miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La vida de las partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les sugiere. Un paisaje puede ser descrito de muy distintas maneras según quién lo pueda contar.

 

Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La  Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.

Los tres reinos

Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

 

http://www.monografias.com/trabajos75/agua-pesada/image003.gifPartícula alfa - Wikipedia, la enciclopedia libre

Si miramos una tabla de las partículas más conocidas y familiares (fotónelectrón muón tau, la serie de neutrinos, los mesones con sus pioneskaones, etc., y, los Hadrones bariones como el protónneutrónlambdasigmapsi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.

 

Nuevas medidas de la vida media del neutrón y de la carga débil del protón  - La Ciencia de la Mula Francis

Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 14.7 minutos (879,4 ± 0,6 s);​ cada neutrón libre se descompone en un electrón, un antineutrino electrónico y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.

El Protón: 

Protón p, p+, N+
Masa 1,672 621 923 69 × 1027 kg​ 938,272 088 16(29) MeV/c2​ 1,007 276 466 621(53) Da​
Vida media 3,6 × 1035 años
Carga eléctrica 1 e 1,602 176 634 × 1019 C​
Radio de carga 0,8414(19) fm​

17 filas más.

Se encuentran compuestos por tres partículas elementales o quarks: dos “up” (arriba) y uno “down” (abajo). Su vida media es superior a 1035 años, momento a partir del cual son susceptibles de descomponerse.

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”. Representa el tiempo que tarda la mitad de los núcleos de una muestra de sustancia radiactiva en desintegrarse. La vida media se calcula utilizando la siguiente fórmula: T = (0.693 / λ) Donde: T es la vida media.

Imagen

¿Cómo se determina la vida media de una partícula?

Representa el tiempo que tarda la mitad de los núcleos de una muestra de sustancia radiactiva en desintegrarse. La vida media se calcula utilizando la siguiente fórmula: T = (0.693 / λ) Donde: T es la vida media.

 

Gas Radón 220 aplicado en chorro en una cámara de niebla

chorro en una cámara de niebla

 

Así funcionan las cámaras de burbuja, el gran detector de ...

Cámara de burbujas

Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

 

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

 

 

 

Una colisión entre un protón y un anti-protón registrada mediante una cámara de chispas del experimento UA5 del CERN.

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su corta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

 

 

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

 

Imagen relacionada

Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas estaban siendo perseguidas desde hace algún tiempo con algunos proyectos como LIGO, hasta que, al fin, parece que las han encontrado.

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

 

Los LEPTONES y la INTERACCIÓN NUCLEAR DÉBIL...

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

The Delta Baryon

La partícula delta es un barión que contiene sólo quarks up y down. El Δ+ y el Δ0 tienen las mismas composiciones de quarks que el protón y el neutrón, respectivamente, y decae rápidamente por la interacción fuerte en un protón, un neutrón y un π0. Si para una partícula está disponible tal vía de decaimiento, se descompone muy rápidamente -sobre el orden de 10-23 segundos-. Otro ejemplo es el decaimiento Δ0 –> p+ + π. Téngase en cuenta que el barión delta Δ0 tiene la misma composición de quarks que el neutrón, pero su masa es mucho mayor. Su masa es suficiente para que este decaimiento sea energéticamente favorable. Las cuatro variedades tienen masas similares y se dice que son un cuarteto isospín con isospin 3/2.

Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

Neutrinos superlumínicos: desintegración de un pión | TARDÍGRADOS

Todos los mesones son inestables y decaen desintegrándose en cuestiones de millonési- mas de segundos. Por ejemplo, los mesones π “pi”cargados y los K “Kaones”, que son los que tienen un mayor tiempo de vida se desintegran en una cienmillonésima de segundo, transformándose, finalmente, en protones y electrones

También se desintegran los mesones π. De qué modo las resonancias pueden captarse también en semejantes sistemas lo mostraremos en el ejemplo de la resonancia en el sistema mesón π — hiperón Λ0.

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.

 

Reconstrucción de uno de los eventos en los que se observa un candidato a pentaquark | Imagen: CERN

 

Los científicos del CERN, el mayor laboratorio de física de partículas del mundo, anunciaron hace algún tiempo ya que, en uno de sus experimentos están presentes los indicios del descubrimiento de una nueva partícula jamás observada hasta el momento, llamada pentaquark.   Esta nueva partícula tiene la peculiaridad de que está compuesta por cinco quarks a diferencia de las partículas de materia ordinaria como protones y neutrones que están compuestas tan sólo por tres.

 

    Una “bolsa” de 5 quarks
  Modelo “mesón+barión”

Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro,  se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados.(Bueno, ahora son 19 después del descubrimiento del Bosón de Higgs).

Sin embargo, a mí particularmente me quedan muchas dudas al respecto.

Pero, no debemos olvidar que… ¡Todo lo grande está hecho de “cosas” pequeñas!

Emilio Silvera Vázquez

 

  1. 1
    emilio silvera
    el 17 de octubre del 2024 a las 14:23

    Si nos paramos un momento, y, pensamos en cómo hemos llegado al punto en el que nos encontramos ahora en ese “mundo” de las partículas, que ha sido posible gracias al concurso de muchas mentes que poco a poco pudieron descorrer el velo tras el que se encondían esas tres familias:

    Quarks
    Leptones, y,
    Bosones.

    Con los Quarks se conforman los Hadrones que se dividen en dos:

    Bariones y Mesones.

    En una aproximación extremadamente simplificada se suele considerar que los nucleones (protones y neutrones) están formados por 3 quarks denominados quarks de valencia (dos quarks down y un quark up en el caso del neutrón, y dos quarks up y uno down para el protón).

    Más pequeños que los Quarks solo son los neutrinos porque tienen una masa mucho menor que los quarks, de hecho los quarks tienen mayor masa que los electrones.

    Según el modelo estándar hay 12 diferentes partículas que forman todas las cosas. Estas partículas se dividen en dos grupos llamados QUARKS y LEPTONES. Hay 6 quarks y 6 leptones. Los 6 tipos de quarks son llamados, en orden de masa creciente, UP (u), DOWN (d), STRANGE (s), CHARM (c), BOTTOM (b) y TOP.

    ¿Qué es un Had5rón?. Como decía antes, una partícula subatómica formada por quarks que permanecen unidos debido a la interacción nuclear fuerte entre ellos. Antes de la postulación del modelo de cuarks se definía a los hadrones como aquellas partículas que eran sensibles a la interacción fuerte.

    Así, los hadrones son partículas masivas con estructura interna . Existen dos clases de hadrones: mesones (bosones) y bariones (fermiones). Los hadrones están compuestos de quarks, por lo que interactúan mediante la interacción fuerte. Los leptones son partículas ligeras sin estructura.

    https://youtu.be/ysBMTSYxzxs

    En física de partículas, un bosón es uno de los dos tipos básicos de partículas elementales de la naturaleza (el otro tipo son los fermiones).

    Entre los ejemplos de bosones se incluyen partículas fundamentales como fotones, gluones, bosones W y Z (los cuatro bosones de gauge, portadores de fuerza del modelo estándar)

    Los fotones transportan la fuerza electromagnética.
    Los Gluones la fuerza nuclear fuerte.
    Las partículas “W y Z la fuerza nuclear débil.

    La Gravedad es transportada por el imaginado gravitón ´que no se deja capturar, aunque are busca con ahinco.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting