lunes, 10 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Relatividad Especial sigue gozando de buena Salud

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hace algunos años, en la prensa de todo el mundo salían noticias como esta:

 

 ¿Neutrinos más rápidos que la luz?

“Un equipo científico que trabajaba con el detector subterráneo Opera, en el laboratorio de Gran Sasso (Italia), ha obtenido unos resultados que pueden ser muy satisfactorios o muy incómodos. La presentación de los mismos está prevista para hoy, en el Laboratorio europeo de Física de Partículas (CERN, junto a Ginebra) como un seminario científico altamente especializado. Pero los rumores corren ya hace unos días porque lo que estos científicos plantean es que han medido neutrinos (partículas elementales de escasa masa y que apenas interaccionan con la materia) que, aparentemente, se desplazan más rápido que la luz. De confirmarse, sería un bombazo en la física, puesto que es un pilar de la teoría de Einstein que nada puede superar la velocidad de la luz.”

 

Dos fallos cuestionan el experimento de los neutrinos más rápidos que la  luz | Sociedad | EL PAÍS

The OPERA detector at the Gran Sasso laboratory. The picture shows both supermodules (SM1 and SM2), and the target and muon spectrometers in each SM.

Después de eso, ya sabemos todos lo que pasó y, los dos responsables principales han tenido que dimitir, la Luz sigue siendo la primera en llegar a cualquier sitio.

Leer más

La Biologia llego desde las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entendiendo el nacimiento de las estrellas | National Geographic

Las estrellas han estado diez mil millones de años fusionando elementos sencillos en otros más complejos para que, en el presente, nosotros estemos aquí. Estamos hechos de polvo de estrellas.  De hecho, cerca del 99% de nuestro cuerpo está hecho de cuatro elementos químicos: Carbono, Hidrógeno, Oxígeno y Nitrógeno.

 

Hallan en el espacio interestelar una molécula que puede ser diestra o zurda

Un estudio revela por primera vez la existencia en el espacio de moléculas quirales orgánicas complejas. Se trata del óxido de propileno, localizado en las zonas frías y exteriores de una nube de gas y polvo conocida como Sagitario B2. Como otras moléculas quirales, puede presentar dos formas especulares, con propiedades distintas.

 

Las moléculas prebióticas pululan por los protosoles

En las regiones donde nacen estrellas parecidas a nuestro Sol ya aparecen moléculas orgánicas complejas como la formamida, de la que pueden surgir azúcares, aminoácidos e incluso ácidos nucleicos, esenciales para la vida. Astrofísicos de España y otros países han detectado esta biomolécula en cinco nubes protoestelares y proponen que se forma sobre diminutos granos de polvo.

Leer más

De lo pequeño a lo grande (Todo la misma cosa): Átomos. Quarks y Leptones

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La verdadera historia de Ulises, el héroe legendario de la mitología griegaPiteasYour Map To 'Marco Polo': A Visual Guide To The Complex Court Of Kublai  Khan | DeciderLos cuatro viajes de Cristóbal Colón a América – Palacio del Segundo Cabo

 

 

El mismo acto de explorar modifica la perspectiva del que explora; Ulises, Piteas, Marco Polo y Colón, habían cambiado cuando volvieron a su hogar después de explorar “nuevos mundos”. Lo mismo ha sucedido con la investigación científica de los extremos en las escalas, desde la inmensa y grandiosa extensión de los espacios cosmológicos hasta el minúsculo mundo enloquecido de las partículas subatómicas. Estos viajes nos han cambiado y, han desafiado muchas de las concepciones científicas y filosóficas que conformaban nuestra manera de ver el mundo que nos rodea.

 

El Gran Telescopio Canarias por dentro, el mayor del mundo que nos acerca a  los límites del UniversoEl núcleo galáctico activo más lejano se detecta en muy altas energíasEl cúmulo de formación estelar Westerlund 2 captado por Hubble

 

La exploración del ámbito de las Galaxias extendió el alcance de la visión humana en un factor de 10²⁶ veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquialismo en un Universo más vasto donde el espacio es curvo y el tiempo se hace flexible, dónde la materia es energía congelada y, donde el tiempo está unido irremisiblemente al espacio.

Leer más

Volcamos nuestros sueños imposibles en la I.A.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

De manera más o menos consciente, plasmamos en la I.A., todo aquello que nos gustaría conseguir y no podemos. La Inmortalidad, el vencer a la vejez, ha sido desde siempre un sueño de la Humanidad, Lo cierto es que, en nuestro Universo, todo tiene un principio y un final, nada es Eterno (a mí no me gustaría vivir sin mis seres queridos), y, hasta el mismo Universo un día tendrá que morir, ya lo decía aquel pensador:

“Con el paso de los Eones, hasta la misma muerte tendrá que morir.”

Si existen ¿Cómo serían otros universos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Multiverso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Siempre hablamos de visitar otros mundos, otros universos y, en ellos, las condiciones físicas no tienen, necesariamente, que ser como en el nuestro. Los mundos, como las estrellas y los universos, pueden tener sus propias características dependiendo de muchos factores que lo podrían conformar de manera muy diferente a como lo está nuestro mundo y vemos que se comporta el universo con sus cuatro leyes fundamentales y sus constantes que, en otro universo, podrían ser de otra manera.

 

Criaturas de otros planetas? No, insectos bajo el microscopio

Ni podemos imaginar las formas de vida que pueden existir por ahí fuera

Formas de vida diferentes, estructuras asombrosas y para nosotros desconocidas, y, hasta el Tiempo se podría comportar de diferente manera.

Si es cierto lo que afirman algunas teorías, entonces existen en realidad un número infinito de universos paralelos, muchos de ellos con diferentes constantes físicas. En algunos de ellos, quizá los protones se desintegran con demasiada rapidez, o las estrellas no pueden fabricar los elementos pesados por encima del hierro, o el Big Crunch tiene lugar demasiado deprisa porque su densidad crítica sobrepasa en mucho a la ideal y no da tiempo a que pueda comenzar la germinación de la vida, y así sucesivamente. De hecho, un número infinito de estos universos paralelos están muertos, sin las leyes físicas que puedan hacer posible la vida tal como la conocemos.

 

Sí, los universos podrían estar conectados por la Fuerza de Gravedad que generan

En tal universo paralelo (el nuestro), las leyes de la física eran compatibles con la vida que conocemos. La prueba es que nosotros estamos aquí para tratar esta cuestión. Si esto es cierto, entonces quizá no haya que invocar a Dios para explicar por qué la vida, por preciosa que sea, es posible en nuestro universo. Sin embargo, esto reabre la posibilidad del principio antrópico débil, es decir, que coexistimos con nuestros universos muertos y que el nuestro sea el único compatible para vida.

 

La segunda controversia estimulada por la función de onda del universo de Hawking es mucho más profunda y, de hecho, aun está sin resolver. Se denomina el Gato de Schrödinger. Empezamos con una función de onda que describe el conjunto de todos los universos posibles. Esto significa que el punto de partida de la teoría de Hawking debe ser un conjunto infinito de universos paralelos, la función de onda del universo. El análisis bastante simple de Stephen Hawking, reemplazando la palabra partícula por universo, ha conducido a una revolución conceptual en nuestras ideas sobre la cosmología.

La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo. La teoría cuántica afirma también que nunca se conoce realmente el estado de una partícula hasta que se haya hecho una observación. Antes de que haya una medida, la partícula puede estar en uno de entre una diversidad de estados, descritos por la función de onda de Schrödinger. Por consiguiente, antes de que pueda hacerse una observación o medida, no se puede conocer realmente el estado de la partícula.  De hecho, la partícula existe en un estado ultramundano, una suma de todos los estados posibles, hasta que se hace una medida.

 

 

Cuando esta idea fue propuesta por primera vez por Niels Bohr y Werner Heisemberg, Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?“, -o un gato- le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal como la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un número infinito de estados, incluyendo el estado de estar en el cielo, de estar explotando, o de no estar allí en absoluto. Es el proceso de medida que consiste en mirarla el que decide que la Luna está girando realmente alrededor de la Tierra“. Decía Einstein con ironía.

 

Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación. Para demostrar lo absurdo de la situación creada, Schrödinger colocó un gato imaginario en una caja cerrada. El gato estaba frente a una pistola, que está conectada a un contador Geiger, que a su vez está conectado a un fragmento de uranio. El átomo de uranio es inestable y sufrirá una desintegración radiactiva. Si se desintegra un núcleo de uranio, será detectado por el contador Geiger que entonces disparará la pistola, cuya bala matará al gato.

Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el estado del gato antes de que abramos la caja? Según la teoría cuántica, sólo podemos afirmar que el gato esta descrito por una función de onda que describe la suma de un gato muerto y un gato vivo.

Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a esta conclusión. Hasta el momento, todos los experimentos han verificado, favorablemente, la teoría cuántica.

 

Sí, a veces la mecánica cuántica parece tan fantástica como el cuento de Alicia

La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás“, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe.   Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.

La segunda forma de tratar la paradoja es la preferida por la gran mayoría de los físicos en activo: ignorar el problema.

 

70 frases de Richard Feynman sobre la física y la ciencia

 

El físico Richard Feynman dijo en cierta ocasión: 

“Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado.  Nadie sabe como puede ser eso“. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.

Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho favor en la última década, pero está siendo revitalizada por la función de onda del universo de Stephen Hawking.

 

 

Aunque no siempre, lo más simple tiene que ser lo verdadero. El principio de la Navaja de Ockham es fundamental para el reduccionismo metodológico.

Existe un principio de la física denominado Navaja de Ockham, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, especialmente si las alternativas no pueden medirse nunca.

Para seguir fielmente el consejo contenido en la navaja de Ockham , primero hay que tener el conocimiento necesario para poder saber elegir el camino más sencillo, lo que en la realidad, no ocurre. Nos faltan los conocimientos necesarios para hacer las preguntas adecuadas.

 

 

¿Quién puede saber lo que ahí fuera existe? ¡Nadie! Sólo podemos imaginarlo en función de cada Mente y de distintas maneras

Hugo Everett, Bryce DeWitt y ahora Hawking (también otros), han propuesto la teoría de los universos múltiples. En unos universos los protones se desintegran antes haciendo inestable la materia, en otros, el átomo de uranio se desintegra mediante un proceso sin radiaciones, y en otros universos las constantes universales que existen en el nuestro, son totalmente diferentes y no dan posibilidad alguna para la existencia de seres vivos. Está claro que cualquier variación que en principio pudiera parecer sin importancia, como por ejemplo la carga del electrón, podría transformar radicalmente nuestro universo.

Como apuntó el físico Frank Wilczek:

 

Resultado de imagen de Helena de troya con una verruga en la nariz

 

“Se dice que la historia del mundo sería totalmente distinto si Helena de Troya hubiera tenido una verruga en la punta de su nariz.”

 

Hasta el momento, se han celebrado varias conferencias internacionales sobre la función de onda del universo. Sin embargo, como ocurre en la teoría de supercuerdas, las matemáticas implicadas en la función de onda del universo, parecen estar más allá de la capacidad de cálculo que cualquier humano en este planeta pudiera resolver, y tendríamos que esperar años antes de que aparezca un individuo genial que pudiera encontrar una solución rigurosa a las ecuaciones de Hawking.

 

Grigori Perelman, el genio matemático que resolvió uno de ...

 

Recordemos aquí de nuevo que, precisamente ahora, un siglo más tarde, en el Congreso Internacional de Matemáticas celebrado en Madrid el mes de Agosto de 2.006, se otorgó la Medalla Field (una especie de Nobel de las matemáticas) al matemático ruso Perelman, extraño ser que ni se dignó comparecer a recogerla con el premio, hizo caso omiso. Perelman ha resuelto la conjetura expuesta por Poincaré planteada en 1.904.

 

Movimiento caótico de tres cuerpos en un campo de fuerzas aislado.

 

        Henri Poincaré

MatemáticaFísicaEstadística
Conocido por Conjetura de Poincaré
Problema de los tres cuerpos
Topología
Relatividad especial
Teorema de Poincaré-Hopf
Dualidad de Poincaré
Teorema di Poincaré-Birkhoff-Witt
Desigualdad de Poincaré
Series Hilbert–Poincaré
Tensor de Poincaré
Número rotacional
Acuñó el término ‘número de Betti’
Teoría del Caos
Universo Esfera
Teorema de Poincaré-Bendixson
Método de Poincaré–Lindstedt
Teorema de recurrencia
Cargos ocupados
  • Presidente de Société Mathématique de France (1886)
  • Presidente de Société Mathématique de France (1900)
  • Presidente de Academia de Ciencias de Francia (1906)
  • Sillón 24 de la Academia francesa (1908-1912) 

 

La conjetura de Poincaré de 1.904, en el año 2.000, fue catalogada por el Instituto Clan como uno de los siete problemas del milenio. Para hacer un comentario sobre esta conjetura tengo que referirme a la topología, el nivel de las matemáticas donde está ubicada.

Perelman en el metro - GaussianosGrigori Perelman es un matemático ruso que es conocido por su trabajo sobre  la conjetura de Poincaré, un problema famoso en topología. En 2006,  Perelman fue galardonado con la Medalla Fields, uno de ...

      Verdaderamente, Perelman es un extraño personaje, metido en su propio mundo. Vive con su madre en un piso de protección oficial del Gobierno de 65 m/2, sale y se mueve por las calles andando o en el metro, de vez en cuando los vecinos lo ven salir con un canasto al brazo y se encamina al campo a buscar setas. Y, a todo eso, despreció coger el premio de un millón de dólares, la excusa es que no podía recibir un premio de manos de gente que no comprendían su tebajo.

Las últimas fotos que se conocen de él se las sacaron con un celular en un vagón del metro de Petersburgo. Se está quedando pelado pero las mechas largas y desgreñadas le llegan a los hombros, va en zapatillas sucias, un traje arrugado que le queda corto, sin corbata y con la camisa enteramente desprendida, flaco como un Cristo, la barba igual, la mirada perdida, las uñas largas y sucias y curvadas hacia adentro como garras. El vagón va en dirección sur, a Kúpchino, un barrio de monoblocks donde muere el metro. Todos los vecinos de Kúpchino saben quién es Grisha Perelman y cuál es la puerta del ínfimo departamento que comparte con su madre. Pero ninguno va a decírselo a los periodistas y a los fanáticos de la matemática que cada tanto merodean por ahí.

 

La topología tienen unas matemáticas endiabladamente complejas

La topología es la geometría de los objetos elásticos o flexibles que cambian de forma pero tienen las mismas propiedades que antes de ser estirados, achatados, etc. Se pueden retorcer pero no cortar ni pegar.

Los topólogos no tienen en cuenta la distancia, puesto que se puede variar al deformar el objeto, sino nociones más sutiles. Los orígenes de la topología se remontan a mediados del siglo XVIII, con los trabajos de Euler en teoría de grafos, que llamó “análisis situs“.

A finales del siglo XIX y principios del siglo XX, la topología recibió un gran impulso con los trabajos de Poincaré, matemático francés muy influyente en el posterior desarrollo de diversas áreas de las matemáticas y de la física. En particular, en 1.904 planteó la conjetura que lleva su nombre y que no se ha resuelto hasta el siglo XXI. Este problema ha sido un motor para la investigación en topología de todo el siglo pasado y se ha llegado a su resolución con ideas nuevas y apasionantes.

 

                              Henri Poincaré en su estudio trabajando

Para situarnos mejor debemos hablar de las variedades, espacios que tienen una dimensión determinada. Por ejemplo una recta o un circulo son variedades de dimensión uno, puesto que se describen como un parámetro.  El plano o la esfera son ejemplos de variedades bidimensionales, al utilizar dos parámetros para describir sus posiciones. El espacio en que vivimos es una variedad tridimensional, y si le añadimos la dimensión temporal, el espacio-tiempo es una variedad de dimensión cuatro. Ya he comentado en este mismo trabajo cómo las singularidades geométricas, las variedades, fueron introducidas por Riemann a mediados del s.    XIX y constituyeron una herra-mienta clave para la física del siglo XX. De hecho, la teoría de la relatividad especial de Einstein fue postulada por Einstein en 1.905, pero hasta que no incorporó las variedades contenidas en el tensor métrico de Riemann, no pudo completar la teoría de la relatividad que incluía los espacios curvos.

 

La pregunta que hizo Poincaré fue la siguiente: ¿Es la esfera la única variedad tridimensional para la cual toda curva se contrae?

Se pasó un siglo entero antes de que un genio de las matemáticas, el extraño G. Perelman, pudiera demostrar la conjetura de Poincaré.

De todas las maneras, avanzar en el conocimiento de las cosas no resulta nada fácil, y, aunque el avance es exponencial (cuanto más datos vamos teniendo más rápidamente avanzamos), hay algunos enigmas de la Naturaleza que, de momento, seguirán en la oscuridad de nuestra profunda ignorancia.

Emilio Silvera Vázquez