miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nebulosas Planetarias y estrellas enanas blancas

Autor por Emilio Silvera    ~    Archivo Clasificado en Nebulosas y estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 File:Ngc2392.jpg

                  NGC 2392 es una nebulosa planetaria en la constelación de Géminis

En la imagen de arriba contemplamos la Nebulosa del Esquimal o del Payaso, NGC 2392, que forma un conjunto vistoso. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de Nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o/ 5000 años-luz de la Tierra.

La edad de NGC 2392 se estima en unos 10.000 años, y está compuesta por dos lóbulos elípticos de materia saliendo de la estrella moribunda. Desde nuestra perspectiva, unos de los lóbulos está delante del otro.

 

“NGC 2392 es una nebulosa planetaria en la constelación de Géminis. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o 5000 años luz de distancia de la Tierra. Wikipedia”
Radio0,34 años luz
Distancia a la Tierra5.000 años luz
Magnitud10,1
CoordenadasAscensión recta 7h 29m 11s | Declinación +20° 54′ 42″
Edad10.010 años
ESA - La Nebulosa Esquimal en rayos X

Se cree que la forma de la nebulosa se debe a un anillo de material denso alrededor del ecuador de la estrella expulsado durante la fase de gigante roja. Este material denso es arrastrado a una velocidad de 115.000 km/h., impidiendo que el viento estelar, que posee una velocidad mucho mayor, empuje la materia a lo largo del ecuador. Por el contrario, este viento de gran velocidad (1,5 millones de km/h) barre material por encima y debajo de la estrella, formando burbujas alargadas. Estas burbujas, de 1 año luz de longitud y la mitad de anchura, tienen filamentos de materia más densa. No obstante, las líneas que van de dentro a afuera en el anillo exterior (en la capucha) no tienen todavía explicación, si bien su origen puede deberse a la colisión entre gases de baja y alta velocidad.

La Nebulosa del Esquimal fue descubierta por William Herschel  el 17 de enero de 1787.

 

Resultado de imagen de Nebulosa reloj de Arena

                                  La Nebulosa Reloj de Arena

Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado,  expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas  en los últimos momentos de sus vidas.

 

Nebulosas planetarias | Eppur si muove

 

Las nebulosas planetarias son objetos de gran importancia en astronomía,  debido a que desempeñan un papel crucial en la evolución química de las Galaxias,  devolviendo al medio interestelar metales pesados  y otros productos de la nucleosíntesis de las estrellas (como Carbono, Nitrógeno, Oxígeno, Calcio… y otros).  En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.

 

File:NGC6543.jpg

La Nebulosa Ojo de Gato.  Imagen en falso color (visible y rayos X) tomada por el tomada por el Hubble.

La gama y diseños de Nebulosas Planetarias es de muy amplio abanico y, en esa familia de Nebulosas podemos admirar y asombrarnos con algunas que, como la famosa Ojo de Gato (arriba), nos muestra una sinfonía de arquitectónica superpuesta que ni la mente del más avispado arquitecto habría podido soñar.

 

 

En llamas y en proceso de ruptura por su compañera estelar - iDescubre

En llamas y en proceso de ruptura por su compañera estelar. Las enanas blancas irradian en el ultravioleta “rabioso” ionizando el material de la Nebulosa planetaria que la acoge en su centro.

Se halla un sistema formado por una estrella enana blanca y un objeto pequeño, posiblemente un planeta, tan próximos que el segundo es abrasado por la radiación de la estrella, haciendo que su atmósfera se evapore.

Todas las estrellas con una masa inferior a ocho veces la del Sol terminarán su vida como nebulosas planetarias, formadas por una estrella enana blanca –el núcleo “pelado” de la estrella tras la expulsión de sus capas exteriores– rodeada de una envoltura fluorescente. En un periodo de unos veinte a treinta mil años, la nebulosa se disipa y el brillo de la estrella central se irá extinguiendo. Sin embargo, este escenario puede admitir otras figuras: un grupo científico internacional, en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC), ha hallado un objeto en torno a una enana blanca que está recibiendo incesantes ráfagas de calor y radiación, y que está en proceso de ruptura debido al fuerte tirón gravitatorio de su compañera.

 

Son estrellas como el Sol que, cuando agotan el combustible nuclear de fusión, se transforman en Gigantes rojas primero y en enanas blancas más tarde. Cuando lanza o eyecta las capas exteriores al Espacio Interestelar, el resto de la ingente masa es obligado por la fuerza de Gravedad a contraerse más y más, hasta que violenta a los electrones (que son fermiones sometidos al Primncipio de exclusión de Pauli). Los electrones se ven empaquetados muy juntos y se ven enclaustrados, lo que hace que se degeneren y comiencen a moverse a velocidades relativistas, lo que hace que la Gravedad se vez frenada y la enana blanca queda estable con un diámetro de unos 30 Km.

Enanas Blancas son estrellas misteriosas que, como residuos de otras que fueron, se resisten a “morir” y quedan envueltas en ese manto precioso de nebulosas planetarias durante siglos. Las formas y colores de estas maravillosas figuras han llamado desde siempre la atención de los astrónomos y astrofísicos que se han devanado los sesos para averiguar los mecanismos que allí se han tenido que producir para que esas nebulosas se dejen ver con esas fabulosas formas de exóticas figuras.
 
 
fisica

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, modelos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas, cuando las partes exteriores de la estrella son expulsadas al espacio interestelar formar una Nebulosa Planetaria. En el centro de la Nebulosa, queda denudo un puntito blanco que es, la estrella enana blanca.

 

Resultado de imagen de De gigante roja a Enana blanca

 

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 10 ^8 Kg/m3) que sólo evita su propio colapso por la presión de degeneración de los electrones ( saben los electrones son fermiones que estando sometidos al Principio de exclusión de Pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, , incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

 

La vida privada de las estrellas - Las gigantes rojas - El Tamiz

El Sol se convertirá en una Gigante Roja con un diámetro de Una Unidad Astronómica

 

ESA - El soplo de vida de una estrella donante a su compañera

Más tarde (como se explica más arriba), eyecta las capas exteriores al Espacio y se contrae a enana blanca

tipos de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10 ^-3 – 10 ^-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener mucha masa, en un agujero negro.

 

Enanas Blancas, estrellas misteriosas : Blog de Emilio Silvera V.

Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

Las enanas blancas son estrellas calientes y pequeñas, generalmente del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

 

                Procyon B, una débil enana blanca.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su radio disminuye. A partir de esto es que se encuentra que hay un límite superior la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.

Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias. Sin embargo, existen otras posibilidades que se puedan dar en este tipo de estrellas que son muy densas. Por ejemplo, si cerca de alguna de ellas reside otra estrella que esté lo bastante cerca, la enana blanca, poco a poco, puede ir robándole masa a la estrella compañera hasta que, llegado a un punto, ella misma se recicla y se convierte en una estrella de Neutrones.

 

enanas
                             
A esto dar lugar la unión de dos enanas blancas o una enana blanca colisionando con una estrella de neutrones
 

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.

 

 

Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandrasekhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en  aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.

 

Chandrasekhar, el joven que midió las estrellas pero al que nadie creyó  porque los agujeros negros "eran imposibles" - INVDES

                  El joven Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecano-cuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo ( este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descubiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de alta densidad le obligaría finalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

 

astrofisica

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proximidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Sirio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decir 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya hace algunos años -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

 

Resultado de imagen de Nebulosa planetaria Ojo de gato

Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio que, dentro de unos 100 millones de años vieja y fria, será más rojiza y se habrá convertido en un cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electronesdegenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de manera, quedaba convertida, finalmente, en una Estrella de Neutrones.

Enanas Blancas, estrellas misteriosas

Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 10 ^12 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

 

 

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 10 ^17 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo . Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosor compuesta de elementos como el hierro. Los púlsares son estrellas de neutronesmagnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.

universo
Estrellas, que son y como evolucionan. – Astro Gredos
Esta es la evolución de las estrellas dependiendo de sus masas

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resuelta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler  “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dichas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecanocuántico : los movimientos degenerados de los electrones, también llamado degeneración electrónica.

Pauli Exclusion PrinciplePrincipio de Exclusión de Pauli

“El principio de exclusión de Pauli es una regla de la mecánica cuántica, enunciada por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones en el mismo estado cuántico (esto es, con todos sus números cuánticos idénticos) dentro del mismo sistema cuántico.1​ Formulado inicialmente como principio, posteriormente se comprobó que era derivable de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del espín de 1940.”

La degeneración electrónica es algo muy parecido a la claustrofobia humana. Cuando la materia es comprimida hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede detenerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de exclusión de Pauli que impide que dos fermiones estén juntos, así que, fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constituida estable como una enana blanca.

Emilio Silvera Vázquez

¡El Universo! Y nosotros…, que lo queremos comprender.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Sun to Earth.JPG

                 La luz del Sol tarda aproximadamente 8 minutos 19 segundos en llegar a la Tierra.

Ahí tenemos la imposibilidad física de viajar a otros mundos y no digamos a otras Galaxias.  Las velocidades que pueden alcanzar en la actualidad nuestros ingenios espaciales no llega ni a 70.000 km/h  ¿Cuánto tardarían en recorrer los 21.759.840.000.000.000.000 km que nos separa de Andrómeda?

 

Alfa Centauri. ¿Qué esconde el sistema estelar más cercano a nosotros?

 

Incluso el desplazarnos hasta la estrella más cercana, Alfa Centauri, resulta una tarea impensable si tenemos encuentra que la distancia que nos separa es de 4’3 años-luz y un año-luz=9.460.800.000.000 km. Hasta que no se busque la manera de esquivar la barrera de la velocidad de la luz, los viajes a otros mundos están algo complicados para nosotros.

En el presente, con la nave más rápida que podamos construir… tardaríamos miles de años en llegar,

 

Itra cosa sería poder burlar a la la velocidad de la luz  viajando por el Hiper-espacio

Ahora, algunas cosas nos parecen imposibles pero, en el futuro podremos hacer realidad nuestros pensamientos más imaginativos. El imposible, en realidad no existe. Todo está a nuestro alcance y, nuestras mentes, podrán solucionar todos y cada uno de los impedimentos que hoy no sabemos vencer. Creo firmemente que el Universo, quiere ser visitado y desea presumir ante nosotros de todas sus maravillas.

 

Los robots en la sociedad del futuro – NeoTeo

No estoy seguro de querer conocer el futuro de nuestra especie

Para conseguir eso, la única ventaja a nuestro favor: ¡EL TIEMPO!  Tenemos mucho, mucho tiempo por delante para conseguir descifrar los secretos del Hiperespacio que nos mostraría otros caminos para desplazarnos por las estrellas que, en definitiva, será el destino de la Humanidad. Todo ello, claro está, si antes no es la misma humanidad la que lo fastidia todo.  El mirar hacia atrás y comprobar comportamientos anteriores, en verdad no resulta muy alentador, el proceso de Humanización aún está muy crudo y con suma facilidad sacamos fuera el animal que llevamos dentro de nosotros. Son embargo, ahí está ese atisbo de esperanza que debiera ser suficiente.

Así resulta ser la Humanidad.

 

 

Sí, el hombre sólo está en mala compañía. Claro que, algo bueno debíamos tener y la existencia de la mujer, un ser mucho más fuerte que nosotros los hombres, capaz de darnos hijos y de mantener unida la familia.  Mientras que el hombre es (por regla general), el suministrador, el que proporciona el sustento, la mujer es la que influye en los valores más importantes del hombre, ella, durante la niñez, le graba en su cerebro esos mensajes que perduraran durante toda la vida, dará la impronta de su carácter y la personalidad futura.  En la época antigua, mientras el padre trabajaba la madre dedicaba horas y horas a los niños, y sus enseñanzas y consejos los acompañaran durante sus vidas, en el colegio y en la Universidad les enseñan cosas que no sabían, en sus casas les enseñan la educación y a ser hombres y mujeres que se miran en el espejo de sus padres. Claro que, la vida moderna está cambiando tantas cosas… La mujer de hoy ha alejado aquella figura maternal del pasado y, sinceramente creo que…, para mejor. La igualdad es algo que se impone en todos los órdenes de la vida y, poco a poco, nos va llegando.

HERENCIA

 

Todas las personas presentamos unas características comunes que nos definen como seres humanos. Sin embargo, no hay dos seres humanos exactamente iguales. La diversidad no es sólo física, también lo es de pensamiento de ideas y de sentimientos.

La humanidad, es en realidad, algo muy complejo y difícil de entender.  Sabemos que en el Universo existen cientos de miles de millones y trillones de protones y electrones o 10-5 átomos por c/cm3 de espacio, todos, absolutamente todos los protones, son exactamente iguales.  Con los electrones pasa igual y lo mismo con los átomos, son exactos, copias los unos de los otros, la misma masa, la misma carga y las mismas propiedades, no podríamos encontrar un electrón distinto a otro.  Sin embargo, referido a nosotros, los individuos que componemos toda la Humanidad, varios miles de millones,  resulta que, ni siquiera uno es exactamente igual a otro.  Cada uno es diferente a los demás y tiene sus propias características particulares que lo hace distinto.

 

101 frases de la Vida para Emocionarte

                                                   Somos capaces de lo mejor…y, también de lo peor

Ahí precisamente reside la grandeza y también la dificultad.  La grandeza que da la variedad y el enorme abanico que posibilidades de mentes distintas empeñadas en resolver un problema que se estudia bajo miles de millones de puntos de vista, con lo cuál, es más fácil que, finalmente, aparezca la solución.  La dificultad que esa misma variedad genera entre seres que al ser diferentes, también tienen criterios distintos y distintas maneras de ver las cosas y nos pueden llevar a la solución.

Nuestras mentes, han evolucionado y, pasando el tiempo y observando la Naturaleza que nos rodea, hemos llegado a pesar en cómo habrían sido las cosas, como se formó todo y cómo pudimos llegar hasta aquí y, para ello, construímos un Modelo.

 

 

Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice como se formó nuestro Universo y comenzó su evolución hasta ser como ahora lo conocemos. De acuerdo a esta teoría, el Universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad General predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.

La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el Universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s  después de la singularidad, cuando la temperatura era de 1028 K.  Esa infinitesimal escala de longitud es conocida como límite de Planck: Lp= √(Gђ/c3) =1035 m que en la Ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes discretos llamados cuantos, en vez de una emisión continua.  A éstas distancias, la Gravedad está ausente para dejar actuar a la mecánica cuántica.

 

Big Bang: la teoría que explica el origen, y evolución del universo

Uno de los cuestionamientos científicos más interesantes, intrigantes y controvertidos, es aquel sobre el comienzo del Universo. Después de décadas de investigación científica, observación astronómica e hipótesis físicas, la teoría del Big Bang se ha consolidado como la apuesta más certera al respecto.

La teoría del Big Bang es capaz de explicar la expansión del Universo; la existencia de una radiación de fondo cósmica, y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

La radiación de fondo cósmica proporciona la evidencia más directa de que el Universo atravesó por una fase caliente y densa.  En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que, durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación y, por tanto, en equilibrio término con ella.  Esta fase es habitualmente denominada “bola de fuego primordial”.)

 

La expansión del Universo podría ser una ilusión, según estudio

 

Cuando el Universo se expandió y se enfrió a 3000 K se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas.  El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival la teoría del Universo estacionario de P. Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas.  Es irónico que, el termino Big Bang, tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del Universo inflacionario y defensor del estacionario.

 

Cronología del Big Bang
Era Duración Temperatura
Era de Planck de 0 a 10-43 seg. a 10-34 K
Era de radiación de 10-43 a 30.000 años desde 10-34 a 104 K
Era de la materia de 30.000 años al presente (13.500.000.000 años). desde 104 a 3 K actual

 

Para fijar más claramente los hechos se debe extender la explicación evolutiva del Universo en las fases principales que son: Era: de la materia, hadronica y leptónica.

 

ERAS EN EL PROCESO DEL BIG BANG

 

De la radiación

Período entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang.  Durante este periodo, la expansión del Universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación).  De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación. La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del Universo.

Era Hadrónica

 

Era Hadrónica. | PPT

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras.  Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres.  El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón.  Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones.  Inmediatamente después de esto el Universo entró en la era leptónica.

Era Leptónica

 

Resultado de imagen de La Era Leptónica

 

Intervalo, que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del Universo.  Se crearon pares de leptones y antileptones en gran número en el Universo primitivo, pero, a medida que el Universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas.  La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación.  El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 k, más o menos un segundo después del Big Bang.  Después, los leptones se unieron a los hadrónes para formar átomo.

Así se formó nuestro Universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas y, a partir de ese mismo instante y el espacio junto con la materia que, finalmente desembocó en lo que ahora conocemos como Universo.

El Universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia.  El estudio del Universo se conoce como cosmología.  Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedman o el Universo de Einstein-de Sitter.  El Universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

 

 

El Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Existe evidencia creciente de que el espacio puede estar lleno de una materia oscura invisible que puede constituir muchas veces la masa total de las Galaxias visible. Ya hablamos de ello en comentarios anteriores.

Como ya quedó claro antes, el concepto más favorecido de origen del Universo es la teoría del Big Bang, de acuerdo con la cual el Universo se creó a partir de una densa y caliente concentración enorme de materia (una singularidad) en una bola de fuego que explotó y se expandió para crear el espacio, el tiempo y toda la materia que lo conforma. Y, al principio, se dice que sólo había una sola fuerza fundamental que, al enfriarse el Universo primitivo, se dividió en las cuatro que ahora conocemos. Todo ello, ocurrió, según los datos de que se disponen, hace ahora aproximadamente 15.000 millones de años o 15 eones (109).

El Universo se formó y apareció el tiempo, el espacio (espacio-tiempo), y, la Materia.  Es lo que dice la teoría que antes hemos descrito.  Sin embargo, hay muchas cuestiones que, por lo menos a mí, no han quedado claras y me llevan a preguntas tales como:

 

Densidad Crítica : Blog de Emilio Silvera V.

¿Cuánta materia hay en el Universo?

¿De donde vino la sustancia del Universo?

¿Qué hay más allá del borde del Universo?

¿Existen otros universos?

En realidad, no existen respuestas concretas para estas preguntas, porque para empezar no sabemos como es de grande el Universo.  Sin embargo, si podemos hacer algunas hipótesis. De estas hipótesis han nacido los modelos cosmológicos que ahora nos guían y que pudieron ser construidos de manera firme, a partir de la Teoría de la Relatividad General de Einstein.

Emilio Silvera vázquez

Todo es Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

File:LMFBR schematics.png

 

http://2.bp.blogspot.com/-vWNvoJ4zlMw/TmMs5lcQWdI/AAAAAAAAALw/MX4pqgVfjlk/s1600/Uranio.jpg

 

 

 

 

Resultado de imagen de PanspermiaUn estudio señala que la vida podría extenderse por la galaxia gracias al  polvo cósmico de los planetas

La teoría de que los cometas pudieron traer las esporas de la vida que germinaron en nuestro planeta

 

foto

 

                                          ¡La Naturaleza! ¿Cuándo dejará de sorprendernos?
 

La Naturaleza y nosotros, una simbiosis de perfecta armonía que nuestra condición, podría llegar a romper si el proceso de humanización ae eterniza y no tomamos conciencia de lo importante que es, todo lo que nos rodea en su estado natural.  No tenemos conciencia de que otros seres que, con nostros, pueblan el planeta necesitan de nosotros para poder evolucionar sin que, nuestras actividades nosivas, contaminen el mundo. Todas las formas de vida tienen la misma fuente, el mismo origen.

 

 

 

 

u5t2a100aQué es LUCA, el antepasado que dio origen a toda la vida en la Tierra (y  por qué quizás lo estamos buscando en el lugar equivocado) - BBC News Mundo

 

Los seres vivos que han poblado nuestro mundo, desde el origen de la vida que no ha dejado de evolucionar nunca. Todas las formas de vida, sin excepción, están basadas en el Carbono. Sabemos que actualmente existen sólo el 1% de todas las especies que poblaron nuestro planeta y, seguimos descubriendo especies nuevas mientras que otras desaparecen al no saberse adaptar al entorno. Estar atentos a los mensajes que la Naturaleza nos envía, ser consciente de su grandeza, cuidar nuestro mundo.

 

Imágenes de Cumbre Montaña Nubes - Descarga gratuita en Freepik

La montaña que, curiosa, se asoma por encima de las nubes mientras el Sol la contempla y la baña con su resplandor. El privilegio de poder contemplar la Naturaleza y ver como el Sol tiñe de rojo el paisaje al final del día. La Tierra nos habla, ¡De tantas maneras! Nunca supimos administrar de manera adecuada todo lo que el planeta nos ofrecía para nuestro sustento, y, ambiciosos, esquilmamos bosques y devastamos el medio natural para obtener más de lo que, en realidad, necesitamos.

 

Parque Nacional de Iguaçu - Natureza UrbanaParque nacional Iguazú - Wikipedia, la enciclopedia libreQue Hacer en Puerto Iguazú - Las 15 MEJORES Atracciones que verPuerto Iguazu, Guia de la ciudad, Argentina

Se encuentra en la región de estas tres fronteras formadas por el Puerto Iguazú en Argentina, Foz do Iguacu en Brasil y Ciudad del Este en Paraguay. En esta zona se crearon dos parques nacionales para preservar las cataratas, el Parque Nacional Iguazú y el Parque Nacional do Iguacu en Brasil.

 

salto. angel venezuela GIF by AngosturaSeis cataratas hipnóticas para relajarte (GIFS)

Salto del Ángel

Es la cascada más alta del mundo y está a 979 metros sobre el nivel del mar. El agua llega a la cima de la meseta del Monte Auyantepui, en Venezuela.

 

Excursión Cataratas del Niágara desde Nueva York: $139 USDCataratas del Niágara, mi experiencia - Viajar a la Aurora

Cataratas del Niágara

Tiene una caída de 52 metros y es uno de los principales núcleos turísticos de la zona que divide ambos países. Por nada del mundo debes perderte esta vista.

 

 

Lagos Plitvice - Parque Nacional Unesco | Croacia | Excursiones y visitaLagos de Plitvice, Croacia: guía, rutas y curiosidades para visitar el  parque

Cataratas de los lagos de Plitvice

El Parque Natural de los Lagos de Plitvice está en Croacia y es otro de los lugares declarado Patrimonio de la Humanidad por la UNESCO

 

Riópar y el nacimiento del río Mundo

Nacimiento del río Mundo

El río Mundo nace en la provincia de Albacete (España) y su cascada más grande se llama Reventón.

 

Las Cataratas Kaieteur: una de las más impresionantes y poderosas cascadas  del mundo | Wifivox

Cataratas Kaieteur

Está ubicada al norte de Sudamérica, en el centro de Guayana en el Río Potaro, están formadas por una caída libre a 226 metros de altura. Es cinco veces más altas que el Niágara.

Guía cataratas Ban Gioc, las cataratas más bonitas del sudeste asiático

Cataratas de Detian

Se encuentran en la frontera entre China y Vietnam y tienen una altura de 70 metros, aunque por lo que llaman la atención es por sus casi 200 metros de ancho.
Tenemos que reconocer que hemos venido a “caer” al mundo más bonito de todos, el que nos dio siempre todo aquello que podríamos necesitar, Y, a cambio, nosotros, irresponsables humanos, no supimos administrar tanta riqueza.
Imágenes de Paisajes Hermosos - Descarga gratuita en Freepik8 ideas de Paisajes | paisajes, hermosos paisajes, fotos de paisajes17 ideas de Paisajes | paisajes, hermosos paisajes, lugares hermosos
¿Qué es la Belleza? ¡Está configurada de tantas formas, movimientos, colores y sabores! También de sensaciones y rumores que te pueden transportar… simplemente imaginando, a otros mundos sin salir de nuestro que nos muestra ¡tantos escenarios! Los rincones que podemos contemplar en nuestro planeta son el exponente de lo que en otros mundos podríamos encontrar. Aquí encontramos lugares imposibles y paisajes yermos, y, de la misma manera, podemos viajar a lugares que, con su nextrema belleza natural nos deja sin respiración. Claro que, en todo esto, hay algo que no funciona y que, según creo, fue el peor invento que pudimos hacer: ¡El dinero!
                                Arriba: El MAL del MUNDO
 
Sin embargo, escenas como ésta de arriba, nos hacen olvidar la maldad. Estamos contemplando la mejor y más pura imagen del ser humano.
Me encantaría explicaros todas las imágenes que siguen a continuación pero no tenemos el tiempo necesario. De todas las maneras, os dejo escrito algunos pensamientos relacionados con ellas y con nosotros.

La Galaxia Remolino se localiza en la constelación del perro cazador. Descubierta en 1773, es una de las galaxias espirales más conocidas del firmamentoArchivo:MarsSunset.jpg
                      ¿ Desde qué planeta estamos viendo el Sol?

Hay quien cree que la Tierra podría ser tragada por agujero negro. Sin embargo, la posibilidad es muy escasa, diría que casi nula por completo. Treinta mil años-luz nos separan del Centro Galáctico donde reside un Agunero negro que se traga todo lo que por allí pase, pero que su fuerza de atracción nos afecte… Va a ser que no.

 

 

Los rayos Gamma son los fotones más energéticos conocidos, ¿Será ese nuestro final? ¡Convertirnos en pura energía! Bueno, sabemos que aparecen en las explosiones de supernovas y en otros sucesos similares. ¿Seremos nosotros algún día fuentes de luz conscientes?

 

Resultado de imagen de Súpernova

 

El hombre mira asombrado la imagen y, no le entra en la cabeza que, algún día, nuestro Sol, será una cosa parecida. Es decir, una Enana blanca dentro de una hermosa Nebulosa planetaria.

¡Es tan grande el Universo! ¿Podremos comprenderlo alguna vez? Sabemos que el Universo es todo lo que existe incluyendo la materia y el Espaciotiempo. Sin embargo, lo que no podemos saber (con plena certeza) es como empezó todo ni cómo terminará. Tampoco podemos dar una explicación de si el universo está sólo o, por el contrario, deambula acompañado por otros universos por un inmenso Multiverso que engloba múltiples universos.

 

Un científico afirma que el universo es mucho más antiguo de lo que  pensábamos

                          El Universo siempre será mucho más de lo que podamos imaginar

Hemos puesto una serie de imágenes ahí arriba que quiere significar la diversidad que en el Universo existe, y, ni se pueden incluir todos los ejemplos que nos gustaría ni tampoco los tenemos a mano, ya que, la mayoría de los que podríamos poner, no están a nuestro alcance ni al alcance de nuestras tecnologías.

El Universo continúa, en muchos aspectos, siendo un gran misterio que pretendemos desvelar, pero como nos decía hace unos días Max Planck, el problema está en que nosotros, en último término, formamos parte de ese misterio que pretendemos .

Por ahí arriba podemos contemplar imágenes de bonitos paisajes de la Tierra cambiante, del Sol y de Nebulosas y galaxias. También de algunos seres humanos a los que el Universo, les ha otorgado el don de pensar (aunque no siempre lo demostremos). Algunas imágenes son de explosiones luminosos que nos enseñan y muestran las mayores energías que en el Universo se pueden generar, a través de explosiones de supernovas que son fuentes de potentes rayos gamma.

 

            ¿Plasma de Quarks-Gluones? No cejamos en nuestro empeño de saber que es… ¡la materia!

La Materia y sus componentes han sido y son el objeto de muchos investigadores y pensadores que quieren profundizar y saber el por qué, a partir de lo que llamamos materia inerte, pudo surgir, mediante cambios producidos en muy especiales…¡La Vida!

Nos encontramos con el problema de la posible existencia de eso que llaman “materia oscura”, y, a primera vista, puede parecer que la materia oscura es sólo una pequeña pieza del enorme rompecabezas que resulta ser nuestro universo, un parámetro más, ni más ni menos importante que tantas otras. Claro que, este sería un punto de vista razonable si la materia oscura sólo formase una pequeña del Universo. En ese caso, la podríamos considerar como poco más que una nota a pie de página de la materia luminosa, más importante, ya que, de ella, estamos hecho nosotros. Además, es mucho más fácil detectar la materia Bariónica hecha de Quarks y Leptones que esa otra que, ni sabemos de qué estará hecha.

Sin embargo, ese punto de vista estaría equivocado, toda vez que, según todos los indicios, esa “materia oscura” supone casi el total del Universo junto con la “energía Oscura”, es decir, más del 90% de la materia-energía del universo, es oscura. Puede que las brillantes espirales de las Galaxias sirvan simplemente marcadores pasivos, testimonios mudos de fuerzas que operan en un nivel invisible para nosotros.

 

    El Universo y la Vida… El Tiempo que inexorable pasa…

estros conocimientos del universo visible, tan difícilmente obtenidos, son poco más que el primer paso en el camino hacia la comprensión de cómo son en realidad las cosas. Muchas de las nuevas teorías tratan de buscar nuevos caminos que divergen de los que seguimos y, buscando por otros lugares no explorados, es posible, sólo posible que, podamos encontrar algunas respuestas que nos son negadas en las teorías actuales.

Es inquietante que, a estas alturas, con seguridad, ningún Astrónomo sepa darnos una respuesta fiel de cómo se pudieron formar las Galaxias, y, todos, sin excepción, nos responden con hipótesis y conjeturas que, de ninguna manera, podemos asimilar a la realidad de como fueron las cosas en aquellos comienzos del Universo.

¿Qué fuerzas ocultas estaban ahí presentes para posible que las galaxias se pudieran conformar, y formarse los cúmulos de galaxias antes de que, la materia recien creada, se dispersara por todo el universo sin más? Seguramente, esa fuerza no podría ser otra que la generada por la Materia Oscura que, a decir verdad, podría ser la materia primaria que permea todo el Universo y, a partir de la cual, se puede estar formando (al evolucionar) la materia que sí podemos ver.

 

 

A mí todo esto me sobrepasa, y, “conociendo” de qué está formada la materia de la que están hechas las estrellas y las montañas, los ríos y los océanos, o los delfines y también nosotros, no deja de sorprenderme (más bien maravillarme) que, de esa materia pudieran surgir seres vivos y que, algunos, como nosotros mismos, podamos pensar y ser conscientes de toda esta grandeza.

 

Resultado de imagen de Creernos el amo del Universo

 

Sentirte ante tanta grandeza… ¡Qué sensación! Podríamos pensar (con acierto) que somos parte de algo grande.

Alguna vez, hemos podido sentirnos en un estado de euforia al sentirnos los “amos” del universo, nuestros conocimientos nos hacen grandes y, posiblemente, nada se resistirá ante tanta sabiduría. Sin embargo, ese estado de “gracia” suele durarnos muy poco. De inmediato caemos en la de que, la realidad, es muy distinta y recordamos lo que nos dijeron aquellos grandes pensadores como Sócrates. Platón y más cercano a nosotros Popper: “Nuestro conocimiento es limitado, nuestra ignorancia infinita”. Y, lo malo de dicha conclusión, es que era, y, sigue siendo cierta.

Así que, amigos míos, procuremos aprender, enterarnos de las cosas, ser conscientes de lo que no sabemos y, sobre todo, procurar entender lo que en la Naturaleza ocurre, ella siempre nos marca el camino a seguir pero, nosotros, no siempre prestamos la debida atención.

“Que no está muerto lo que duerme eternamente, y, con el paso de los Eones, hasta la muerte tendrá que morir.”

Emilio Silvera Vázquez

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Martinus J. G. Veltman - Wikipedia, la enciclopedia libre

Veltman

Paul Dirac, el primer científico que predijo la existencia ...

Dirac

File:Electron orbitals.svg

 

 

“A pesar de la frecuencia con la que aparecen en novelas y películas de ciencia ficción, los universos paralelos no eran, hasta ahora, más que una especulación científica. Sin embargo, matemáticos de la Universidad de Oxford han demostrado que existen en realidad. Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. Esta propiedad del universo es la que sirve de base para crear nuestra realidad.

 

 

La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes para los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”

 

Algunos dicen que la Humanidad podría estar viviendo en el pasado de un Universo paralelo. Ya lo he dicho en muchos de estos trabajos… ¡Imaginación sin límites!

 

Teoría de la ciencia del universo paralelo | Imagen Premium generada con IA

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro. Como podréis comprobar, los distintos estudios sobre el tema, nos dan también, diferentes resultados y, confirmar la Inflacción, las ondas gravitatorias y la existencia del multiverso… ¡Nos queda lejos aún! Sin embargo, algunos se dejan llevar por el entusiasmo.

 

Imagen relacionada

Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

Ωbh2 = 0,002267 + o,000558/ 0,000059

Ωch2 = 0,1131 ± 0.0034

ΩΛ      = 0,726± 0.015

ns = 0,960 ± 0,013

τ          = 0,084 ± 0.016

σ8 = 0,812 ± 0.026

 

             Los tres ingenios que estudian el problema planteado

Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σ8 son el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.

 

Densidad Crítica : Blog de Emilio Silvera V.

 

Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.

En el artículo nos dicen:

 

 

“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.”

Anisotropías primarias y secundarias del fondo cósmico de microondas:  parámetros cosmológicos y la distribución de barionesWMAP - Wikipedia, la enciclopedia libre

 

En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice: ” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”. Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.

 

 

Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.

 

 

Las fronteras del conocimiento sobre el Universo se amplían día a día y, a no tardar mucho podremos saber sobre:

  • Las características de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
  • La existencia de ondas gravitatorias primordiales.
  • La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
  • La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
  • La época de reionización”.

 

Densidad Crítica : Blog de Emilio Silvera V.

 

Y, muchas cosas más que de momento ignoramos y que, como podemos leer en el artículo de arriba, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.

La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.

 

 

         Estructuras desconocidas arrastran las galaxias de nuestro universo

¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, en realidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.

 

Resultado de imagen de Estructuras desconocidas arrastran nuestras galaxias hacia sí

 

Porque, ¿quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.

 

La expansión del Universo

 

Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.

 

 

 

¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor?

Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Graedad tenga alguna propiedad o extensión desconocida. Por otra parte,  la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.

 

Resultado de imagen de Las tres clases de universo

 

Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.

La materia que conforma nuestro Universo es la que podemos ver y detectar, la que confroman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.

 

Screenshot of CERN's new blog

 

Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inemnsa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.

 

James Webb Space Telescope.jpgEl universo no es infinito, hay un muro en el borde

El James Webb situado más lejos y con mayores prestaciones nos enseñará… ¡El borde del universo! Como nuestros ingenios tecnológicos no han podido enseñarnos ningún final… ¡Nos gusta hablar del Borde! Pero… ¿Si no hay ningún borde?

Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven.

Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.

 

Un nuevo mapa del universo observable nos recuerda lo pequeños que somos

Solo podemos hablar del Universo observable… ¡El resto es imaginación!

Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir.

¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!

 

 

“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

 

Resultado de imagen de Más allá del Universo visible

 

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.

Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.

 

Imagen relacionada

      No creo que estas lejanas regiones las temperaturas sean diferentes a otras regiones del Universo

La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.

“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”

 

 

Problema del horizonte - Wikipedia, la enciclopedia libre

“El problema del horizonte es una dificultad de los modelos cosmológicos de tipo Big Bang (Gran explosión) para explicar la gran homogeneidad que el universo muestra a gran escala en la distribución de materia y radiación. Los datos empíricos muestran que nuestro universo es altamente uniforme y homogéneo, aun cuando está claro que debido a las grandes distancias no ha podido establecerse equilibrio térmico.

No existe acuerdo acerca de cómo resolver dicha dificultad. Una posibilidad hipotética es la inflación cósmica.”

He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.

Para más abundamiento, se incluyen hoy dos entrevistas que el País publicó sobre el tema y, con ellas, oyendo lo que los científicos opinan del tema, podéis sacar vuestras propias conclusiones. La mías es: ¡Que todo es posible! Sin embargo, necesitamos Tiempo para demostrarlo.

Emilio Silvera Vázquez