Sep
10
Nuestro universo es dinámico, todo cambia, nada permanece
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.
El concepto de “Campo” está muy ligado a los experimentos de Faraday. Históricamente fue introducido para explicar la acción a distancia de las fuerzas magnéticas, eléctricas y, más tarde de gravedad. Con el tiempo y los nuevos conocimientos, su significado se ha extendido substancialmente, para describir variaciones de temperatura, tensiones mecánicas en un cuerpo, propagación de ondas…, y otros fenómenos a los que le son de aplicación el concepto de “campo”.
En física, condensado de Bose-Einstein es el estado de la materia que se da en ciertos materiales a temperaturas cercanas a 0 K (cero absoluto). La propiedad que lo caracteriza es que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental
Efecto Túnel y Salto Cuántico
En el Interior del Sol
Esquema de una estrella tipo Sol
Hoy en día, disponemos de dos herramientas muy potentes para el estudio del interior solar: Los neutrinos solares y la helio-sismología. Bethe y Chitchfield (1938) propusieron un ciclo de reacciones de fusión nuclear para explicar la generación de energía en el caso de estrellas de masa pequeña como el Sol. El balance final de dicho ciclo de reacciones, Ciclo p-p, es:
4p → He4 + 2e+ +2ѵe +energía.
¿Cómo podemos estar seguros de que este es, efectivamente, el mecanismo dominante de generación de energía que utilizan algunas estrellas y, en particular el Sol? Sorprendentemente, la respuesta es que podemos “observar” el interior del Sol mediante detectores situados en el interior de la Tierra.
Laboratorio estelar, la cuna de los mundos.
me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.
Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.
Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo
Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.
Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.
Isaac Asimov en uno de sus libros nos explicó que, los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.
Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.
los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.
El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.
El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.
Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protones tienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.
Estas estrellas se forman las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.
El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.
La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!
Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.
Poemos decir que objetos tan fascinantes éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.
Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 4.654.600.000 toneladas de hidrógeno en 4.650.000 toneladas de helio (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).
Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el habitats de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.
Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.
Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.
Este podría ser nuestro Sol en el pasado sólo era una protoestrella que se estaba formando
Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.
Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.
Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.
Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa, las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.
La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.
Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).
La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.
Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación. Hace seguramente muchos millones de años debió de decelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.
Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.
Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.
Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.
Entropía del Universo
Entropía de los seres humanos: Padre con su hijo y su nieto
En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.
El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).
Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.
Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.
Nada es eterno, todo tiene un principio y un final. En los sistemas cerrados, la energía se va perdiendo con el transcurso del Tiempo.
En realidad, la Entropía no debe resultarnos tan extraña como esa imagen de arriba, la Entropía está presente en nuestras vidas cotidianas y por todo el Universo, es algo que nació con el Tiempo al que acompaña y, cuando éste transcurre, aquella deja sentir sus efectos. Nos dice que nada es Eterno, que lo que nace muere, que todo cambia.
El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.
Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.
Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.
Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre
Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.
Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservisble. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”
Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.
¿Está degradándose el universo?
Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación: S = k log W que, aunque pequeña y sencilla, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.
Pero esa, es otra historia.
Emilio Silvera V.
Sep
10
El enigma del Neutrón
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
Decaimiento β– de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón (β-) y un antineutrino electrónico.
La desintegración Beta del neutrón está mediada por un Bosón W–,que transforma uno de sus quarks, y se desintegra en el par electrón-antineutrino. Ahora leamos el reportaje de la Revista “Investigación y Ciencia”, referido a la física de partículas y a unas mediciones efectuadas que no son coincidentes.
“Dos técnicas de precisión arrojan valores distintos para el tiempo que tardan los neutrones en desintegrarse. ¿Se trata de un error experimental, o hay un misterio más profundo?
BILL MAYER
En síntesis
Neutrones Libres, ¿pueden “vivir” eternamente?
Los neutrones pueden “permanecer” indefinidamente de manera estable en los núcleos pertenecientes a ciertos isótopos, con mayor probabilidad en aquellos de número atómico menor al del hierro (Z=26), aunque también pueden permanecer establemente en núcleos más pesados.
Sin embargo, cuando los neutrones son liberados a consecuencia ya sea de una reacción de fusión (como aquellas ocurridas en el sol, por ejemplo: H + H à He + n) o una de fisión en la Tierra, o de su separación desde un núcleo inducida por un muon (originado en un rayo cósmico golpeando la atmósfera), pueden suceder varias situaciones con él: i) una es que sea capturado por el núcleo de un isótopo y pase a formar parte del núcleo de otro isótopo estable del mismo elemento o compuesto químico (agua liviana a agua pesada, H20 a D20). ii) Otra es que la fisión libere neutrones, en cuyo caso puede repetirse cualquiera de las reacciones i), ii). Y la última iv) es que al menos un neutrón liberado no sea “capturado” en ninguno de los procesos descritos, de modo que pase a ser un “neutrón libre”.
Un neutrón libre es un neutrón que existe fuera de un núcleo atómico. Mientras que los neutrones pueden ser estables cuando están unidos dentro de los núcleos, los neutrones libres son inestables y se desintegran con una vida media de 886 segundos, unos quince minutos.
Los neutrones libres no son estables: pasados unos 15 minutos, un neutrón se desintegra en un protón, un electrón y un antineutrino. Conocer con exactitud su vida media es clave para abordar varias cuestiones en física y cosmología.
Existen dos métodos para determinar con precisión la vida media de esta partícula. El primero cuenta los neutrones que quedan en un recipiente después de cierto tiempo; el segundo cuenta los protones generados en su desintegración.
Hace años que una y otra técnica arrojan valores considerablemente dispares. Se cree que la discrepancia obedece a errores sistemáticos en alguno de los experimentos; sin embargo, hasta ahora nadie ha logrado dar con ellos.
Así hemos podido desvelar el secreto de que como se dice antes y se ve en la imagen, el neutrón al desintegrarse sigue este camino:
14 6C → 14 7N + e–
Este proceso ocurre espontáneamente en neutrones libres, en el transcurso de 885.7(8) s de vida media.
Un neutrón está formado por dos quarks dowm (abajo) y un quark up (arriba), tiene una vida media de 14,761 minutos, es una partícula de la familia de los hadrones en su vertiente bariónica, interacción: con la Gravedad, la nuclear débil y la nuclear fuerte, su símbolo es n, su antipartícula es el antineutrón, la teorizó Rutherford y la descubrió James Chadwick, su masa es de 1,674 927 29(28)×10−27 K., la carga eléctrica es cero, espín ½. Se conoce cuando forma parte del átomo por nucleón.
Por suerte para la vida en la Tierra, la mayor parte de la materia no es radiactiva. Aunque no solemos darle demasiada importancia, este hecho no deja de resultar sorprendente, ya que el neutrón (uno de los constituyentes, junto con el protón, de los núcleos atómicos) es propenso a desintegrarse. En el interior de un núcleo típico el neutrón puede vivir durante largo tiempo, pero, aislado, se desintegra en otras partículas en unos 15 minutos. Decimos «unos 15 minutos» para ocultar nuestra ignorancia al respecto, ya que, hasta ahora, no hemos sido capaces de medir con exactitud la vida media de esta partícula.
Estructura de cuarks de un neutrón. Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 14.7 minutos (879,4 ± 0,6 s); cada neutrón libre se descompone en un electrón, un antineutrino electrónico y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.
Resolver este «rompecabezas de la vida media del neutrón» no solo supone una cuestión de orgullo para nuestro gremio, el de los físicos experimentales, sino que resulta también vital para comprender mejor las leyes físicas. La desintegración del neutrón constituye uno de los procesos más sencillos en los que interviene la interacción débil, una de las cuatro fuerzas fundamentales de la naturaleza. Para entenderla por completo, hemos de saber cuánto tarda un neutrón aislado en desintegrarse. Por otro lado, la vida media del neutrón condicionó cómo se formaron los elementos químicos más ligeros después de la gran explosión que dio origen a nuestro universo. A los cosmólogos les gustaría poder calcular las abundancias esperadas de los distintos elementos y contrastarlas con los datos obtenidos por los astrofísicos. Un acuerdo apuntalaría nuestras teorías cosmológicas, mientras que una discrepancia indicaría la existencia de fenómenos físicos aún por descubrir. Pero, para poder llevar a cabo dicha comparación, hemos de conocer con exactitud cuánto vive un neutrón antes de desintegrarse.
Hace más de diez años, dos grupos experimentales, uno en Francia y otro en EE.UU., intentaron medir con precisión la vida media del neutrón. Uno de nosotros (Geltenbort) pertenecía al primer equipo, mientras que el otro (Greene) trabajaba en el segundo. Con sorpresa y cierta inquietud, comprobamos que nuestros resultados diferían de manera considerable. Algunos teóricos sugirieron que la discrepancia podría deberse a fenómenos físicos exóticos, como que parte de los neutrones se hubiesen desintegrado en partículas nunca antes observadas. Nosotros, sin embargo, achacamos la diferencia a una razón mucho más mundana: uno de los grupos —o ambos— tenía que haber cometido algún error o sobreestimado la precisión de sus resultados.
Hace poco, el equipo estadounidense completó un largo y concienzudo proyecto para estudiar la principal fuente de error que afectaba a sus mediciones. Lejos de zanjar la cuestión, sus esfuerzos solo confirmaron los resultados previos. Al mismo tiempo, otros investigadores verificaron los resultados del grupo de Geltenbort. Esta discrepancia nos ha dejado más perplejos de lo que ya estábamos, pero no hemos abandonado. Por el momento, ambos equipos y otros físicos experimentales seguimos buscando una respuesta.
CRONOMETRAR NEUTRONES
El neutrón y el protón forman los núcleos de los átomos; el protón es estable (su vida media es superior a 10³² años, según PDG 2012), pero el neutrón es inestable (vía la interacción electrodébil se desintegra en un protón) y aislado su vida media es de solo 880,1 ± 1,1 segundos (14 minutos y 40,1 segundos)
En teoría, determinar la vida media del neutrón es sencillo. Entendemos bien la física del proceso y disponemos de las herramientas adecuadas para estudiarlo. Sabemos que, siempre que una partícula pueda desintegrarse en otras de menor masa, acabará haciéndolo si en el proceso se conservan ciertas propiedades, como la carga eléctrica o el espín. En la llamada desintegración beta, un neutrón se transforma en un protón, un electrón y un antineutrino. Las masas de estas tres partículas suman algo menos que la masa del neutrón, pero la carga y el espín totales permanecen idénticos. Entre las cantidades conservadas se incluye la suma de masa y energía, por lo que las tres partículas finales incorporan esa pequeña diferencia de masa en forma de energía cinética.”
Nota: El artículo me ha sido enviado por Don José Gómez, un contertulio y visitante de ésta página que, con buen criterio, apunta que en cuanto a esas diferencias, las pruebas deben ser repetidas en distintos lugares y, si es posible, por distintos científicos también, ya que, en física de partícula, los resultados de un experimento, debe coincidir sin fisuras.
Sep
10
¿Cómo llegó la Vida a la Tierra?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (1)
“Los Cometas lo dieron y los cometas se lo llevaron”
Carl Sagan
Cuando se acerca un cometa a nuestro planeta, los astrónomos y aficionados están pendientes de su paso y los mejores telescopios tratan de capturar su imagen y estudiar sus peculiaridades, su línea de viaje, calculan cuando volverá o si se perderá para siempre. Los astrálogos sacan del suceso los más variopintos resultados y hacen al “pobre” cometa culpable de desgracias y catástrofes. Otros, los que menos ideas puedan tener de lo que un cometa es realmente, lo miran con aprensiòn y piensan que algún cataclismo nos acecha.
A diferencia de los asteroides que viajan alrededor del Sol en órbitas circulares confinadas al cinturón de asteroides y al plano de la eclíptica, mientras que los cometas lo hacen en órbitas elípticas inclinadas al azar con respecto al plano de la eclíptica. Cuando un cometa se acerca al Sol, el calor solar vaporiza el hielo. Los gases liberados comienzan a brillar, formando una luminosa bola llamada coma. Empujados por el viento solar, estos gases luminosos forman una larga y brillante cola, en uno de los espectáculos más impresionantes que pueden contemplarse en el cielo nocturno.
Más de uno apuesta por el hecho de que, la Vida en el planeta Tierra, fue traída por algún Cometa que impactó con ella en el pasado. Si nos paramos a pensar un poco, caeremos en la cuenta de que, el hecho de que la Biblia sea tan buena lectura reside en que está llena de drama y espectáculo: fuego y azufre, señales en los cielos, diluvios, aguas que se separan, plagas y pestilencias. Si el mundo fue creado hace seis mil años, como muchos cristianos creían en un tiempo (y algunos aparentemente todavía lo creen). Dios habría estado verdaderamente ocupado en dar la forma actual a nuestro mundo, construyendo montañas y océanos, excavando valles, moviendo glaciares…
Cuando los geólogos del siglo XVIII trataron de explicar las montañas y los valles fluviales, los océanos salados y la glaciación, los estratos rocosos y los fósiles en términos de procesos físicos antes que de acción divina, se dieron cuenta de que serían necesarios muchos más de aquellos seis mil años para formar estos accidentes. Está claro que todos los accidentes de la Tierra han sido moldeados poco a poco por cambios sucesivos que se extendieron a lo largo de enormes períodos de tiempo. Son necesarios muchos millones de años para asentar los sedimentos rocosos y levantar y erosionar las montañas.
Estas Historias estaban bien para aquellos tiempos pero… La Ciencia las ha derrumbado
Así que, el Diluvio de Noé, la vorágine volcánica y los rayos celestiales deben ser atribuidos a otros ámbitos más naturales que fueron bien explicados por Charles Lyell, en su libro publicado en 1830 con el título de Principios de Geología (el que se llevó Darwin como compañero de viaje en su viaje alrededor del mundo en el Beagle).
Falla Azores-Gibraltar
La Falla de Azores-Gibraltar o Falla transformante de Azores-Gibraltar, llamada también Zona de falla de Azores-Gibraltar, es una gran falla geológica que se extiende hacia el este desde el final del “rift” de Terceira en las Azores, prolongándose hacia el estrecho de Gibraltar hacia el Mar Mediterráneo. Esta forma parte del límite de placas entre la Placa Euroasiática y la Placa Africana. El tramo situado al este del Estrecho de Gibraltar está pobremente estudiado y es habitual considerarlo un límite “difuso”. En algunos puntos cerca de la Península Itálica algunos geólogos creen que la falla conecta con una zona de subducción donde la placa Africana está subduciendo lentamente por debajo de la placa Euroasiática.
Si miramos en retrospectiva, podemos ver que el uniformismo de James Hutton tenía un impulso ideológico: era una reacción contra contra las interpretaciones religiosas de la naturaleza. Al final, ha resultado ser una doctrina notablemente tozuda. La evidencia de catástrófes geológicas y biológicas repentinas fue obvia durante mucho tiempo, y pese a todo fue generalmente ignorada. Quienes llamaban la atención sobre esto tendían a ser llamados charlatanes. Cuando el respetado astrónomo Edmon Halley conjeturó en 1694 que un cometa podría chocar ocasionalmente con un planeta, su sugerencia no mereció ninguna atención. El astrónomo H.A. Proctor fue lo bastante temerario como para proponer que los cráteres de la lunares podrían ser el resultado de impactos de meteoritos.
Seria raro que encontráramos un objeto espacial sin señales en su superficie
Si contemplamos la fotografía de planetas y lunas, todos, sin ecepción, nos muestran una imagen muy similar a la de la Luna con intensa formación de cráteres debidos a los impactos recibidos de cuerpos provenientes del espacio exterior: Mercurio y Marte proporcionan ejemplos excelentes. Estos cuerpos han conservado el registro de colisiones porque carecen de una atmósfera espesa y tienen poca actividad geológica. Por el contrario, la mayoría de los impactos en la Tierra…
En este suceso los Dinosaurios lo pagaron muy caro, a nosotros (que vendríamos 65 millones de años más tarde) , se nos abrió una puerta.
Embalse de Manicouagan (El lago de Manicouagan): Comúnmente conocido como ‘El Ojo de Quebec’ en Canadá, este lago anular fue formado por un meteorito que golpeó 212 millones años atrás a una velocidad de 100 km por hora, creando un cráter gigante de 5 kilómetros de diámetro.
Manicouagan, Canada El depósito de Manicouagan (lago Manicouagan) también conocido como el “ojo de Quebec”, es un lago anular en Quebec central, Canadá, que está situado dentro de los restos de un antiguo y erosionado cráter del impacto. Hace unos 212 millones de años, un asteroide de 5 kilómetros golpeó allí tierra y causó un agujero gigantecon un ancho de 100km. Ha sido erosionado desde entonces por el paso de glaciares y de otros procesos atmosféricos.
Como podeis observar si mirais las imágenes de aquellos cráteres que se formaron en la Tierra en el pasado lejano, han sido borrados por la erosión. Pero no todos. Al menos veinticinco lugares de impactos han sido positivamente identificados tan sólo en Australia. Estados Unidos tiene una de los cráteres más famosos, próximo a la ciudad de Winslow, en Arizona. Conocido como el Cráter del Meteoro o Cráter Berringer, tiene 1,2 Kilómetros de diámetro, cien metros de profundidad y treinta mil años de antigüedad. Se conocen cráteres mucho más grandes y más viejos. Se sabe que, fue hace entre 4.000 y 3.800 millones de años, cuando se paso una fase de intensa violencia que creó los cráteres lunares.
Cráter Berringer
El periodo medio de la órbita del cometa Halley es de 76 años, pero no se pueden calcular las fechas con exactitud ya que la garvedad de los planetas mayores altera el periodo del cometa en cada vuelta. La órbita del Halley es retrógrada e inclinada 18 grados respecto de la eclíptica. Y, como la de todos los cometas, altamente excéntrica.El núcleo del cometa Halley mide aproximadamente 16 x 8 x 8 kilómetros. El núcleo del Halley es muy oscuro: su albedo es de sólo 0.03, por lo que es más negro que el carbón y uno de los objetos más oscuros del sistema solar. La densidad del núcleo del Halley es muy baja: unos 0.1 gramos/cm3, indicando que probablemente es poroso, quizá debido a la gran cantidad de polvo que queda después de que los hielos se sublimen.
El Halley es casi único entre los cometas, ya que es a la vez grande y activo, y tiene una órbita regular y bien definida. Ésto lo convierte en un objetivo relativamente fácil para los astrónomos, aunque no es el más representativo de los cometas.
El cometa Halley volverá a acercarse al Sol en el año 2061. Arriba podemos contemplar el núcleo que, en realidad, es un iceberg en órbita.
Se especula con la idea de que el Sistema Solar entero pasó por una intensa fase de bombardeo de grandes meteoritos y que fue debido a la destrucción de una luna o de algún cometa monstruoso. Desde el punto de vista de la vida, después de esta intensa andanada, la Tierra pudo quedar “sembrada” de sustancias orgánicas. Cuando la nave espacial Giotto pasó cerca del Cometa Halley en 1986, mostró un núcleo negro-alquitrán que contenía Carbono, Hidrógeno, Nitrógeno y Azufre. Los análisis de los granos de polvo que manaban de su parte frontal probaron que hasta una tercerqa parte era material orgánico.
El origen de la vida en la Tierra aún esconde secretos para la ciencia. Uno de los puntos de debate es si los bloques de la química de la vida se formaron in situ o si llegaron a bordo de meteoritos. De ser cierta esta segunda hipótesis, sería más fácil explicar cómo surgieron las enormes y complejas moléculas bioquímicas, ya que nuestro planeta se habría encontrado con parte del trabajo hecho, incluyendo componentes posiblemente escasos en la Tierra primitiva. Pero, además, esta siembra de semillas químicas pudo disparar la evolución de la vida no sólo aquí, sino en lugares como Marte, cuya primera infancia fue muy similar a la de la Tierra.
El descubrimiento de que la Tierra sufrió agotadoras andanadas cósmicas hace 3.800 millones de años nos pone delante de un auténtico rompecabezas. Si hay que creer en el registro fósil, la vida estaba floreciendo ciertamente hace 3.500 millones de años, y posiblemente ya hace 3.850 millones de años. Dadas las funestas consecuencias de un impacto importante, ¿podría la vida haber sobrevivido durante el último bombardeo intenso?
No, no será fácil saber como empezó todo realmente y de dónde procede ese comienzo que tantos han tratado de encontrar.
Por desgracia, el rastro de evidencia se acaba precisamente cuando este problema se hace más interesante. Aunque los geólogos han encontrado cristales de zirconio aislados de 4.200 millones de años de antigüedad, y han inferido que algún tipo de corteza sólida debía haber existido en dicha época, las más antiguas rocas intactas encontradas datan de hace 4.030 millones de años. Los procesos geológicos han eliminado casi toda la evidencia de lo que pudio haber sido nuestro planeta antes de hace aproximadamente unos 3.800 millones de años. La Tierra se muestra reacia a ofrecernos secretos de su juventud. Sin embargo, las evidencias indirectas de las condiciones que había antes de hace 3.800 millones de años puiede estar justo debajo (¡incluso dentro!) de nuestras narices.
La información en el ADN se almacena como un código compuesto por cuatro bases químicas, adenina (A), guanina (G), citosina (C) y timina (T). El ADN humano consta de unos 3 mil millones de bases, y más del 99 por ciento de esas bases son iguales en todas las personas.
El ADN humano contiene a 6 mil millones de pares de bases de nucleótidos. Esto hace por lo menos dos metros de cadenas de ADN. Aquellas cadenas tienen que ser almacenadas dentro de ± 6 µ el núcleo clasificado de m de cada célula.: Claramente demasiado grande para caber en el núcleo. Hace falta pues un mecanismo que permita almacenar todo. Este mecanismo debería permitir a ciertas proteínas para tener acceso a las partes específicas del ADN y el puesto en otras partes. Los eucariotas utilizan los nucleosomas. Un nucleosoma está constituido de:± 200 pb de DNA.
2 moléculas de histona H2a
2 moléculas de histona H2b
2 moléculas de histona H3
2 moléculas de histona H4
1 molécula de histona H1
Lo cierto es que la Luz de las estrellas y la mano de la Naturaleza nos trajeron aquí
El ADN de nuestros cuerpos contienen un registro del pasado, porque nuestros genes han sido moldeados por circunstancias ambientales. Aunque el registro genético, como el registro geológico, ha quedado envuelto y oscurecido por los estragos del tiempo, no está completamente borrado. Sonsacando información de los genes, los microbiólogos pueden decir mucho sobre el ancestro universal que pudo haber vivido hace unos 4.000 millones de años, y con esta infromación podemos conjeturar algo sobre las condiciones que imperaban en aquella época. El mensaje que se extrae es una auténtica sorpresa.
Las primeras formas de vida en la Tierra, flotando en la proverbial espuma de los mares primordiales que finalmente dio lugar a los árboles, abejas y humanos, no es sólo un popular concepto darwiniano, sino también una premisa biológica esencial de la que dependen muchos investigadores como parte de las bases de su trabajo.
En el siglo XIX, Charles Darwin yendo más allá que otros, que proponían que podría haber un ancestro común para mamíferos u otros animales, y sugirió que había un ancestro común probablemente para toda la vida del planeta – plantas, animales y bacterias. Un nuevo análisis estadístico lleva esta suposición al banco de pruebas y ha encontrado que no sólo se mantiene a flote, sino que es extremadamente sólida.
¿No era algo obvio, desde el descubrimiento y descifrado del ADN, que todas las formas de vida son descendientes de un único organismo común — o al menos una especie basal? No, dice Douglas Theobald, profesor ayudante de bioquímica en la Universidad de Brandeis y autor del nuevo estudio, detallado en el ejemplar del 13 de mayo de la revista Nature. De hecho, dice: “Cuando me propuse esto, realmente no sabía cuál sería la respuesta”.
Imaginemos que pasaba durante la época de intenso bombardeo cósmico. Todo gran impacto provocaba una gran convulsión global. La magnitud del desbarajuste era mucho peor incluso que el golpe que destruyó a los dinosaurios. En una época tan tadía como 3.800 millones de años, la Luna fue golpeada por un objeto de noventa kilómetros de diámetro, lo que produjo ujna colosal cuenca del tamaño de las Islas Británicas. Varios cataclismos similares han dejado señales en forma de cercos de montañas. Al ser mucho más grande, la Tierra debe haber sufrido docenas de colisiones de esta magnitud, ademásd de algunas otras que eran incluso mayores.
¿Cómo podríamos nosotros parar a uno de estos? ¿Cómo Quijote a los molinos? Es decir, podríamos creer que teníamos la fuerza de parar el gran meteorito que se acerca veloz a nosotros pero, el resultado… ¡Sería el mismo! (Guardando las distancias entre la escena del Quijote y la nuestra de hoy queriendo parar al monstruo).
Siguen buscando mundos habitables ante la amenaza de meteoritos
Si alguno como el de arriba se nos viene encima, siempre me viene a la memoria la imagen (con los medios que tenemos para poder solucionar el problema hoy) de que pareceremos como Don Quijote queriendo derribar aquellos Molinos con su pobre lanza. ¿Qué podríamos hacer? NADA, sólo pagar las consecuencias.
Podríamos continuar analizando más a fondo las consecuencias de lo que, un impacto de esta índole podría producir en la Tierra. Un cuerpo impactante de 500 kilómetros de diámetro haría un agujero de 1.500 kilómetros de diámetro y de unos 50 kilómetros de profundidad. Un enorme volumen de rocas quedaría vaporizado en una gigantesca bola de fuego que se extendería rápidamente por todo el planeta, desalojando la atmósfera y creando un horno global. La temperatura superficial ascendería a más de mil grados Celsius, lo que provocaría la ebullición de todos los océanos del mundo y fundiría las rocas hasta una profundidad de casi un kilómetro.
A medida que la atmósfera, aplastantemente densa y vapor super-calentado se enfriaban lentamente durante un período de algunos meses o años, empezaría a llover gotas de roca fundida. Pasaría todo un milenio antes de que pudiera haber lluvia normal, preludio de un gran aguacero de dos mil años (Un Diluvio) que finalmente rellenaría los océanos y haría volver el planeta a algún tipo de normalidad.
El “Tiempo” no me permite continuar con lo que todo esto supondría para la vida tal como la conocemos y, si después de un desastre así, volveríamos a estar presentes en éste mundo que hoy es nuestra casa. Ya sabéis, amigos míos, que la Naturaleza cuando actúa, no tiene en cuenta que nosotros estamos aquí.
Emilio SilveraV.
Sep
9
El divagar de la mente
por Emilio Silvera ~ Clasificado en El Universo y los pensamientos ~ Comments (1)
¿Recordar? ¿Olvidar? Todo está dentro de nosotros
Aunque nos cueste creerlo el Tiempo, se lo lleva todo y los recuerdos no son una excepción. Como las ondas que se producen en la superficie del agua y se alejan y alejan hasta desaparecer, así pasa con los recuerdos que vez se ven más borrosos en nuestra memoria. El más destacado explorador del oscuro continente del la memoria fue el inspirado vagabundo Giordano Bruno (1548-1600). Cuando era un jóven fraile en Nápoles se había iniciado en el famoso arte domínico de la memoria, y al abandonar la orden de santo Domingo, los legos esperaban que desvelara los secretos de estos religiosos.
Nuevas teorías, materia oscura, nuevas partículas.
Desde niños hacemos preguntas, y, nunca dejaremos de plantarlas: ¡Nuestra curiosidad!
Los procesos científicos que comentamos en este lugar lugar, los fenómenos del Universo que hemos debatido y, los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo. La astronomía al destrozar las esferas cristalinas que, según se decía, aislaban la Tierra de los ámbitos etéreos que se hallan por encima de la Luna, nos puso en el universo. La Física cuántica destruyó la metafórica hoja de cristal que supuestamente separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.
La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, reveló una unidad cósmica que se extiende la fusión nuclear en las estrellas la química de la vida que allí se produce a lo largo de todo el Universo. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están relacionadas y que todas surgieron de la materia ordinaria, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida: que estamos hechos del mismo material del que están hechos los mundos.
Sí, la materia es ka misma en cualquier parte del Universo… ¿Y, la Vida, es también la misma?
La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces, en otras esferas de pensamiento. Hahvé creó a Adán del polvo; el griego Heráclito escribió que “todas las cosas son una sola”; Lao-tse, en China, describió al hombre y la naturaleza gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que, “todas las cosas están conectadas, como la sangre que une a una misma familia. Todo es como una misma familia, os lo digo”.
hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semejanza de las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos del universo en su conjunto.
La verificación científica de nuestra participación en las acciones del cosmos , luego, muchas implicaciones. Una de ellas es, si la vida inteligente ha evolucionado en este planeta, también puede haberlo hecho en otras partes. La Teoría de la evolución de Darwin, aunque no explica el antiguo enigma de por qué existe la vida, deja claro que la vida puede surgir de la materia ordinaria y evolucionar hasta una “inteligente”, al menos en un planeta como la Tierra que gira alredeedor de una estrella como el Sol (más de dioez mil millones en la Vía Láctea solamente) y, presumiblemente, más que unos pocos planetas semejantes a la Tierra, podemos especular que no somos la única especie que ha estudiado el universo y se ha preguntado sobre su papel en él.
Nuestra comprensión de la relación la Mente el el Universo puede depender de que podamos tomar con otra especie inteligente con la cual compararnos. Raramente la ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo: Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizá imposibles- de fortmular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolucoión cósmica reduce un poco dificultad al ofrecer a nuestra consideración el muy diferente del universo en los primeros momentos de la evolución cósmica.) La cuestión de la vida estraterrestre, pues, va más allá de problemas el de si estamos solos en el universo, o si podemos esperar tener compañia cósmica o si debemos temer invasiones exteriores; también es un modo de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.
Aunque mucho de esto es, el interés reciente por la vida extraterrestre considerarse como un resultado del último vuelco en la fortuna del materialismo, la doctrina filosófica según la cual es posible explicar los sucesos exclusivamente en términos de interacciones materiales, sin recurrir a conceptos insustanciales tales como el espíritu. El darwinismo engendró una nueva actitud de respeto hacia las potencialidades de la materia ordinaria: un montón de barro en un charco de agua de lluvia empieza a parecer mágico, si se piensa que sus iguales de antaño lograron elevarse hasta dar origen a todo el conjunto de la vida terrestre, inclusive la del individuo que contempla el barro. Una persona reflexiva, recordando que su ascendencia se remonta, a través de los mamíferos, hasta los peces, los aminoácidos, los azúcares de la materia prebiótica, no puede estar de acuerdo con Martín Lutero en que la Tierra es “sucia” y “nociva”, o aceptar el veredicto de la Christia Sciencie de que “no hay vida, verdad, sustancia ni inteligencia en la materia”.
Muchos serán los mundos que, como la Tierra, estén llenos de vida
¿La Vida? ¡Podría estar presente en tantos lugares! El Universo es inmenso, está lleno de galaxias de estrellas y de mundos. Pensar en la remota posibilidad de que la vida, solamente apareciera aquí, en la Tierra, es ir contra la lógica y despreciar las leyes de la Naturaleza que, en todas partes, actúa de la misma manera.
Por pensar de esa manera fue quemado en la hoguera
Históricamente, los materialistas se han inclinado a pensar que hay vida en otros mundos. El atomista Metrodoro escribió en el siglo IV a. de C. que “considerar la Tierra el único mundo poblado en el espacio infinito es tan absurdo como afirmar que en todo un campo sembrado de mijo sólo un grano crecerá”. Cinco siglos más tarde, el epicuréo Lucrecio sostuvo que “hay infinitos mundos iguales y diferentes de mundo nuestro”. La Iglesia católica romana, convencida de que los seres humanos son esencialmente espíritus inmateriales, se sintió amenazada por el punto de vista materialista: cuando Giordiano Bruno, el decano renacentista del misticismo popular, afirmaba que la materia “es en verdad toda la naturaleza y la madre de todo lo vivo, y declaró que Dios “es glorificado, no en uno, sino en incontables soles; no es una sola Tierra, sino en mil, que digo, en infinidad de mundos”, fue atado a una estaca de hierro y quemado vivo, el 19 de febrero de 1600, en la Piazza Campo dei Fiori de Roma.
Sin embargo, cuando la ciencia creció también lo hizo el materialismo, y con él la creencia de una pluralidad de mundos. Podríamos seguir por este camino y filosofar sobre lo que fue, lo que es y, lo que probablemente será pero, el tiempo se me acaba y, no quisiera, cerrar en falso este trabajo dejando una falsa sensación.
Es cuerioso como los humanos tendemos a simbolizarlo todo, sabemos del ADN y de cómo estamos conformados, tratamos de indagar sobre la conciencia y los mecanismos de la Mente, ese lugar inmaterial que genera el cerebro y del que surgen las ideas y los pensamientos, allí está todo lo somos y también, en ese misterioso lugar, se crean los sentimientos que crecen y crecen. Sin embargo, tendemos a idealizar los sentimientos con el corazón. ¿Por qué será?
La materia tiene memoria y nos habla
Algunas formas de materia evolucionada, guardan en sus recuerdos esa memoria de la que hablamos
Sí, la materia tiene memoria y deja sus huellas por todas partes… ¡Hay que saber buscar! En el lugar más inesperado la materia habrá evolucionado hasta el protoplasma vivo que nos llevará hasta la vida, ese estado en el que la materia puede llegar a generar pensamientos, y, hasta sentimientos.
La Ciencia está muy bien, el materialismo viene a poner nuestros pies en el suelo y hace que nos fijemos en las cosas tal como son o, al menos, tal como creemos que son. Sin embargo, una cuestión me tiene desconcertado: ¿Cómo podemos sentir en la forma que lo hacemos? ¿De donde vienen esos sentimientos? ¿Será quizá una muestra suprema de la evolución del mundo material? ¿Tendrá memoria la materia?
Por si acaso, yo dejaría aquí un gran signo de interrogación, ya que, hemos alcanzado una pequeña cota de la altísima montaña que nos hemos propuesta escalar, y, luego, no sabemos lo que nos podremos encontrar cuando lleguemos a cotas más elevadas, ya que, pensar en llegar al final…no parece nada fácil.
Emilio silvera V.
Sep
9
El Universo, la Diversidad, la Belleza, la Vida
por Emilio Silvera ~ Clasificado en El Universo de Ayar y el Universo de Hoy ~ Comments (0)
La galaxia anular de Hoag (A1515+2146) es un anillo de materia con estrellas jóvenes y azuladas que rodea a una galaxia esferoidal central sin traza de ninguna barra que conecte ambas, aunque como tienen el mismo corrimiento al rojo, deben estar a la misma distancia y deben estar relacionados entre sí. Las teorías actuales de formación galáctica permiten la formación de una galaxia anular siempre y cuando tenga una barra central. Se ha propuesto en el caso del objeto de Hoag que dicha barra se ha disuelto. Hay muchas galaxias anulares con anillos polares como NGC 6028 (que sí tiene una barra central) y UGC 6614 (ver más abajo, aunque no son imágenes tan detalladas como la del Telescopio Espacial Hubble).
Confirman más de cinco mil mundos fuera del Sistema Solar. Una mínima parte de los que realmente existen.
cleo central de la Galaxia como si de un carrusel cósmico se tratara. En esa imagen que vemos las estrellas jóvenes emiten radiación ultravioleta que ioniza el material circundante de las nebulosas de las que surgieron, allá en la lejanía y ocultos por la inmensa cantidad de mundos y otros exóticos objetos que en la imagen captada por el Hubble no podemos ver.
Filamentos de plasma en los Remanentes de Supernovas
Imagen de la galaxia compacta azul con formación estelar IIZw71 y espectro de la región central con la identificación de las lineas de emisión de neón y argón.
Existen Galaxias con bajo brillo superficial (LSB): Tipo de galaxia cuya densidad de estrellas es tan baja que es difícil detectarla frente al fondo del cielo. Se desconoce la proporción de galaxias con bajo brillo superficial en relación a las galaxias normales, pudiendo representar una parte significativa del universo. Muchas de estas débiles galaxias son enanas, situadas particularmente en cúmulos de galaxias; algunas son tan masivas como las grandes espirales, por ejemplo, Malin-1.
La envoltura es de origen desconocido
Galaxia con envoltura: Galaxia espiral rodeada por débiles arcos o capas de estrellas, situados a ángulos rectos con respecto a su eje mayor. Pueden observarse entre una y veinte capas casi concéntricas, aunque incompletas. Se disponen de manera que capas sucesivas puedan aparecer normalmente en lados opuestos de la galaxia. Alrededor del 10% de las elípticas brillantes presentan envolturas, la mayoría de ellas en regiones de baja intensidad o densidad de galaxias. No se conoce ninguna espiral con una estructura de capas de ese tipo. Podrían ser el resultado de una elíptica gigante que se come una compañera.
Esta burbuja, fotografiada y examinada conjuntamente por la NASA y la ESA, entre 2006 y 2010, parece flotar sin actividad, pero lo cierto es que vivió un pasado convulso. Dicha envoltura gaseosa se formó después de una explosión estelar. Se conoce por el nombre de SNR B0509-67.5 y tiene un diámetro de 23 años luz (cuatro veces la distancia que nos separa de la estrella más cercana: Próxima Centaury).
Las llamadas galaxias de anillo polar (PRG) son sistemas compuestos por una galaxia similar y un anillo polar, que permanecen separados durante miles de millones de años.
Galaxia de anillo polar: Raro tipo de galaxia, casi siempre una galaxia lenticular, que tiene un anillo luminoso de estrellas, gas y polvo orbitando sobre los polos de su disco. Por tanto, los ejes de rotación del anillo y del disco forman casi un ángulo recto. Dicho sistema puede ser el resultado de una colisión, una captura de por maneras, o la unión de una galaxia rica en gas con la galaxia lenticular.
Hay un artículo muy interesante que propone analiza en detalle una galaxia con anillo polar y presenta una explicación bastante coherente y que a mí me parece bastante natural. Se trataría de galaxias tipo SBa(R) en la que los dos brazos espirales se han unido hasta confundirse en un anillo y el bulbo y la gran barra central han evolucionado hasta formar una galaxia de tipo S0 central. La explicación me gusta porque no alude a colisiones galácticas, para las que uno esperaría un resultado mucho menos simétrico, ni a dinámicas gravitatorias exóticas. Por supuesto, queda por clarificar por qué la conexión entre la barra central y el anillo se ha perdido.
Hay Galaxias de disco: Tipo de galaxia cuya estructura principal es un delgado disco de estrellas con órbitas aproximadamente circulares alrededor de su centro, y cuya emisión de luz típicamente disminuye exponencialmente con el radio. El término se aplica a todos los tipos de galaxias que no sean elípticas, esferoidales enanas o algunas galaxias peculiares. El disco de las galaxias lenticulares contiene muy poco material interestelar, mientras que los discos de las galaxias espirales e irregulares contienen cantidades considerables de gas y polvo además de estrellas.
La brillante galaxia NGC 3621
Galaxia de tipo tardío: Galaxia espiral o irregular. El nombre proviene de la posición convencional de estas galaxias en el diagrama diapasón de los tipos de galaxias. Por razones similares, una galaxia espiral Sc o Sd pueden ser denominadas espiral del tipo tardío, en contraposición a una espiral Sa o Sb de tipo temprano.
Galaxia de tipo temprano: Galaxia elíptica o lenticular: una sin brazos espirales. El hombre proviene de la posición de las galaxias en el diagrama diapasón de las formas de las galaxias. Por razones similares, una galaxia Sa podría ser referida como una espiral de tipo temprano, en contraposición a una espiral Sc o Sd de tipo tardío.
Se podría continuar explicando lo que es una galaxia elíptica, enana, compacta azul, esferoidal enana, espiral (como la Vía Láctea), espiral enésima, espiral barrada, interaccionante, irregular, lenticular, peculiar, starburst, primordiales… etc, sin embargo, creo que ya se ha dejado constancia aquí de los datos necesarios para el que lector tenga una idea de lo que es una galaxia. Así que decido finalizar el apartado de galaxias, reflejando un cuadro del Grupo Local de galaxias en el que está situada la nuestra.
En todas estas galaxias que arriba podemos contemplar, existen estrellas binarias de cuyo estudio obtenemos datos fascinantes y podemos llegar a conocer mejor la dinámica del Universo. Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas. Ejemplo de una estrella binaria, en donde dos cuerpos con una pequeña diferencia de masa orbitan alrededor de un centro de masa.
Una estrella binaria es un sistema estelar compuesto de dos estrellas orbitando alrededor de sus centros de masas. Existen también sistemas estelares múltiples de más de dos estrellas interactuando entre sí, como es el caso de Alfa centauro A y B y Próxima Centauri. Los sistemas múltiples pueden ser terciarios, cuaternarios, o inclusive de más de cuatro estrellas.
Binarias astrométricas: En este tipo de sistemas dobles sólo es visible un componente de la estrella. Se detectan que son binarias gracias al “tirón” gravitatorio ejercido por su compañera invisible. Esto produce un movimiento oscilatorio respecto al fondo de estrellas fijas que puede ser medido por técnicas de paralaje si está lo suficientemente cerca, ya que este tipo de cálculos se realiza en estrellas aproximadamente entre los 10 parsecs, a distancias menores el ángulo de paralaje no existe o es tan pequeño, que los cálculos no se pueden realizar. Como las binarias visuales, las astrométricas requieren prolongados períodos de observación.
Hemos creado modelos del origen del Universo que están muy extendidos al coincidir sus predicciones con la observación. Así de momento hemos aceptado que en su inicio el Universo era algo extremadamente denso y de infinita energía que, al explosionar, se expandió y de la radiación intensa se paso la era de las partículas y más tarde, al enfriarse paulatinamente, a la de la materia para que comenzara, millones de años más tarde, a formarse las primeras estrellas. Se liberaron los fotones y el Universo se hizo transparente, es decri, se hizo la luz.
La Radiación del fondo de microondas ha venido a corroborar tal teoría del Big Bang. la densidad y temperatura de la materia y la radiación en el Universo decrecieron continuamente a medida que el Universo se expandía. Esta expansión puede continuar para siempre o puede un día invertirse en un estado de contracción, volviendo a pasar por condiciones de densidad y temperaturas cada vez mayores hasta llegar al Big Crunch en un tiempo finito de nuestro futuro. Este escenario evolutivo tiene la característica clave de que las condiciones físicas en el pasado del Universo no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo.
Todo eso, si es que realmente fue así, ambién implicaba que hubo un comienzo para Universo, un tiempo pasado antes del cuál éste (el propio tiempo) no existía, pero no decía nada al respecto de el por qué o al dónde de este comienzo. Todo quedaba oculto en el más profundo de los misterios y, nadie ha podido llegar a ese tiempo que marca la frontera que está situada en esa fracción de segundo, más allá del tiempo de Planck, en el cual los cosmólogos, para tapar su ignorancia, han puesto una singularidad lo mismo que ahora han colocado la materia oscura para explicar la expansión.
El Universo estacionario sostiene que el Universo nunca tuvo un origen, sino que siempre existió de la misma manera como lo conocemos hoy. Te explicamos qué es la teoría del estado estacionario, el principio cosmológico perfecto y las evidencias que parecen refutarla.
El escenario alternativo creado por Bondi, Gold y Hoyle estaba motivado en parte por un deseo de evitar la necesidad de un principio (o un posible final) del Universo. Su otro objetivo era crear un escenario cosmológico que pareciera de promedio siempre el mismo, de modo que no hubiera instantes privilegiados en la historia cósmica.
El gráfico de abajo indica la velocidad de alejamiento de las galaxias en función de sus distancias. La pendiente de la recta de “La constante de Hubble”
Horizontalmente: la medida de la distancia es proporcionada por la luminosidad de las galaxias más brillantes de diferentes grupos. Verticalmente: velocidades en Km. por segundo. Las diferentes curvas describen la relación velocidad distancia en función de la densidad supuesta del universo (en unidades de densidad crítica). Cuanto más denso es el universo, tanto más a la izquierda se sitúa la curva en el dibujo. La comparación con los puntos observados muestra que la densidad real es tres veces inferior a la densidad crítica. La cuirva más baja es la esperada en un universo estacionario.
Claro que dicho escenario, al principio parece imposible de conseguir. Después de todo, el Universo se está expandiendo. Está cambiando, de modo que, ¿cómo puede hacerse invariable? La visión de Hoyle era la de un río que fluye constantemente, siempre en movimiento pero siempre igual. Para que el universo presente la misma densidad media de materia y el mismo ritmo de expansión, independientemente de cuándo sea observado, la densidad debería ser constante.
Él propuso que, en lugar de nacer en un instante pasado, la materia del universo se creaba continuamente a un ritmo que compensaba exactamente la tendencia a que la densidad sea diluida por la expansión. Este mecanismo de “creación continua” sólo tenía que ocurrir muy lentamente para conseguir una densidad constante; sólo se requería aproximadamente un átomo por metro cúbico cada diez mil millones de años y ningún experimento ni observación astronómica sería capaz de detectar un efecto tan pequeño.
Esta teoría del “estado estacionario” del Universo hacía predicciones muy precisas. El Universo parecía el mismo de promedio en todo momento. No había hitos especiales en la historia cósmica: Ningún “principio”, ningún “final”, ningún momento en que empezaran a formarse las estrellas o en el que la vida se hiciera posible por primera vez en el Universo. Claro que, finalmente, esta teoría quedó descartada por una serie de observaciones iniciadas a mediados de la década de 1950 que mostraba en primer lugar que la población de galaxias que eran emisores profusos de radioondas variaba significativamente a medida que el Universo envejecía.
La culminación de todo aquello llegó cuando en el año 1965 se descubrió la radiación térmica residual del comienzo caliente predicho por los modelos del Big Bang. Esta radiación de fondo de microondas no tenía lugar en el Universo en estado estacionario. Durante veinte años los astrónomos trataron de encontrar pruebas que dijeran si realmente el universo estaba realmente en el estado estacionario que propusieron Bondi, Gold y Hoyle.
Un sencillo argumento antrópico podría haber demostrado lo poco posible que sería ese estado de cosas. Si uno mide el ritmo de expansión del Universo, da un tiempo durante el que el Universo parece haber estado expandiéndose. En un Universo Big Bang éste es realmente el tiempo transcurrido desde que empezó la expansión: la edad del Universo. En la teoría del estado estacionario no hay principio y el ritmo de expansión es tan sólo el ritmo de expansión y nada más.
Las primeras estrellas debieron formarse entre 100 y 200 millones de años después del Big Bang, cuando el universo pudo haberse enfriado lo suficiente como para que las incontables nubes de gas que lo formaban pudieran empezar su contracción.
Las primeras estrellas se formaron millones de años después del (supuesto) big bang. Eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Fueron las responsables de la creación de los primeros agujeros negros en el Universo y también, de la creación de los primeros elementos pesados y más complejos que el hidrógeno y el Helio.
En una teoría del Big Bang, el hecho de que la edad de expansión sea sólo ligeramente mayor que la edad de las estrellas es una situación natural. Las estrellas se formaron en nuestro pasado y por ello deberíamos esperar encontrarnos en la escena cósmica una vez formadas, dado que, los elementos necesarios para la vida, se forjaron en los hornos nucleares de las estrellas calientes que fusionaron aquella primera materia más simple en otras más complejas.
Se necesita mucho tiempo para que las estrellas fabriquen Carbono a partir de gases inertes como el Hidrógeno y el Helio. Pero no basta con el tiempo. La reacción nuclear específica que se necesita para hacer Carbono es una reacción bastante improbable. Requiere que se junten tres núcleos de Helio para fusionarse en un único núcleo de Carbono. Los núcleos de Helio se llaman partículas alfa, y esta reacción clave para formar Carbono ha sido bautizada como el proceso “triple alfa”.
Precisamente fue Fred Hoyle el que descubrió todo aquel complejo proceso de fabricación de Carbono en las estrellas. Él se unió a un grupo de investigadoresque estaban trabajando sobre la cuestión de la relativa abundancia de elementos en las superficies de las estrellas. En conjunto, estructuraron un exhaustivo estudio de los elementos que se acumulan en los núcleos estelares. En un denso trabajo que publicaron en Octubre de 1957 en Review of Modem Physics, bajo el título de “Síntesis de los elementos de las estrellas”, lograron explicar la abundancia de prácticamente todos los isótopos de los elementos desde el Hidrógeno hasta el Uranio.
Descubrieron que las estrellas, en la medida que van gastando su combustible nuclear, transmutan el Hidrógeno en Helio; el Helio a Carbono y Oxígeno; y así sucesivamente, subiendo hasta llegar hasta los más pesados de la Tabla Periódica. En las explosiones de las supernovas se crean mucho de los elementos más pesados, incluidos el platino, el oro y el uranio. El trabajo que fue un inmenso logro científico, no sólo explicó la síntesis de todos los elementos más allá del Hidrógeno, sino que predijo su formación exactamente en las mismas proporciones que ocurrían en el Universo. Pero quedó por explicar la cuestión del Hidrógeno: Cómo se genera el combustible inicial de las estrellas.
Así, en las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: El Hidrógeno (que nunca hemos podido llegar a saber cómo se formó), Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos simples ¿en el big bang? y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas. Abjo un gráfico de la Necleosíntesis estelar.
Estaba explicando el proceso triple alfa que es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión sólo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso sólo es posible en las estrllas más viejas, donde el helio producido por las cadenas protón–protón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para iniciar la fusión de helio.
8Be + 4He ↔ 12C
Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.
Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.
Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.
Hablar del Universo, algo tan grande que se escapa a nuestra comprensión, nos llevaria tanto tiempo que finalizar el trabajo sería casi imposible, así que, habiendo dado una sencilla vuelta por algunos de los sucesos y objetos que en él están presentes, aquí lo dejamos. Sin embargo, de todo estos sucesos se derivan objetos múltiples de diversidad muy rica que adorna y embellece todo el espacio interestelar con la inmensa cantidad de objetos que lo adornan a lo largo de millones y milones de año luz de espacio.
Un rico abanico de Nebulosas que se configuran en función de la masa inicial de la estrella que las formó al eyectar material al final de sus vidas. Estrellas masivas supergigantes que, comparadas con nuestro Sol son enermes objetos que lo contienen más de cien veces y consumen hidrógeno a velocidad de vértigo como si quisiera convertirse en agujero negro en el menor tiempo posible. Diversidad de mundos, explosiones supernovas, sistemas planetarios, cúmulos y siupercúmulos de galaxias…
Crédito NASA/ESA
que se fusionan por la fuerza de la gravedad que hace que se atraigan las unas hacia las otras como vemos en el conocido “aglomerado de galáxias Quinteto Stefan“, de cuya imagen podemos deducir de manera fácil las transiciones de fase que se producen en esta clase de fusiones de grandes galaxias, de donde surgen miles de millones de estrellas nuevas, se destruyen y nacen nuevos mundos y, finalmente, el complejo nuevo creado se convierte en una galaxia mayor, supergigante.
Explosiones de estrellas que finalizan sus vidas convirtiéndose en estrellas de neutrones o púlsares. Los Púlsares son fuentes de ondas de radio que vibran con periodos regulares. Se detectan mediante radiotelescopios. Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la nebulosa de Cangrejo. Su densidad es tan grande que, en ellos, la materia de la medida de una bola de bolígrafo tiene una masa de cerca de 100.000 toneladas. Emiten una gran cantidad de energía. El campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir un haz de radiaciones que aquí recibimos como ondas de radio.
Las pulsares fueron descubiertas en 1967 por Anthony Hewish y Jocelyn Bell en el observatorio de radio astronomía en Cambridge. Se conocen más de 300, pero sólo dos, la Pulsar del Cangrejo, y la Pulsar de la Vela, emiten pulsos visibles detectables. Se sabe que estas dos también emiten pulsos de rayos gamma, y una, la del Cangrejo, también emite pulsos de rayos-X.
“El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extra-galácticos muy brillantes y a enormes distancias de nosotros. Este descubrimiento fue consecuencia del desarrollo pionero de la Radioastronomía y del estudio cuidadoso de los espectros ópticos de unas misteriosas “fuentes casi-estelares”. En la actualidad sabemos que el proceso que genera un cuásar es un agujero negro súper-masivo en el centro de una galaxia.”
La medida de sus desplazamientos al rojo espectroscópico, indicaban que estaban a grandes distancias de la Tierra. El primer cuásar estudiado, 3C 273 está a 1.500 millones de años luz de la Tierra y se han descubierto cuásares a 12.000 millones de años luz de la Tierra, es decir, cuásares que son casi tan viejos como el mismo universo.
orgánicas en la Tierra
Y, pasados los diez mil primeros millones de años, cuando las estrellas habían creado los materiales necesarios para que eso fuese posible, surgieron los primeros indicios de la presencia de vida en el Universo, Se asentaron en mundos como la Tierra y, en moléculas que se juntaron para formar células vivas surgidas de un protoplasma primordial… ¡Dio comienzo la aventura de la vida que, tantos secretos esconde y que tratamos de desvelar!
Muchas veces hemos oído hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrógeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.
Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc.
En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.
El grupo Warrawoona
En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.
Son celulas que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares calidos y son el resultado de la union de seres uni- celulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.
En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.
Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos.
Son muchas las teorías científicas que, a lo largo de la historia han tratado de explicar el origen de la vida en la Tierra. Ya Aristóteles (384 – 322 aC), en la antigua Grecia, propuso una hipótesis: que la vida surgió por generación espontánea. Esta idea sería rebatida por los experimentos científicos de Louis Pasteur (1822 – 1895). Ahora sabemos que de donde no hay nada puede surgir, sabemos que los elementos se crearon en las estrellas que, en explosiones supernovas son expandidos por todo el universo. Sabemos que esos elementos depositados en mundos bien situados en las zonas habitables de sus estrellas, pueden llegar a constituirde en estructuras complejas de las que pueden surgir, formas de vida poco evolucionadas que, con el tiempo, se transforman en complejas y, en algunos casos, en miles de millones de años de evolución, pasando por fases que las hace ser una vez una cosa y más tarde otra… ¡Pueden llegar hasta la consciewncia de Ser!
Son muchas las cosaqs que no sabemos y, palabras que empleamos de manera cotidiana de cosas que sabemos para que sirven, como por ejemplo la energía, no sabríamos explicar lo que es. Tampoco sabemos a ciencia cierta y en toda su extensión lo que la materia es, y, si nos referimos al Tiempo… ¿Qué es el Tiempo? ¿Existe en realidad o es una simple ilusión de la mente?
Mientras continuamos tratando se desvelar todos esos secretos, disfrutemos del El Universo, de su rica Diversidad, de la Belleza que nos ofrece por todas partes y, desde luego…, ¡de la Vida! Que no hemos llegado a comprender.
Emilio silvera V.