si las constantes de la naturaleza fueran diferentes, la vida no podría existir en el Universo
Parece, según todas las trazas, que el universo, nuestro universo, alberga la vida inteligente porque las constantes de la Naturaleza son las que aquí están presentes, cualquier ligera variación en alguna de estas constantes habría impedido que surgiera la vida en el planeta que habitamos. El universo con las constantes ligeramente diferentes habría nacido muerto, no se hubieran formado las estrellas ni se habrían unido los quarks para construir nucleones (protones y neutrones) que formaran los núcleos que al ser rodeados por los electrones construyeron los átomos que se juntaron para formar las moléculas y células que unidas dieron lugar a la materia. Esos universos con las constantes de la naturaleza dis tintas a las nuestras, estarían privados del potencial y de los elementos necesarios para desarrollar y sostener el tipo de complejidad organizada que nosotros llamamos vida.

  

 

No todos los planetas que alberguen alguna clase de vida, ni en nuestra Galaxia ni en otras lejanas, tienen que ser como la Tierra. Existen planetas en los que se nos encogería el corazón por su aspectos terrorífico y de inhabitable naturaleza, mientras que otros, nos parecerían una fantasía sacada de esos cuentos de hadas que de ñinos podíamos leer, tal es su belleza natural. En la Tierra tenemos muchas imágenes de lugares que hacen honor a ese pensamiento. Nos asombraría poder descubrir que, en lugares que nos parecerían imposibles para la vida… ¡Allí estaría!

 

 

 

De la misma manera que existen estrellas de mil tipos diferentes, así ocurre con los mundos que podemos encontrar repartidos por el universo orbitando estrellas que los configuran de mil diferentes maneras. Si nos fijamos en nuestro planeta que ha hecho posible nuestra presencia aquí, en el que junto a miles de otras especies hemos evolucionado, veremos que se han dado unas condiciones específicas para que todo eso sea posible.

Antes en otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

 

Filamentos estelares fantasmales de remanentes de la Supernova Vela |  NOIRLab

 

Los filamentos de un remanente de Supernova que, mirándolos y pensando de donde vienen… Te hacen recorrer unos caminos alucinantes que comenzaron con una inmensa aglomeración de gas y polvo que se constituyó en una estrella masiva que, después de vivir millones de años, dejó, a su muerte, el rastro que arriba podemos contemplar.

Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear retrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.

 

 

 

Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi porm completo en las contribuciones de Darwin.

Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.

 

 

Wallace propuso en 1889, la hipótesis de que la selección natural podría dar lugar al aislamiento reproductivo de dos variedades al formarse barreras contra la hibridación, lo que podría contribuir al desarrollo de nuevas especies.

Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).

 

 

Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión.  La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.

Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

 

William Thomson - Wikipedia, la enciclopedia libre

William Thomson (Lord Kelvin)

En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.

Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.

Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.

La gravedad funciona como dijo Einstein más allá de nuestra galaxia •  Tendencias21

En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.

“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa  en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”

Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las condiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología  y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”

cluster-galaxias

Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.

Siempre hemos tratado de saber, cuál sería nuestro lugar en el Universo, no ya en relación a la situación geográfica, sino referido a esa fascinante historia de la vida que nos atañe a los humanos, la única especie conocida que, consciente de su Ser, libera pensamientos y formula preguntas que, hasta el momento, nadie ha sabido contestar.

Emilio silvera V.