viernes, 10 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cambio Climático? Claro, el mismo de siempre

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El científico entrevistado se encuentra en una situación comprometida, no se atreve abiertamente a expresar lo que piensa sobre el “Cambio Climático”, y, se escabulle como puede dando una de cal y otra de arena. Sin embargo, su espíritu científico que sabe con certeza la verdad… ¡Se le escapa una y otra vez! No tiene más remedio que decir que el Cambio del clima en el planeta ha estado siempre presente, y, si nos retrotraemos en el Tiempo, podemos ver años más secos o más lluviosos, con temperaturas más altas o más bajas cuando todavía la Humanidad no tenía capacidad de contaminar.

Es una lástima que los científicos no puedan expresarse como quisieran, las subvenciones dependen de los Gobiernos que abogan por el “Cambio Climático”, y, si se expresan en contra…. ¡Pasan a la lista negra!

 

 

Cuánto durará este cambio climático?Qué son las PLACAS TECTÓNICAS? (Definición, Tipos y ...Terremoto GIF - Encontrar en GIFERTsunami GIF en GIFER - de MorLa probabilidad de una tormenta solar catastrófica no supera el 2% en 10 añosPor qué se están dando últimamente tormentas de arena y polvo?

Cuando la Naturaleza se despereza… ¡Nosotros a temblar! Pero no somos nosotros los culpables. La Naturaleza siempre se ha expresado, es algo inevitable en ella que necesita reciclarse, renovarse de manera continuada para que todo siga igual. Los momentos se repiten a lo largo de la historia del planeta, las mismas cosas que hoy ocurrieron cuando la Humanidad estaba en sus comienzos y sin ninguna posibilidad (como ahora también), de incidir en los grandes acontecimientos del planeta.

 

El cambio climático fue clave en el ascenso de los dinosaurios

 

“El clima durante la mayor parte del tiempo de los dinosaurios parece haber sido generalmente cálido y seco, excepto en las latitudes medias tropicales. Los altos niveles de dióxido de carbono afectaron al océano elevando la temperatura del agua y reduciendo los niveles de oxígeno.”

En aquel entonces, nosotros no estábamos allí.

“Los cambios climáticos han existido desde el inicio de la historia de la Tierra, han sido graduales o abruptos y se han debido a causas diversas, como las relacionadas con los cambios en los parámetros orbitales, variaciones de la radiación solar, la deriva continental, periodos de vulcanismo intenso, procesos bióticos …”

Como digo en la introducción, el cambio del clima ha existido desde siempre. ¿Ha tenido la Humanidad la capacidad de abrir y cerrar la espita de las erupciones volcánicas? ¿Hemos puesto en marcha el movimiento de las Placas Tectónicas que, iniciaron terremotos, maremotos, Tsunamis…? ¿Podemos nosotros regular las protuberancias en el Sol, y, la intensidad de la radiación que emiten los vientos solares? Lo cierto es que no, no tenemos tanto poder y lo cierto es que, nuestra actividad, puede contaminar algo a nivel local, sin incidencias globales, no tenemos tanto poder. Sin embargo, cualquiera de los fenómenos que antes mencioné, o, las tormentas de arena del Sahara (que siembra de polvo gran parte del mundo, esos sí que inciden en el Clima.

 

 

La gran mentira

Creo que deberíamos prestar más atención en el por qué los políticos se adueñaron de esta cantinela del “Cambio Climático”, y, la utilizan para dominar a las multitudes y hacer que caminen por donde ellos quieren que lo haga, y, mientras tanto, ellos se pueden mover libremente haciendo todo aquello que les prohíbe a los demás.

 

LA GEOLOGÍA VERSUS EL DOGMA CLIMÁTICO

 

“La tecnología actual permite extraer y analizar el aire ocluido entre los cristales de hielo, y su estudio sistemático ha permitido obtener una valiosísima información sobre la evolución en la composición de la atmósfera terrestre en tiempos pasados. De estos análisis, resultan especialmente interesantes los resultados del contenido en el aire del O18, isótopo al que ya se ha hecho referencia anteriormente, que han permitido establecer con precisión la evolución térmica del planeta para los últimos 800.000 años, tal y como se representa en la Figura 8 (Jouzel et al., 2007). “

 

Mentiras de la propaganda televisiva desinformación de los principales medios de comunicación Un televidente de noticias

 

 

“Los medios de comunicación, de forma sesgada, suelen presentar ante la opinión pública al fenómeno del calentamiento global como un proceso exclusivamente atribuible a las actividades antrópicas, y sobre el que la Humanidad tiene capacidad para detenerlo e incluso revertirlo. Sin embargo, el registro geológico del planeta indica todo lo contrario, que a lo largo de la historia de la Tierra han existido espontáneamente muchos cambios climáticos similares e incluso mayores que el actual, dirigidos por procesos naturales que siguen activos en la actualidad y que, por lo tanto, modificarlos está fuera de nuestro alcance.”

 

“La gráfica de la Figura 8 muestra cómo las variaciones de temperatura se ajustan a un ritmo cíclico cuya duración tiende a situarse en torno a los 100.000 años. “

 

 

El calentamiento global y la servicial estadística – www.Entrevisttas.com

“Hace ya algunas décadas, en 1973, el genial humorista Forges publicó una viñeta, en la que dos de sus narigudos monigotes, repantigados en aquellos característicos y descomunales sillones de orejas, mantenían el escueto diálogo que se adjunta.

 

La estadística se ha ganado el dudoso prestigio de ser una ciencia donde los resultados pueden ser elásticamente estirados y adaptados a los intereses del cliente, a pesar del rigor matemático de sus cálculos. Hace algún tiempo, leí en un artículo que existen tres tipos de verdades: las verdades en sentido estricto, las verdades a medias y las verdades estadísticas. Otra versión dice que existen tres tipos de falsedades: las mentiras, las grandes mentiras y las estadísticas.”

 

Es lo “normal” leer en las noticias (de los medios comprador), cosas como las siguientes:

 

“Es importante explicar el alcance de la crisis climática, pero puede resultar desalentador y hacer que la gente pierda el interés y deje de prestar atención. El cambio climático es uno de los mayores retos a los que se ha enfrentado la humanidad. Puede ser un reto complicado, pero la lucha contra el cambio climático no está en absoluto perdida. Aún pueden evitarse las peores consecuencias si actuamos ya. Una buena estrategia ante la decepción y el “cansancio ante esta crisis” es transmitir un mensaje de esperanza centrado en las soluciones, algo que ayude a las personas a sentirse con la responsabilidad y las motivaciones para participar.”

A continuación te aconsejan que no circules con el coche por las ciudades, que los vehículos de gasoil y gasolina no valen, tienen que ser eléctricos o coches de la gama muy alta que no puede comprar la mayoría de la gente normal. Que no comamos carne, que los insectos son una buena fuente de proteínas, y, también la carne artificial que pretende comercial Bill Gates… En fin, una cantidad de barbaridades que desembocan en que nos marcarán los momentos en los que podremos salir o estar encerrados en casa.

Claro que, nada de eso va a impedir que, “ellos” (los ricos y poderosos, los políticos, los que están cerca toda esta ralea de mala gente… ¡Disfruten de todo lo que nos quieren prohibir! Son personas sin Conciencia que estamos sufriendo desde tiempos inmemoriales.

¡Nos despertaremos alguna vez!

¿Cambio Climático? Sí como siempre.

Emilio Silvera Vázquez

 

 

 

La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

 

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “re-normalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

 

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

 

Imagen relacionada

     Fabiola Gianotti, portavoz del experimento ATLAS, hablando con Peter Higgs y le dice:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

Reseña: "El modelo estándar de partículas" de Mario E. Gómez Santamaría -  La Ciencia de la Mula Francis

 

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

 

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

 

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electro-débil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

VEVOR VEVOR Malla de Alambre Soldada 610mm x 15,24m Rollo de Malla de  Alambre Galvanizado en Caliente 12,7x12,7 mm Valla de Alambre de Gallinero  Calibre 19 para Jaulas de Conejos, Jardín, Roedores

 

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dicen que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.

 

 

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

Emilio Silvera Vázquez

Agradecido le quedo a León Lederman que con sus ideas ha nutrido el presente trabajo.

La maravilla de… ¡Los cuantos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

La radiación del cuerpo negro – Física cuántica en la red

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado: E = hv

Donde es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

 

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

 

         Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

 

ESTUDIO DEL ÁTOMO» – Festival de la Quimica

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

 

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿Qué significan realmente esas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrónpuede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

 

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

Física cuántica: qué es la dualidad partícula-onda de la luz y cómo su  descubrimiento revolucionó la ciencia - BBC News Mundo

         ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

 

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿Dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.

 

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

Resultado de imagen de Las ecuaciones de Einstein de la relatividad general

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

Emilio Silvera Vázquez

¡Qué bonito es saber! A mi me gustaría

Autor por Emilio Silvera    ~    Archivo Clasificado en Física... ¡Y mucho más!    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Treinta de los 42 discos protoplanetarios descubiertos en la Nebulosa de Orión.

          Nebulosa de Orión, M42 que está creando nuevos sistemas planetarios

“Al principio todo era opacidad, las estrellas no llegaron al universo hasta después de pasados 200 millones de años desde el Big Bang, y, hasta que no se liberaron los fotones, no se hizo la luz, un Universo transparente.”

No se por qué, me viene a la mente, un detalle asombroso presente en la Naturaleza (son muchos y no todos los podemos explicar), y, haciendo un inciso en el trabajo dejo una brece reseña.

 

No hay ninguna descripción de la foto disponible.

¿Qué fuerza en el Universo hace que un caracol, una ola o una galaxia sigan la forma de espiral de Fibonacci?

 

“Número áureo

Si divides cualquier número en la secuencia de Fibonacci por el anterior, por ejemplo, 55/34, o 21/13, y la respuesta siempre es cercana a 1.61803. Y es por eso que la secuencia de Fibonacci también es conocida como la secuencia dorada, pues ese 1,61803 es lo que se conoce como el número áureo.”

Sigamos con el trabajo de hoy.

 

             En el Video: Sobre la simetría

Se cree que al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y y las  galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

 

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar Hidrógeno en Helio, de los elementos más ligeros a los más pesados.  Avanza creando en el horno termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

 

Archivo:Ngc604 hst.jpg

Una región H II es una nube de gas y plasma brillante que puede alcanzar un tamaño de varios cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de ultravioleta extremo (con longitudes de onda inferiores a 912 Ångströms) que ionizan la nebulosa a su alrededor.

Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante  E = mc2. Esta es la fuente de energía que subyace en las explosiones  atómica.

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

 

Evolución Estelar

El nuestro Universo, todas las cosas comienzan siendo una cosa y terminan siendo otra

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente, no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

Sin embargo, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol.

 

Imagen en movimiento de una llamarada solarLa probabilidad de una tormenta solar catastrófica no supera el 2% en 10  años

 

Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos y de qué está compuesto. También sabemos el motivo por el que no se deja contraer bajo el peso de la fuerza de Gravedad que genera su propio peso y en qué se convertirá cuando llegue el final de su vida.

Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar (hay que eliminar a Plutón de la lista, ya que en el último Congreso Internacional han decidido, después de más de 20 años, que no tiene categoría para ser un planeta), la estrella más cercana a la Tierra (150 millones de Km = UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años.

Fusión nuclear - Wikipedia, la enciclopedia libre

 

Es tal su densidad, es tal su enormidad que, como se explicó en otro pasaje anterior de este mismo trabajo, cada segundo transforma por medio de fusión nuclear, 4.654.000 toneladas de hidrógeno en 4.650.000 toneladas de helio; las 4.000 toneladas restantes son lanzadas al espacio exterior en forma de luz y calor, de la que una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años. Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja, explotará como nova y se transformará finalmente en una estrella enana blanca. Para entonces, ya no podremos estar aquí.

Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos, en realidad, en relación al universo, Como una colonia de bacterias que habitan en una manzana, allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.

 

Captan una “cascada de plasma” desprendiéndose del Sol que podría afectar a  la Tierra: “Me dejó sin palabras” | La 100Una vista de la tierra desde el espacio con la puesta de sol sobre el  horizonte | Imagen Premium generada con IA

                          Vista de la Tierra y el Sol

Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados. Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante pero… ¡Todo se andará!

Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana sin estar flotando todo el tiempo y, desde luego, buscar un combustible que procure altas  velocidades que, si no relativistas ni cercanas a c, si que hagan los viajes a los mundos cercanos de una duración aceptable y soportable a los viajeros, ya que, de otra manera, el traslado por la periferia de nuestro propio Sistema solar se haría interminable. Finalmente, y para escapar del sistema solar, habría que buscar la manera de burlar  la barrera de la velocidad de la luz.

 

Imagen relacionada

El Hiperespacio podría ser el camino para burlar la velocidad de la luz. Es decir, ya que el Universo, en su espacio tradicional, nos impide viajar más rápido que la luz, busquemos ese otro camino situado en dimensiones extra que, ¡sí lo permitiría! De manera tal que podríamos viajar a otras galaxias en tiempos soportables para nuestras efímeras vidas. Si algún día en el futuro podemos abrir esas puertas que permitan a modernas naves alcanzar las estrellas en un tiempo razonable.

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

Si pudiéramos encontrar el camino hacia dimensiones más altas… ¿Cuántas respuestas encontraríamos allí? Lo cierto es (como ha comentado Ed Witten), que la teoría de cuerdas se adelantó a su tiempo, y, para verificarla, se necesitaría la energía de Planck, es decir 1019  GeV, que ni reuniendo todas las energías en poder de todos los gobiernos del mundo se podría alcanzar.

A veces jugamos a ser dioses pensando que podemos recrear la creación.

 

Emilio Silvera Vázquez

Relatividad Especial: Luz, velodidad, tiempo, masa-energía

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Qué es una onda electromagnética? – Centro de Ayuda Tecnosinergia -  Tecnosinergia S. de R.L. de C.V. All Rights Reserved. © 2023

 

La radiación electromagnética es el producto de la variación periódica de los campos eléctrico y magnético. Un campo es una región del espacio en la que la materia está sometida a algún tipo de fuerza. En el caso de la radiación electromagnética, los campos son producidos por las partículas cargadas en movimiento. La luz visible es un tipo de radiación electromagnética. A veces se comporta como una onda que se propaga en el espacio, y otras veces se comporta como un conjunto de fotones. A este fenómeno se le denomina dualidad de la radiación.

Los distintos tipos de radiación electromagnética dependen directamente de las características de la onda, que son: frecuencialongitud de onda amplitud o intensidad. En realidad, como veremos a continuación, la frecuencia y la longitud de onda están directamente relacionadas, por lo que para describir completamente una onda, (la radiación electromagnética en nuestro caso) basta con dar información acerca de su amplitud y frecuencia (o longitud de onda). Las ondas electromagnéticas transportan energía siempre a la misma velocidad en el vacío: 299792 kilómetros por segundo, lo que se conoce como velocidad de la luz (c).

 

LAS RADIACIONES Y EL OJO (I): LOS TIPOS DE RADIACIÓN - Hispanóptica77.200+ Radiacion Electro Magnetica Fotografías de stock, fotos e imágenes  libres de derechos - iStock | Radiaciones, Enfermedad de radiacion

 

No todas las formas de  radiación electromagnética pueden ser captadas por el ojo humano que sólo puede ver la que se nos aparece en forma de luz visible y de la cual depende nuestra consciencia visual del universo y sus contenidos. La Relatividad Especial nos dice que es precisamente  la luz la que marca el límite de la velocidad que en el Universo se puede alcanzar. No vamos a meternos ahora en la polémica de si son ondas o partículas, o, las dos cosas según los casos. Sin embargo, una cosa sí que tenemos que dejar clara: Es una constante universal, aunque algunos se empeñen en querer quitarle esa primacía.

 

File:Wormhole travel as envisioned by Les Bossinas for NASA.jpg

“El empuje warpempuje por curvatura impulso de deformación o impulso de distorsión es una forma teórica de propulsión superlumínica. Este empuje permitiría propulsar una nave espacial a una velocidad equivalente a varios múltiplos de la velocidad de la luz, mientras se evitan los problemas asociados con la dilatación relativista del tiempo.”

 

El motor de curvatura de las películas de Star Trek está muy cerca:  ¿viajaremos pronto más rápido que la luz?

La velocidad de la luz en el vacío es un límite que impone el Universo, nunca lo podremos superar. Sin embargo, es posible que con el paso del tiempo y el avance de los conocimientos tecnológicos, se pueda inventar la manera de “burlar” ese límite, no superarlo.

¿Será científicamente posible superar la velocidad de la Luz?  ¿Los motores de curvatura que impulsaban a la nave Enterprise en sus  escarceos por el espacio pueden convertirse en una realidad y permitirnos superar la velocidad de la luz?. Bueno,  unos “científicos” de los que no recuerdo sus nombres, así lo han declarado. Sin embargo, si la velocidad de la luz puede ser superada, antes de que dicha proeza la puedan conseguir los hombres, creo que, si tal cambio de una constante natural llegara a producirse, sólo podría venir de cambios producidos en la misma Naturaleza, y, por nuestra parte, no podremos nunca superar la velocidad de la luz pero, sí podremos burlarla encontrando otros caminos hacia mundos y estrellas lejanos en remotas regiones del Universo.

 

 

Aunque muchas veces comentado, trataré de nuevo el tema de la velocidad de la luz y sus implicaciones reales en el transcurso del tiempo. La relatividad del movimiento es, por una parte, la clave para comprender la teoría de Einstein, y al mismo tiempo una fuente potencial de confusión.

 

¡El Tiempo transcurre inexorable, nada puede evitar que, como luciérnagas o gotas de agua, se escurra entre los “dedos” de nuestras efímeras vidas.

No es nada fácil dar una definición del tiempo, los intentos de hacerlo terminan a menudo dando vueltas y vueltas hasta llegar al punto de partida.  Sin ir más lejos, en un trabajo mío de título “Pasado, Presente y Futuro. Una ilusión llamada Tiempo“, intenté explicar lo que es el tiempo y hablé de él desde distintos ángulos y bajo distintos puntos de vista. Durante muchas páginas trate el tiempo y me remonte hasta el Big Bang como fuente de su nacimiento, allí, junto a su hermano, el espacio, nació el tiempo. Sin embargo y pese a mi esfuerzo por esbozar una imagen escenificando lo que el Tiempo es… ¡No lo conseguí! Al igual que los mejores filósofos, fracasé en el intento y, la explicación es fácil: Nadie puede dar razón de algo que no conoce.

 

Reloj atómico - Wikipedia, la enciclopedia libre

La precisión alcanzada con este tipo de reloj atómico es tan elevada que admite únicamente un error de un segundo en 30 000 000 años. El reloj más preciso del mundo se diseña en el Observatorio de París, donde los actuales relojes atómicos tardarían 52 millones de años para desfasarse un segundo. El nuevo objetivo de la investigación francesa es aumentar ese plazo a 32 000 millones de años. El estándar actual de los relojes atómicos en activo permite el atraso de un segundo cada 3700 millones de años (NIST).

 En aquella ocasión, entre otras muchas cosas, hablé del reloj atómico de cesio-33, de la velocidad de la luz, de la fórmula matemática que explicaba la dilatación del tiempo a través de la velocidad, del tiempo de Planck, de las transformaciones de Lorentz, tiempo terrestre, tiempo dinámico, tiempo bariónico, tiempo estándar, tiempo universal, ¿Cuántos conceptos de tiempo podemos tener? Y, sin embargo, seguimos sin saber lo que el tiempo es, si es que, realmente, es algo más que una abstracción de nuestras mentes.

 

Podemos medir el tiempo en un reloj de luz pero nuestro objetivo es comprender cómo afecta el movimiento al transcurso del tiempo. Se conoce como “reloj de luz” al más sencillo del mundo y que consiste en dos pequeños espejos montados el uno frente al otro sobre un soporte, y entre ellos hay un único fotón de luz que salta del uno al otro. Si los espejos están separados unos 15 cm, el fotón tardará alrededor de una milmillonésima de segundo en realizar un viaje de ida y vuelta. Se puede considerar que el “tictac” de un reloj de luz se produce cada vez que un fotón hace un viaje de ida y vuelta completo. Mil millones de tictac indicarían que ha transcurrido un segundo. El fotón de uno a otro espejo realizando el viaje de ida y vuelta mil millones de veces en un segundo. El fotón no tiene masa y su velocidad es la de la luz, 299.792.458 m/s.

 

Resultado de imagen de La luz desde el Sol a la Tierra ¿que tarda en llegar?

Tenemos que mencionar el carácter constante de la velocidad de la luz, y que el mismo implica que un reloj pueda marcar su tictac más lentamente.  O dicho de otra manera, viajar a velocidades cercanas a la de la luz ralentiza el tiempo, así lo determina la teoría de la relatividad especial de Einstein. El tiempo transcurre más lentamente para un individuo en movimiento que para otro individuo que se encuentre en reposo. Si el razonamiento absolutamente sencillo que nos ha llevado a esta conclusión es correcto, entonces, ¿no tendríamos, por ejemplo, que poder vivir más tiempo estando en movimiento que permaneciendo inmóviles? Después de todo, si el tiempo transcurre más lentamente para un individuo en movimiento que para uno que está quieto, esta disparidad se podrá aplicar también, además de al tictac de un reloj, al latido de un corazón y al deterioro de algunas partes del cuerpo. Esto es así, y se ha confirmado directamente, no para la esperanza de vida de los humanos, sino para ciertas partículas del microespacio: los muones. No obstante, existe una pega importante que nos impide proclamar el hallazgo de la fuente de la juventud.

 

Resultado de imagen de La ilusión de la fuente de la juventud que muchos han querido encontrar

La ilusión de la fuente de la juventud que muchos han querido encontrar. NO existen los espejos mágicos

 

 

La fuente de la juventud, símbolo de la inmortalidad, es una legendaria fuente que supuestamente cura y devuelve la juventud a quienquiera que beba de sus aguas o se bañe en ellas.

Durante milenios, el sueño de hechiceros, magos y alquimistas ha sido el de encontrar el elixir de la eterna juventud. Y leyendas llegadas de los rincones de la tierra hablan de ríos, fuentes, árboles, frutos y pócimas con poderes para rejuvenecernos.

Pensar en la existencia de la fuente de la Juventud, no es nada nuevo. Muchos han sido los que la han buscado sin encontrarla, y, sin embargo, yo he tenido esa suerte pero, a pesar de ello, no es eterna como tantos esperaban. La “eternidad” no existe. Si acaso, en alguna circunstancia el paso del Tiempo se podría retrasar.

Cuando se encuentran en reposo en el laboratorio, los muones se desintegran mediante un proceso muy semejante a la desintegración de la radiactividad, en un promedio de tiempo de alrededor de dos millonésimas de segundo. Esta desintegración es un hecho experimental apoyado en una cantidad enorme de pruebas. El muón tiene una vida de 2 millonésimas de segundo, llegado a ese tiempo, se desintegra, explota para descomponerse en electrones y neutrinos.

 

Resultado de imagen de Fotografía facilitada por el Centro Europeo de Investigación Nuclear (CERN) de la reconstrucción de las primeras colisiones de iones de plomo, vistas por el detector de partículas llamado Solenoide Compacto de Muones (CMS) en la sede del CERN en Ginebra, Suiza.

                 Solenoide Compacto de Muones (CMS)

Estos experimentos con iones de plomo abren ´una nueva avenida en la investigación del programa del acelerador para sondear la materia tal como era en los primeros instantes del Universo´, justo después del Big Bang, según el CERN.

 

Muones lanzados a la velocidad de la luz que aumentan su masa

 

El LHC comienza las colisiones entre iones de plomo y protones | CPAN -  Centro Nacional de Física de Partículas, Astropartículas y Nuclear

 

Fotografía facilitada por el Centro Europeo de Investigación Nuclear (CERN) de la reconstrucción de las primeras colisiones de iones de plomo, vistas por el detector de partículas llamado Solenoide Compacto de Muones (CMS) en la sede del CERN en Ginebra, Suiza.

 

LHC.svg
Cadena de aceleradores
del Gran Colisionador de Hadrones (LHC)

Fotografía facilitada por el Centro Europeo de Investigación Nuclear (CERN) de la reconstrucción en línea del sistema High Level Trigger (HLT) que muestra pistas del Inner Tracking System (ITS) y la Cámara de Proyección de Tiempo (TPC) del ALICE de las primeras colisiones de iones de plomo, vistas por el detector de partículas llamado Solenoide Compacto de Muones (CMS) en la sede del CERN en Ginebra, Suiza. Estos experimentos con iones de plomo abren ´una nueva avenida en la investigación del programa del acelerador para sondear la materia tal como era en los primeros instantes del Universo, justo después del Big Bang, según el CERN.

 

GIF 3d, red, blur, mejores GIF animados cinema4d, velocidad, luz, c4d, descarga gratis rojo, calle, camino

La velocidad de la luz en el vacío (c), será siempre un muro infranqueable

 

Pero si los muones no están en reposo en el laboratorio, sino que viajan a través de un aparato denominado acelerador de partículas que los impulsa hasta alcanzar la velocidad de la luz, el promedio de su esperanza de vida medido por los científicos en el laboratorio aumenta drásticamente. Esto sucede realmente. A una velocidad de 298.168 kilómetros por segundo (alrededor del 99’5% de la velocidad de la luz), el tiempo de vida del muón se multiplica aproximadamente por diez. La explicación de esto, de acuerdo con la relatividad especial, es que los “relojes de pulsera” que llevan los muones hacen tictac mucho más lentamente que los relojes del laboratorio que están en reposo y su tictac es más rápido, o sea al ritmo normal cotidiano del transcurso del tiempo. Esta es una demostración muy directa y expresiva del efecto que produce el movimiento en el paso del tiempo. Si las personas pudieran moverse tan rápido como estos muones, su esperanza de vida subiría hasta los 800 años, al multiplicarse por el mismo factor 10 de los muónes.

¿Qué dónde está el truco?

 

mujer calle

 Este movimiento no implica cambio alguno al no ser relativista, es un simple desplazamiento de lugar, la masa de la persona sigue siendo la misma.

Bueno, el que los muones en movimiento vivan 10 veces más tiempo que los muones en reposo se debe precisamente a que el movimiento “muy rápido” detiene el tiempo, no por completo, sino que lo ralentiza y lo hace ir más despacio.  Claro que no todos los movimientos pueden conseguir este milagro.En nuestras vidas cotidianas en las que nos movemos con velocidades muy pequeñas comparadas con la de la luz, el tiempo transcurre de manera normal que, será rápido o lento en función de las circunstancias personales de cada uno de nosotros.

 

                                          El Tiempo vuela

 

Por qué las mujeres dejan a los hombres (y no es lo que piensas)

         El Tiempo se hace eterno si hay dolor mientras que, en la felicidad es efímero

 

Relatividad especial

    ¡La que formó el buen hombre! Entró en la Física como elefante en cacharrería

Este ejemplo es cotidiano y se coge la velocidad como protagonista de la demostración de lo que es la teoría de la relatividad especial. En el ejemplo del muón (que se podría extrapolar a una persona que viajara en una nave espacial a velocidades cercanas a la de la luz), el protagonista es el Tiempo, que como consecuencia de una alta velocidad se detiene para transcurrir más lento en función de la velocidad a la que se esté viajando, es el efecto predicho por la teoría de Einstein y demostrados experimentalmente.  Los tiempos son relativos al movimiento de los observadores. El reloj viajero es más lento en un factor de

.Cerebro Digital - ¿En qué consiste la paradoja de los gemelos? La paradoja  de los gemelos o paradoja de los relojes fue postulada por Einstein al  desarrollar la teoría de la relatividad

En otras ocasiones, comentando esto mismo, hice referencia al conocido, o más bien conocida paradoja de los gemelos. Uno, astronauta que parte para Alfa Centauro, y el otro, profesor que le despide. Ambos tienen 38 años. La nave parte hacia la estrella vecina y hace el viaje de ida y vuelta a la velocidad de la luz, descansando un día para tomar datos de la estrella.  Al regreso, el hermano gemelo del astronauta va a recibirlo y cuando éste desciende de la nave, tiene la edad de 46’6 años,  es decir,  8,6 años más que cuando salió que es el tiempo que ha tardado la nave en hacer el viaje de ida y vuelta, mientras que él ya está jubilado, tiene mucha más edad.

Resulta exactamente lo mismo que en el experimento del múón, el tiempo del gemelo astronauta que viajó muy rápido, pasó mucho más lento que el tiempo del gemelo profesor que siguió en la Tierra a un ritmo muchísimo más lento. Así la ecuación es inversa:

Movimiento rápido  =  Tiempo más lento y Movimiento más lento = Tiempo más rápido.

Por muy rápidos que podamos ir, aunque consigamos estirar el tiempo, todo sería una falsa ilusión, ya que, en ese exceso de tiempo sólo podríamos realizar las mismas cosas que en el tiempo normal, sólo que más lentamente.

Pero la ecuación no debe equivocarnos; el gemelo de la Tierra, el que ahora es más viejo, en realidad ha vivido mucho más que el otro, ha vivido toda una vida con todo lo que eso conlleva, mientras que el otro hermano, el viajero, sólo ha vivido un viaje; sí, algo largo (8’6 años luz), pero en dicho espacio de tiempo, al ser muy lento, sólo cabían las incidencias de un viaje en una nave espacial, mientras que el otro hermano ha comprimido el tiempo en cuanto a los muchos hechos que ha podido meter dentro, así que para él pasó mucho más rápido.

 

¿Por qué el tiempo transcurre más rápido en el espacio que en la Tierra?

Nos tendríamos que preguntar ¿Por qué el Tiempo transcurre más rápido en el Espacio que en la Tierra

En realidad no es que el astronauta viviera más tiempo, sino que su tiempo pasaba mucho más lentamente porque él estaba corriendo más que su hermano, y corriendo tanto no da tiempo para hacer muchas cosas, sin embargo corriendo menos nos dará tiempo para todo. Ya sabes…Si tienes prisa…visteté despacio.

¡Qué locura!

Sí, es algo complicado, más de lo que pueda parecer, y sin embargo muy real. El astronauta vivió ese periodo de tiempo a cámara lenta, por eso “su tiempo” fue más largo o se tardó más tiempo para medirlo por el hecho cierto de que transcurría más lento. El fenómeno desapareció en el momento de tomar tierra, donde el tiempo era de nuevo el mismo para los dos hermanos. Así que durante la vida de 800 años al que antes aludíamos, en realidad podríamos hacer exactamente las mismas cosas que en la vida de 80 años, sólo que más lentamente.

 

einstein-teorias

           Tenía buenas intenciones cuando propuso sus teorías pero, ¡la que ha formado!

La Relatividad Especial también dice que ocurre algo interesante al movernos a través del tiempo espacial, especialmente cuando tu velocidad relativa a otros objetos es cercana a la velocidad de la luz. El tiempo pasa más lentamente para ti que para las personas que has dejado atrás. No observarás este efecto hasta que regreses a esas personas estacionarias.

Así que después de todo esto llegamos a la conclusión del principio, la relatividad del movimiento es, por una parte, la clave para comprender la teoría de Einstein, y al mismo tiempo (repito) una fuente de confusión; hay que centrarse muy profundamente en el problema para llegar a verlo, de manera clara, en tu cabeza. A mí, al principio, no me entraba la idea. Después de un tiempo de ahondar en la relatividad especial, por fin se hizo la luz, y efectivamente el tiempo va más despacio para quien se mueva muy rápido.

 

Maestro Jota on X: "La teoría del puente de Einstein-Rosen nos explica  claramente por qué ayer era 30 de junio y hoy es 1 de septiembre:  https://t.co/0GgwYhtyNu" / X

En la vida cotidiana, donde las velocidades son pequeñas, las diferencias entre alguien que corre y otro que está parado, puede ser tan insignificante que, en realidad, es despreciable. Se podría viajar más rápido que la luz por un puente de Einstein-Rosen pero, ¿Dónde están esos puentes? Que sepamos, nadie ha visto ninguno.

Otra curiosidad de la relatividad especial es que el objeto que se mueva a la velocidad de la luz se acorta a lo largo de la dirección del movimiento.  Por ejemplo, las ecuaciones de la relatividad especial demuestran que un objeto que se mueva aproximadamente al 98 por ciento de la velocidad de la luz, será medido por un observador inmóvil como un 80% más corto que cuando estaba parado, es lo que se conoce como la “Contracción de Lorentz”, que también es totalmente cierta. Pero además, a estas velocidades ocurre otra curiosidad: la masa del objeto aumenta considerablemente, ya que como el universo limita la velocidad que podemos alcanzar a la de la luz, cuando nos estamos acercando a ella, la energía que se traducía antes en velocidad, a partir de cierto punto se convierte en masa. No podemos olvidar que E = mc2, nos dice que la masa es energía y la energía es masa, son dos aspectos de la misma cosa.

 

Esquema sobre la contracción de Lorentz. (X′,cT′) representan las coordenadas de un observador en reposo a una barra, mientras que (X,cT) son las coordenadas de otro observador con respecto a dicha barra, por la naturaleza pseudoeuclídea del espacio-tiempo aun cuando el primer observador mide una longitud l, el segundo mide una longitud menor l/γ < l.

Einstein, en un principio, denominó a su teoría no como de la relatividad, la llamó teoría de la invariabilidad, para reflejar el carácter invariable de la velocidad de la luz. La obra de Einstein demostró que conceptos tales como espacio y tiempo, que anteriormente parecían estar separados y ser absolutos e inamovibles, en realidad están entrelazados y son relativos. Einstein demostró además que otras propiedades físicas del universo, sorprendentemente también están interrelacionadas. Arriba de esta misma página se reseña su famosa fórmula como uno de los ejemplos más importantes que afirma (y quedó más que demostrado) que E (energía) de un objeto y m (su masa) no están separados y se puede determinar la energía a través de la masa del objeto (multiplicando esta dos veces por la velocidad de la luz, o sea por c2).

 

Resultado de imagen de Aferrados a la Eternidad

              Efímeros momentos… ¡La Eternidad no existe!

Sí, hemos podido comprobar millones de veces que masa y energía son la misma cosa. Sin embargo, en la actualidad desconocemos la naturaleza de la “materia y de la energía oscuras” que constituyen la mayor porción de aquello que compone el Universo (imagen abajo: MACS J0717.

 

undefined

Volvamos a un muón que se desplaza a un 99’999 por ciento de la velocidad de la luz, y su masa se multiplica por 224; a un 99’999 por ciento de la velocidad de la luz se multiplica por un factor que es más de 70.000.  Como la masa del muón aumenta sin límite a medida que su velocidad se aproxima a la de la luz, sería necesario un impulso dado con una cantidad infinita de energía para alcanzar o superar la barrera de la velocidad de la luz. Como una cantidad infinita de energía no existe, de nuevo aparece el límite que el universo impone a la velocidad, nada podrá superar la velocidad de la luz. Al menos en este universo que conocemos donde las constantes universales, como la masa del electrón, la constante de estructura fina, o la velocidad de la luz, son como son para que el universo sea como lo conocemos y para que nosotros podamos estar aquí.

 

Resultado de imagen de Sin las constantes universales no habría vidaLa constante de estructura fina (aprox. 1/137) es una constante  adimensional que caracteriza la fuerza de la interacción electromagnética  entre partículas elementales cargadas. Su valor es aproximadamente 1/137, y  es una de

La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado

Una mínima variación en alguna de estas constantes universales,  seguramente habría impedido que nosotros surgiéramos a la vida en el planeta Tierra. Sin embargo, algunos no se paran a pensar y, de buenas a primeras, nos dicen que la velocidad de la luz no es el límite de la velocidad que se puede alcanzar en nuestro Universo. ¿Será posible? ¿Cómo algunos no piensan antes de hablar?

Emilio Silvera Vázquez