lunes, 03 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Rumores del Saber del Mundo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Rememorando el pasado    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Retrato: Giovanni de' Bardi, Ideólogo del Juego | Notas al pie de páginaVicenzo Galilei: esta fue la influencia del padre, maestro y mentor sobre  Galileo

Aproximadamente entre  1.580 y 1.589, algunos caballeros empezaron a reunirse de forma regular en casa del conde Giovanni dei Bardi en Florencia.  Este grupo, conocido como la camerana estaba compuesto por el célebre flautista Vincenzo Galilei (padre del astrónomo Galileo Galilei), Jacobo Peri y Giulio Caccini, también músicos, a los que se sumaba el Poeta Octavio Rinuccini.

 

Historia de la ópera - Wikipedia, la enciclopedia libre

                    Las primeras representaciones de Opera

Durante el curso de sus conversaciones, principalmente dedicadas al teatro clásico, surgió la idea de que las obras clásicas podían notarse “de forma declamatoria”. Fue así como más adelante nacería la opera.  En términos muy amplios, podemos afirmar que en el largo siglo que va de 1.470 a 1.590 aparecen  los principales elementos de la música moderna en un proceso análogo al que se observa en la pintura.

Los desarrollos en este campo pueden dividirse en tres grupos:

 

En primer lugar, se dieron una serie de avances técnicos, tanto para instrumentos como para voces, que permitieron la evolución de los tipos de sonido que escuchamos hoy.

En segundo lugar, se desarrollaron diversos géneros musicales, lo que condujo a la forma de la música tal y como la conocemos en la actualidad.

Y, en tercer lugar, tenemos el surgimiento de los primeros compositores de música moderan, los primeros músicos famosos cuyos nombres aún recordamos.

 

500th Anniversary of Johannes Ockeghem: The Motets

                Jean Ockeghem

Entre los avances técnicos, podemos señalar para empezar el principio de “imitación”, una innovación de la escuela de música flamenca, cuyos principales representantes fuera Jean Ockeghem (c. 1430-1.495) y Jacob Obrecht (c. 1430-1505). Sin embargo, durante el siglo XV y buena parte del XVI, la música flamenca fue ganando prestigio no sólo en Europa septentrional sino también en Italia.

                            Catedral de San Marcos en Venecia

En la corte papal en Roma, en la Catedral de San Marcos en Venecia, en Florencia y en Milán, los músicos flamencos eran los más solicitados.  En este contexto, el término “imitación” designa la costumbre de que en una obra polifónica las voces no canten juntas sino una después de otra, cada una repitiendo lo dicho por la anterior.  Este recurso tenía un gran poder expresivo y se ha mantenido vigente hasta el día de hoy en todos los géneros musicales.

Por la misma época, se introdujeron las masas corales que reunían gran cantidad de voces.  En partículas el coro papal adquirió mucha importancia, si bien fue en Venecia donde el flamenco Adrian Willaert (c. 1.480-1.562) introdujo el coro doble, en el que dos cuerpos cocales se yuxtaponían continuamente uno a otro, algo que tenía una fuerza dramática aún mayor.

 

Francesco Guami, Vincenzo Ruffo, Orlando Di Lasso y  Adrian Willaert

También fue en Venecia donde se dieron los primeros pasos hacia la orquestación, la idea de designar instrumentos específicos para cada parte de la composición.  Esto se relaciona con el hecho de que fue también en esta ciudad donde se inició la impresión de partituras hacia 1.501, con lo que los intérpretes pudieron llevar las ideas musicales “no en la cabeza, sino en su equipaje”.

Venecia produjo dos músicos extraordinarios:

 

http://www.morristsai.com/uploaded_images/AidaCincinnatiOpera-778308.jpg

 

Andrea Gabriela y su sobrino Giovanni.  Fueron ellos quienes perfeccionaron el equilibrio de los coros, con grupos de instrumentos de cuerda y de viento, en galerías corales opuestas que hacían avanzar y retroceder la melodía y que tenían por base dos grandes órganos.

Yehudi Menuhin considera que este momento de la música occidental “marca el auténtico comienzo de la música instrumental independiente” y, en particular, de un elemento que sería de vital importancia a lo largo de la era moderna: la disonancia suspendida.

Esta disonancia, planeada de forma deliberada, llama la atención sobre sí misma y exige ser resuelta (al menos hasta Schönberg, en 1.907), lo que subrayó el carácter emocional de la música y propició el desarrollo de la técnica de la modulación, el libre movimiento de un tono a otro sin el cual había sido imposible el movimiento romántico en la música.

 

 

Los siglos XV y XVI también fueron testigos del aumento del número de instrumentos disponibles y, en un sentido rudimentario, de los comienzos de la orquesta.  Inicialmente, tuvo una gran importancia la difusión del arco desde Asia, a través del Islam y Bizancio, donde hacia el siglo X el Rabat y la luna se tocaban con arcos de una o dos cuerdas.

 

El Arco Musical - Un poco de historia - Escuela de Música La Sala en  Barcelona - Poble Sec

En Europa, el arco musical, descendiente directo del arco de caza, apareció primero en España y Sicilia, pero se difundió con rapidez hacia el norte del continente.  Aunque el sonido producido al puntear las cuerdas se desvanecía con rapidez, se descubrió que las notas emitidas por las cuerdas al vibrar podían prolongarse mucho tiempo frotando un arco sobre ellas.

 

La Historia del Violín: Su Origen y Evolución a lo Largo de los Años -  Arthaus Escuela de Música Online

 

El segundo acontecimiento decisivo para la evolución de la música occidental fueron las cruzadas de los siglos XII y XIII.  Los nuevos instrumentos encontrados en Oriente Próximo se difundieron velozmente, en particular el antecesor del violín, que aparece por primera vez en ilustraciones bizantinas del siglo XI, cuando tenía muchas formas diferentes (ovalada, elíptica, rectangular) y ya contaba con una parte estrecha para permitir que los movimientos del arco fueran más flexibles.

El Gittern: La Antigua Joya de la Música del Renacimiento – Sociedad  Española De Organología y Luthería

Otros instrumentos eran el rebec y el gittern, precursora de la guitarra, un enorme instrumento hecho a partir de un bloque de madera sólida.

 

INSTRUMUNDO Instrumentos Musicales: Clavicordio, Clavichord, Clavicorde,  Clavicordo,

El clavicordio es un instrumento musical europeo de teclado, de cuerda percutida y sonido muy débil. Este instrumento no se debe confundir con el clave (harpsichord, clavecín, clavicémbalo, clavicímbano), la espineta o el virginal.

Los instrumentos de cuerda provistos de teclado aparecen inicialmente en la primera mitad del siglo XV, quizá como desarrollo de un instrumento misterioso, el checker, del que no se conserva ningún ejemplar, por lo que solo lo conocemos a través de ilustraciones. También existía un primitivo clavicordio, denominado monocordio (quizá inventado por Pitágoras), y un antiguo clavicémbalo, un instrumento alargado, a partir del cual evolucionaron la espineta y el virginal, ambos de tamaño más pequeño.

 

El laúd árabe medieval: Historia y construcción - MusicaAntigua.comGuitarra - Wikipedia, la enciclopedia libreEl instrumento musical viola: Voz profunda y expresivaZUOMU Violín De Tamaño Completo Violín De Tilo Estudiante Principiante  Practicar Violín Violón Set (Color : 1/4) : Amazon.es: Instrumentos  musicales

 

Para el siglo XVI el laúd, la guitarra, la viola y el violín, se habían hecho muy populares a medida que se difundía el gusto por la música cromática.  Carlos IX, rey de Francia entre 1.560 y 1.574, ordenó la construcción de treinta y ocho instrumentos a Andrea Amati, el famoso fabricante de Cremona, y especificó que doce debían ser violines grandes, doce violines pequeños, seis violas y ocho bajos.

Entre los instrumentos de viento, el órgano se había utilizado desde la época de los romanos, si bien desde el siglo X en adelante había pasado a ser instrumento exclusivo de la Iglesia.

 

Bombarda (instrumento musical) - Wikipedia, la enciclopedia libreOboe — Cultura

                                            Bombarda y Oboe

En este campo la importación más significativa de Oriente fue la bombarda, que deriva de la surna persa, un instrumento de doble lengüeta con agujeros para los dedos y pabellón amplio.  El oboe moderno probablemente fue inventado a mediados del siglo XVII por un miembro de la familia Hotteterre, y se introdujo en la corte francesa.  Se consideraba un complemento de los violes, aunque también contribuía al continuo.

Entre las diversas formas musicales surgidas desde el siglo XI podemos destacar el madrigal, la sonata, las formas corales, el concierto, el oratorio y la ópera.

 

 

Con la maduración del madrigal, el liderazgo musical pasó de los flamencos a los italianos, y en particular a Roma y Venecia, si bien no se debe olvidar la contribución de los franceses al crear la chanson, conocida en otros lugares como canson francese.  La chanson era una forma despreocupada y alegre, que con frecuencia proponía “cancioncillas de amor” sentimentales y nostálgicas, según las palabras de Alfred Einstein, en las que la voz pretendía imitar el canto de las aves, y  partir de ella surgiría finalmente la sonata.

 

 

Retrato de Giovanni Pierluigi da Palestrina, pintor desconocido (siglo XVI)

Los principales exponentes del madrigal y de la chanson/sonata fueron Giovanni Pierluigi da Palestrina (1.525-1.594) y Orlando di Lasso (1.532-1.594).  En Roma, Palestrina fue  maestro di capella de la iglesia de San Pedro desde 1.571. Compuso noventa y cuatro misas y ciento cuarenta madrigales.  Fundamentalmente fue un compositor religioso.

 

Orlando di Lasso.

Lasso, por su parte, fue un maestro del madrigal y del motete, que celebró en sus obras el amor en esta vida y esta tierra.  La búsqueda del estilo y la excelencia instrumental condujo en su momento a la aparición del virtuoso, particularmente en los teclados y las maderas.  En ello también observamos un proceso similar al que tuvo lugar en la pintura: el surgimiento del músico como artista respetado por derecho propio.

 

Al evolucionar, la canzon francese se dividió en dos tipos: la sonata para instrumentos de viento y la canzona para los de cuerda.  Mientras la primera daría lugar al concierto (y más tarde a la sinfonía), la segunda evolucionaría en la sonata de cámara. Los humanistas que en Florencia dieron origen a la ópera estaban convencidos de que la primera función de la música era intensificar el impacto emocional de la palabra hablada.  Inicialmente, el nuevo discurso musical se denominó recitativo: el texto se recitaba o declamaba sobre un fondo musical compuesto principalmente por una serie de acordes con disonancias ocasionales con que producir efectos dramáticos.  No obstante, desde el principio existió una estructura armónica, lo que se denomina música “vertical” en oposición a la meramente “horizontal”.

 

                             Retrato de Claudio Monteverde

El primer gran compositor de óperas fue Claudio Monteverde (1.567-1.643).  Su Orfeo, escrito para violas y violines y estrenado en Mantua en 1.607, supuso un significativo avance respecto de las óperas presentadas antes en Florencia.  Aunque Monteverde poseía un don original para la armonía que le permitió introducir también algunas disonancias andaces, la principal característica de su música es s gran calidad expresiva, como por ejemplo, Ariadna, o su famoso Lamento de Ariadna, la primera aria operística que se convirtió en canción popular y fue “tatareada y silbada por toda Italia”

 

Ópera - Wikipedia, la enciclopedia libre

 

De aquel fenómeno musical surgieron grandes teatros de ópera en toda Europa, si bien hasta 1.637 estos fueron lugares privados, dominio exclusivo de la nobleza.  Sólo después de esa fecha encontramos, de nuevo en Venecia, asistentes a la ópera que pagan por su asistencia a las salas.  En el siglo XVII la ciudad contaba con dieciséis teatros de ópera, cuatro de los cuales abrían todas las noches.

Dejaré aquí esta pequeña reserva que se ocupa de la música en varias vertientes y que ha sido una variante para exponer otra parte, otro rumor del saber, que forma el conocimiento de la Humanidad.

 

Claro que la belleza puede estar en cualquier parte

Ciertamente amigos, hay un lugar y un momento para cada cosa. Ahora insertamos aquí una breve historia sobre temas de la música y, de la misma manera, en otro cualquier momento y dependiendo del estado de ánimo, podría pasar, por ejemplo, con esas ecuaciones en las que mucha gente ven la identidad de Euler y, aunque para algunos pueda parecer frío y sin mucho sentido, para otros pueden llevar ese inmenso mensaje que enaltece el intelecto y podrán encontrar en ellas la belleza y, el poderlas comprender y poder pensar en todo la grandeza del mensaje, poder transmutarse hacia fantásticas situaciones de actividades placenteras.

 

                                   Identidad de Euler. ¿Belleza? ¡Ya lo creo que sí!

¡Son tántas las cosas que nos eleva! Dicen que la música amansa a las fieras y, desde luego, es un dicho bastante cercano -aunque en forma de metáfora- a la verdad, la música cambia y enaltece el espíritu, te transporta a otros mundos sin salir de este. De la misma manera, otras actividades y saberes de la Humanidad, nos pueden elevar hasta niveles de comprensión de la Naturaleza que, de otra manera, nunca jamás habríamos pensado que fuera posible y, las matemáticas, son la llave de ese otro mundo mágico.

Emilio Silvera Vázquez

¿El futuro? ¿Quién lo puede conocer?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Futuro incierto    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

GRAVEDAD CUANTICA
https://youtu.be/iTueyhE6lsU
https://youtu.be/9e8qQSHkaQ4

Podríamos ser la ultima generación más inteligente que los robots | La  Corneta | LOS40 México
           ¿Qué papel jugaremos nosotros para cuando esto llegue?

A mí, particularmente, me da mucho miedo un futuro en el que las máquinas sean imprescindibles. En este mismo momento ya casi lo son. ¿Qué haríamos sin ordenadores que mediante sus programas dirigen fábricas, llevan todo el movimiento de las Bolsas del mundo y de los bancos, dirigen los satélites del espacio, llevan a cabo complicadas operaciones quirúrgicas y montan y ensamblan elaborados mecanismos industriales? El mundo quedaría paralizado.

 

Resultado de imagen de Robots del futuro que superarán a los humanos

                                     Robots que, como Data, superen a los humanos

Pienso en un mundo mucho más avanzado, dentro de 500 – 1.000 años. ¿Qué habrá pasado con los robots?, máquinas cada vez más perfectas que llegarán a autofabricarse y repararse. ¿Cómo evolucionarán a partir de esos procesadores inteligentes de la nanotecnología? ¿Llegarán algún día a pensar por sí mismas? Ahí puede estar uno de los grandes peligros de la Humanidad.

 

Este fue el primer robot de la historia: el punto de partida de la  revolución robótica

La invención del robot (del checo, robota, trabajo) se debe al esfuerzo de las sociedades humanas por liberarse de las labores más ingratas y penosas a que se ven obligados algunos de sus individuos. En un principio, la apariencia de los robots sólo atendía a las razones prácticas de las funciones que cada modelo tenía que desempeñar, o sea, su morfología estaba aconsejada por criterios funcionales y prácticos.

    No saber donde está el límite… ¡Qué peligro!

 

Eran pensados solo para hacer trabajos

Una vez superada la primera fase, el hombre trata de fabricar robots que cada vez sean más semejantes a su creador, y aunque las primeras figuras han sido algo groseras y poco hábiles en sus movimientos, poco a poco se va perfeccionando la imitación de los humanos.

Un robot se diferencia fundamentalmente de una máquina por su capacidad para  funcionar de modo automático sin la acción permanente del hombre. Los primeros robots se mostraron especialmente válidos para llevar a cabo aquellos trabajos sencillos y repetitivos que resultaban tediosos y pesados al hombre (al Ser Humano mejor). También son ideales para el trabajo en el que se está expuesto a cierto peligro o se trabaja con materiales peligrosos en lugares nocivos para los seres vivos

 

Nuevas generaciones de robots que…, ¿comienzan a ser peligrosos? Tienen cerebros positrónicos

Las máquinas del futuro nos pueden superar. Hemos comenzado a inventar robots que, cada vez son más sofisticados y tienen más prestaciones y, de seguir por ese camino, de no poner unas reglas claras, precisas u rígidas sobre el límite…las cosas podrían salir mal.

Una de las condiciones esenciales que debe tener una máquina-robot para ser considerada como tal es la posibilidad de ser programada para hacer tareas diversas según las necesidades y la acción que de ellos se requieran en cada situación. Y, si llegan a poseer la potestad de pensar por sí mismas, de repentizar soluciones no programadas, de sentir y ser conscientes…¡malo!

 

El futuro de la exploración espacial: la estación robótica

Dentro de algunas decenas de años, por ejemplo, no será necesario que ningún astronauta salga al espacio exterior para reparar estaciones espaciales o telescopios como hacen ahora, con riesgo de sus vidas, con el Hubble.

El miedo a los robots del futuro que antes citaba está relacionado con el hecho de que la robótica es el estudio de los problemas relacionados con el diseño, aplicación, control y sistemas sensoriales de los robots.

Las cinco generaciones de robots según Michael Knasel | Ignacio G.R. Gavilán

Ya van quedando muy viejos aquellos robots de primera generación (en realidad brazos mecánicos), muy utilizados en labores de menos precisión de la industria automovilística. Hoy día, los robots que se fabrican, están provistos de sofisticados sistemas “inteligentes” que son capaces de detectar elementos e incluso formas de vida rudimentarias. El proyecto de la NASA en el río Tinto es un ejemplo de ello; allí han utilizado pequeños robots capaces de comunicar datos científicos de los hallazgos en el fondo de un río. Actúan mediante programas informáticos complejos o no, que hacen el trabajo requerido.

 

De Huelva a Marte: el Río Tinto y sus cianobacterias sirven a la NASA para  preparar la exploración del planeta rojo

De Huelva a Marte: el Río Tinto y sus cianobacterias sirven a la NASA para preparar la exploración del planeta rojo.

El proyecto, llamado P-Tinto, pretende crear un robot autónomo e inteligente que se mueva por Marte con independencia, al tener el planeta para los científicos la dificultad de que las imágenes que llegan hasta la tierra tardan 20 minutos

… pusieron en marcha el proyecto P-tinto por el Centro de Astrobiología y el proyecto Snorkel por la NASA consistente en probar en dicho río varios robots sub-acuáticos que buscarían la presencia de vida … Aguas con un PH imposible que, sin embargo, contenía una rica diversidad de vida.

Las necesidades de la industria aeronáutica, poco a poco, han ido exigiendo sistemas de mayor precisión, capaces de tomar decisiones adecuadas en un entorno predefinido en función de las condiciones particulares de un momento dado. Estos ingenios, llamados de segunda generación, poseen instrumentos propios y programación informática dotada de medios de autocorrección frente a estímulos externos variables.

 

Clasificación y Evolución de los Robots en la Industria | ESingeniería Net

Los sensores utilizados por los sistemas robóticas de segunda generación son, con frecuencia, equipos de cámaras electrónicas digitales que convierten la imagen luminosa recibida desde el exterior en impulsos eléctricos que se comparan con patrones almacenados en un pequeño núcleo de memoria informática. Así mismo, disponen de instrumentos táctiles de alta sensibilidad y de detección de pesos y tensiones.

 

Robot 'Curiosity'

    Incluso en otros planetas a millones de distancia de la Tierra, realizan los trabajos programados

Los robots de tercera generación emplean avanzados métodos informáticos, los llamados sistemas de inteligencia artificial, y procedimientos de percepción multisensorial (estoy leyendo una maravillosa tesis doctoral de un ingeniero de materiales – hijo de un buen amigo – que es fascinante, y me está abriendo la mente a nuevos campos y nuevos conceptos en el ámbito de la inteligencia artificial. Su nombre es A. Mora Fernández, y tiene la suerte de ser, además, un físico teórico matemático, con lo cual, según lo que puedo deducir de su trabajo, le espera grandes empresas y mi deseo personal es que triunfe en ese complejo mundo de fascinantes perspectivas al que pertenece).

 

La IA como asistente cognitivo que no solo organiza y personaliza el  conocimiento, sino que también facilita la exploración de hipótesis, el  diseño de soluciones innovadoras y la gestión de grandes volúmenes

Estos ingenios de tercera generación adoptan algunas características del comportamiento humano al contar con la capacidad para percibir la realidad del entorno desde varias perspectivas y utilizar programas que rigen su propia actuación de modo inteligente. Conscientes de su situación espacial, los robots de tercera generación comprenden directamente el lenguaje humano y lo utilizan para comunicarse con las personas.

                     Los Androides del futuro. ¿Tendrán autonomía de pensamiento?

La ciencia robótica, basándose en avanzados principios de la electrónica y la mecánica, busca en la constitución y modo de funcionamiento del cuerpo y del cerebro humano los fundamentos con los que diseñar androides de posibilidades físicas e intelectivas semejantes a los del ser humano.

Nada de esto es ciencia ficción; es lo que hoy mismo ocurre en el campo de la robótica. Aún no podemos hablar de robots con cerebros positrónicos capaces de pensar por sí mismos y tomar decisiones que no le han sido implantados expresamente para responder a ciertas situaciones, pero todo llegará. Ya tienen velocidad, flexibilidad, precisión y número de grados de libertad. ¿Qué hasta donde llegarán? ¡Me da miedo pensar en ello!

 

Crean un espeluznante robot humanoide cuya cara está hecha de piel viva

  Pronto nos costará distinguirlos, ya han creado un Robots con aspecto humano

Mecánicamente, el robot ya supera al ser humano; hace la misma tarea, con la misma velocidad y precisión o más que aquél, y tiene la ventaja de que no se cansa, puede continuar indefinidamente desempeñando la tarea en lugares que para nosotros serían imposibles por sus condiciones extremas.

Menos mal que, de momento al menos, el cerebro del ser humano no puede ser superado por un robot, ¿pero será para siempre así? Creo que el hombre es un ser que, llevado por sus ambiciones, es capaz de cometer actos que van encaminados a lograr la propia destrucción y, en el campo de la robótica, si no se tiene un exquisito cuidado, podemos tener un buen ejemplo.

 

Yo, robot | Sueños de robot | Crítica reseña de FilaSiete

Antes de dotar a estas máquinas de autonomía de obrar y de pensar, debemos sopesar las consecuencias y evitar, por todos los medios, que un robot pueda disponer como un ser humano del libre albedrío, como artificial que es, siempre debe estar limitado y tener barreras infranqueables que le impidan acciones contrarias al bienestar de sus creadores o del entorno.

Es muy importante que los sistemas sensoriales de los robots estén supeditados a los límites y reglas requeridas por los sistemas de control diseñados, precisamente, para evitar problemas como los que antes mencionaba de robots tan avanzados y libre pensadores e inteligentes que, en un momento dado, puedan decidir suplantar a la Humanidad a la que, de seguir así, podrían llegar a superar.

Star Wars: los mejores droides de la saga - Star Wars

                      Esta simpática imagen ya ha sido superada

Pensemos en las ventajas que tendrían sobre los humanos una especie de robots tan inteligentes que ni sufrirían el paso del tiempo ni les afectaría estar en el vacío o espacio exterior, o podrían tranquilamente, al margen de las condiciones físicas y geológicas de un planeta, colonizarlo fácilmente, aunque no dispusiera de atmósfera, ya que ellos no la necesitarían y, sin embargo, podrían instalarse y explotar los recursos de cualquier mundo sin excepción. ¡Menuda ventaja nos llevarían! Además, lo mismo que nosotros nos reproducimos, los robots se fabricarán unos a otros.  Ni las famosas tres leyes de Asimos me tranquilizan… ¿Las recuerdan?

 

Isaac Asimov, vida y obra de un escritor imprescindible | CulturaYo, Robot (Nebulae)

  1. Un robot no hará daño a un ser humano o, por inacción, permitir que un ser humano sufra daño.
  2. Un robot debe obedecer las órdenes dadas por los seres humanos, excepto si estas órdenes entrasen en conflicto con la 1ª Ley.
  3. Un robot debe proteger su propia existencia en la medida en que esta protección no entre en conflicto con la 1ª o la 2ª Ley.

Pero, ¿Quién puede asegurar que con los complejos y sofisticados sensores y elementos tecnológicos avanzados con los que serán dotados los robots del futuro, éstos no pensarán y decidirán por su cuenta? ¡Creo que nadie está en situación de asegurar nada! La amenaza está ahí, en el futuro, y el evitarla sólo depende de nosotros, los creadores. ¡Es tanta nuestra ignorancia! No siempre hemos sabido cuando nos teníamos que parar, y, estamos hablando de crear una nueva especie con inteligencia que nos podría desbancar.

 

 

Ciertamente hemos imaginado mundos futuros en los que, no parece que las tres leyes de la robótica puedan preservar la integridad física de los humanos. Si los robots alcanzan ese nivel autónomo de pensamiento… Sería, ¡la rebelión de las máquinas! tantas veces vista en la ficción del cine.

¿Qué puede impedir que en el futuro los robots tengan conciencia de ser, o, incluso, sentimientos?

 

El futuro de la robótica: ¿los robots reemplazarán a los humanos en ciertos  trabajos?

Da un poco de miedo el pensar que los pongamos al cuido de nuestros mayores y de los niños.

https://youtu.be/3QUl2WnlNjc

“Investigadores españoles han realizado un estudio sobre el impacto que tendrán los robots en la sociedad del futuro. Los resultados son inquietantes: según sus descubrimientos para el año 2030 los robots serán tan “inteligentes” y su interacción con los humanos será tan grande que existirá un desequilibrio tecnológico enorme entre quienes posean o no una estas herramientas.”

Descubre las mejores ofertas de Amazon en ordenadores portátiles con hasta  un 40% de descuento

Será lo mismo que el que ahora dispone de Ordenador y móvil y el que no los utiliza.

Parece mentira que, alguna vez, lleguen a sentir… llorar o reír. El día que puedan tomar decisiones por sí mismos… ¡Mal futuro espera a la Humanidad!

 

Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo biológico está compuesto por una variedad de seres que, siendo iguales en su origen, son totalmente distintos en sus formas y en sus mentes, y, de la misma manera, al igual que en nuestro planeta Tierra, pasará en otros situados en regiones remotas del espacio. Y, pensando en nuestras vidas, podemos llegar a preguntarnos si todo ésto tiene algún sentido. ¿Para qué tanto esfuerzo y trabajo? ¿No será que estamos preparando el terreno para “seres” artificiales que, mejor dotados que nosotros para salir al espacio exterior, serán los que suplanten a la Humanidad y cumplan finalmente los sueños de ésta, que harán suyos?.

¡Qué lastima! Si ese fuera nuestro destino. ¡Fabricar a una especie artificial para que cumpliera nuestros deseos! Lo cierto es que, nosotros los humanos, no estamos físicamente preparados para viajar a las estrellas, y, de hacerlo, necesitaríamos dotarnos de tanta seguridad que, los costes, serían impensables. Naves como ciudades que nos transportaran muy lejos, y, pensando en que estamos supeditamos a la velocidad de la luz, estas naves-ciudades estarían preparadas para mantener a generaciones.

Stargate atlantis mobile wallpaper – @stargate-wallpapers on Tumblr

    Ciudades que surcan el hiperespacio y que se pueden situar en los fondos marinos

Nuestro futuro es muy incierto, y, como podemos ver cada día, estamos supeditados a los caprichos de la Naturaleza. Conceptualmente, la biología generalmente va a la saga de la física. Si bien es cierto que las ideas de Darwin sobre la evolución han desplazado la concesión trasnochada y, ¿por qué no?, anti-ilustrada de la creación espacial, pero es cierto que bien entrado el siglo XX, muchos biólogos todavía pensaban instintivamente que los seres humanos representaban la culminación de la evolución, y que nuestra especie no era simplemente el centro del desarrollo evolutivo sino, en realidad, su razón de ser. Y, tales pensamientos, nos pueden dar una idea muy clara del nivel de sabiduría del que podemos presumir.

 

Árbol de la vida (biología) - Wikipedia, la enciclopedia libre

Ahora sabemos que nuestra contribución al árbol genealógico de la vida es tan periférica y minúscula como la de la Tierra en el Universo. El árbol, tal como lo podemos ver hoy, es realmente frondoso. Desde que surgió la vida en la Tierra, probablemente haya producido cientos de miles de millones, quizás billones, de ramitas, donde cada ramita representa una especie, y Homo sapiens es sólo una más entre ellas. En pocas palabras, nuestra especie ha sido tan cabalmente “periferializada” por la biología como lo ha sido por la cosmología. Sólo somos una de las formas de vida que habita el Universo y, no es seguro que seamos la más inteligente.

 

       La vida pudo llegar del Espacio porque, por todo el Espacio están sembrados sus ingredientes

Una vez que hemos comprendido que no somos “los elegidos” y que, estamos en este Mundo, una infinitesimal fracción de una Galaxia de entre cientos de miles de millones de ellas, podemos ser conscientes de que, la humildad será nuestra mejor elección para no equivocarnos y llevarnos decepciones que, en otro caso, serían de consecuencias muy graves. Muchas pueden ser las criaturas que, habitantes de otros mundos, nos pueden superar en inteligencia y conocimientos y, seguramente por eso, porque en nuestro fuero interno algo nos dice que es así, nos estamos preparando para ese futuro que irremediablemente llegará, y, lo único que podemos hacer es crear réplicas de nosotros mismos que, aunque artificiales, puedan representarnos de alguna manera en ese futuro incierto.

 

               No podemos saber lo que vendrá. ¡Es tan grande el Universo!

Ese encuentro maravilloso que tantas veces hemos imaginado, es posible que no lo sea tanto. No podemos saber las criaturas que pueden estar presentes en otros mundos y con qué medios puedan contar. Siempre se me hizo cuesta arriba el hecho de que, algún día del futuro, los robots fabricados por nosotros, podrían adquirir la supremacía del planeta. Sin embargo, alguna vez he pensado también que, quizás, sea la única manera de poder hacer frente a lo que vendrá.

Hemos oído en no pocas ocasiones que la realidad supera a la imaginación, y, desde luego, simplemente con ver todo lo que existe en el Universo, podemos dar fe de tal afirmación. ¿Quién iba a pensar hace 150 años en la existencia de Agujeros Negros o Estrellas de Neutrones? Y, de la misma manera que aquí en la Tierra surgieron cientos de miles de especies y formas de vida a lo largo de su historia, ¿qué prohíbe que en otros mundos surgieran también especies de vida que ni podemos imaginar? ¿Y, la Naturaleza? En Japón hemos visto estos días de lo que es capaz y, desde luego nada puede ser descartado.

 

   Cualquier cosa puede ser posible, ¡es tan frágil la línea que nos separa del Caos!

Es cierto, nuestras limitaciones son enormes, enorme es también nuestra ignorancia y, si somos conscientes de ello, habremos dado un gran paso para hacer frente a lo que pueda venir. Al menos no nos cogerá desprevenido y, el suceso es menos doloroso cuando se espera.

Sí, es verdad, que a veces, confundimos la ilusión y la euforia del momento con la realidad. Sin embargo, nada más lejos de ser cierto. Vivimos en una falsa seguridad cotidiana que nos hace no pensar en lo que puede llegar: Un accidente, una enfermedad, un meteorito caído del cielo, un terremoto, o, incluso una estrella enana marrón que choque con la Luna y dé al traste con nuestra tranquila vida en este planeta.

 

 

El destino, ¡tiene tántas bifurcaciones! Parece un laberinto de espejos que lo hace incierto. ¿Cómo evolucionaremos? ¿Crearemos a nuestros destructores? Tenemos que ser conscientes de que no somos nada especiales, de que la vida prolifera en el Universo por infinidad de mundos, que no podemos tirar por la borda lo que tanto trabajo nos costó conquistar, y, antes de dar algún paso de consecuencias irreversibles… ¡Debemos contar hasta un millón, para que nos dé tiempo a recapacitad.

 

 

 

 

 

 

 

Pero lo cierto es que, ilusos y tranquilos -de otra manera sería horrible la vida-, seguimos avanzando y, a veces, creyéndonos más de lo que en realidad somos. No podemos negar nuestros éxitos, en estos últimos años hemos sido capaces de determinar los genes responsables de las más variadas manifestaciones de nuestra existencia: susceptibilidad a la obesidad, diferentes tipos de tumores, esquizofrenia, depresión o la mayor o menor capacidad para danza y ritmo. Y, con sorpresa para algunos, se ha podido saber que nuestra secuencia genética sólo difiere un 0’5% de nuestros parientes cercanos neandertales o que tampoco estamos muy lejos, genéticamente hablando, de algunos equinodermos que divergieron de nuestra rama evolutiva hace ahora 500 millones de años. Siendo eso así (que lo es), habrá que ser más humildes y jugar a ser dioses.

 

Cassini – Huygens 20 Year Mission of Discovery – JohnShepler.com

También, al mismo tiempo, hemos construido ingenios que enviados a otros mundos, situados a millones de kilómetros del nuestro, nos mandan imágenes que podemos contemplar tranquilamente sentados en el salón de nuestras casas. Y, paralelamente, se trabaja en cerebros artificiales espintrónicos y, más adelante, positrónicos que ocuparan cuerpos perfectos de robots que, aunque artificiales, algún día llegarán a pensar y sentir. ¿Serán nuestros sucesores? ¿Serán los que finalmente realizarán nuestros sueños de viajar a las estrellas?

Sin embargo, y a pesar de tantas proezas, si en algo sigue la ciencia gateando en la oscuridad, es precisamente en el total desconocimiento de la parte más compleja y delicada de nuestro cuerpo: ¡el Cerebro! ¡Si tuviéramos tiempo!

Emilio Silvera Vázquez

Desde la materia “inerte”… ¡Hasta los pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Reflecting Water gif- Reflecion de agua con efectosLa intuicion3.781 Sinapsis Stock Photos, High-Res Pictures, and Images ...

                 Agua, luz y calor, sustancia cósmica… ¡El surgir de la vida!

 

Materia Inerte - Concepto, características y ejemplos

                        Pero no está muerto lo que duerme eternamente

¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros, puedan pensar? Que cosa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno, muchos miles de Millones de años más tardes, en mundos perdidos en sistemas planetarios como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia formas de vida superiores?

 

El ser humano y su relación con los Organismos superiores. by Luis  Carachuri on Prezi11 LA CLASIFICACIÓN DE LOS ORGANISMOS1.2. Niveles de integración de la materia viva

 

“La generación de una nueva especie a partir de una especie anterior es un proceso que necesita centenares de miles de años de evolución. Desde una perspectiva evolutiva se piensa que la biodiversidad es la respuesta de los seres vivos, mediante la evolución adaptativa de las especies, a la multitud de ambientes que han ido apareciendo a lo largo de la historia de la vida en la Tierra. Cada especie tiene una serie de características, muchas veces únicas, que los humanos, en ocasiones, hemos sabido aprovechar para nuestra alimentación o para curar nuestras enfermedades. Por todo ello vale la pena mantener amplios espacios naturales dónde puedan continuar viviendo todas las especies.”

 

 

        Los sentidos: las herramientas que utiliza el cerebro para estar comunicado con el exterior

La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.

 

Así construye el cerebro nuestra percepción del mundo exterior, según la  ciencia

 

El cerebro humano ¿es especial?,  su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la Naturaleza.

Alexia de la Morena | ¿Cómo captar al consumidor a través de los Sentidos?

 

Nuestro cerebro adulto, con poco más de 1.300 gr de peso, contiene unos ochenta y seis mil mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tendremos que habérnoslas con cifras hiper-astronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!

 

El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.

 

 

Con tan enorme cantidad de circuitos neuronales, ¿Cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento? Algunas veces hemos oido comentar: “Sólo utilizamos un diez por ciento del cerebro…” En realidad, la frase no indica la realidad, se refiere al hecho de que, aunque utilizamos el cerebro en su totalidad, se estima que está al diez por ciento de su capacidad real que, será una realidad a medida que evolucione y, en el futuro, esa capacidad de hoy será un 90 por ciento mayor.

 

http://upload.wikimedia.org/wikipedia/commons/thumb/8/82/DTI-sagittal-fibers.jpg/544px-DTI-sagittal-fibers.jpg

Aún no conocemos bien la direccionalidad de los circuitos neuronales

El límite de lo que podremos conseguir tiene un horizonte muy lejano. Y, llega un momento en el cual, se puede llegar a pensar que no existen limites en lo que podemos conseguir: Desde hablar sin palabras sonoras a la auto-transportación. Si -como pienso- somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.

Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!

 

El juego de las diferencias: ¿Universo o cerebro?

   ¿Quién podría decir, si no se les explicara, que son “universos diferentes”

La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas que, sin embargo y en sentido figurado,  podríamos decir que son tan grandes como el universo mismo.

Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso pueda llegar a ocurrir, aún falta mucho tiempo. Sin embargo, si el Universo no lo impide y nuestro transcurrir continúa, todo lo que podamos imaginar… podrá ser posible. Incluso imposibilidades físicas de hoy, dejarán de existir mañana y, ¡la Mente! posiblemente (al igual que hoy ordena a las distintas partes del cuerpo que realice esta o aquella función), se encargará de que todo funcione bien, erradicará cualquier enfermedad que nos pueda atacar y, tendrá el conjunto del “sistema” en perfectas condiciones de salud, lo cual me lleva a pensar que, para cuando eso llegue, los médicos serán un recuerdo del pasado.

 

1.100+ Galaxy Mente Fotografías de stock, fotos e imágenes libres de  derechos - iStock

Es curioso y sorprendente la evolución alcanzada por la Mente Humana. El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales que aún no hemos podido llegar a comprender y, ni que sabemos que puedan existir.

Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, o, Ramanujans… que, con sus nuevas ideas transformarán el pensamiento matemático para hacer posible que podamos, al fin, comprender lo que realmente somos.

 

http://2.bp.blogspot.com/_gcNb8BU50Hw/TStpK0vZ7kI/AAAAAAAALNE/lKkSQu1F8Yw/s1600/inteligencia%2Bartificial.jpg

Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.

Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando te acción – y de la luz (c) – la relatividad -.

 

Las primeras estrellas del Universo – Instituto Argentino de Radioastronomía

       Las primeras proto-estrellas, grandes grumos e gas y polvo

Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Sin embargo, eso ocurre por algo, el ritmo del Universo considerado como Naturaleza, podríamos decir que es “sabio” y, si actúa de esa manera…Por algo será. Deja que de vez en cuando, sobresalgan algunas mentes y se eleven por encima del común, de ejemplos tenemnos la historia llena. Esos “saltos” de la conciencia son los tiempos que marca el Universo para que, poco a poco, se produzca nuestra evolución, es la única forma de que todo se haga de manera correcta y de que, los nuevos pensamientos se vayan asentando debidamente en las Mentes futuras. Pongamos un ejemplo: Poincaré expuso su conjetura y, más de un siglo después, Perelman la resolvió. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan. El conocimiento humano avanza al ritmo que le impone la Naturaleza.

 

[dark-matter-625x450.jpg]

 

¡Son tantos los secretos que nos quedan por desvelar! la Naturaleza es la portadora de todas las respuestas…Observémosla con atención y, aprendamos de ella y, de ser posible, procuremos no molestarla, “Ella” nos permite estar aquí para que evolucionemos y, algún día, cuando seamos mayores…quizás nos deje formar parte de algo más…¿mental?

 

Por qué es cada vez más difícil resolver el rompecabezas de la evolución  humana

                                Visto así…. ¡No parece que seamos gran cosa!

No, no será nada fácil imitar a la Naturaleza…¡Esa perfección! Sin embargo, llegados a ese punto, debemos pensar que nosotros también formamos parte de ella, la parte que piensa y, si es así, ¿Qué cometido tendremos asignado en este Universo? Esa es la pregunta que ninguno de los grandes pensadores de la Historia, han podido contestar.

Pensar, por ejemplo, en las complejas matemáticas topológicas requeridas por la teoría de supercuerdas puede producir incomodidad en muchas personas que, aún siendo físicos, no están tan capacitados como para entender tan profundas ideas (me incluyo).

Bernhard Riemann introdujo muchas nuevas ideas y fue uno de los más grandes matemáticos. En su corta vida (1.826 – 1.866) propuso innumerables propuestas matemáticas que cambiaron profundamente el curso del pensamiento de los números en el planeta Tierra, como el que subyace en la teoría relativista en su versión general de la gravedad, entre otras muchas (superficie de Riemann, etc.). Riemann les enseñó a todos a considerar las cosas de un modo diferente.

 

Superficie de Riemann - Wikipedia, la enciclopedia libreSuperficie de Riemann correspondiente a la transformación w = s 1/3 |  Download Scientific Diagram

 La geometría de las espacios curvos. Superficie de Riemann que aparece al extender el dominio de la función f (z) = \sqrt(z).

La superficie de Riemann asociada a la función holomorfa “tiene su propia opinión” y decide por sí misma cuál debería ser el, o mejor, su dominio, con independencia de la región del plano complejo que nosotros podamos haberle asignado inicialmente.

Podríamos encontrar otros muchos tipos de superficies de Riemann.

Algunas superficies de Riemann

Este bello concepto desempeña un papel importante en algunos de los intentos modernos de encontrar una nueva base para la física matemática (muy especialmente en la teoría de cuerdas), y al final, seguramente se descubrirá el mensaje que encierra.

El caso de las superficies de Riemann es fascinante, aunque desgraciadamente sólo es para iniciados. Proporcionaron los primeros ejemplos de la noción general de variedad, que es un espacio que puede pensarse “curvado” de diversas maneras, pero que localmente (por ejemplo, en un entorno pequeño de cualquiera de sus puntos), parece un fragmento de espacio euclídeo ordinario.

 

Stereographic projection in 3D.png fig.1: Proyección estereográfica del plano complejo extendido sobre la “esfera de Riemann”.
RiemannKugel.jpg fig.2: La “esfera de Riemann” puede ser visualizada como el plano complejo envuelto alrededor de una esfera.

En matemática, la esfera de Riemann (o plano complejo extendido), llamado en honor al matemático del siglo XIX del mismo nombre, es una esfera obtenida del plano complejo mediante la adición de un punto del infinito. La esfera es la representación geométrica de los números complejos extendidos \mathbb{C} \cup \{\infty\}, (véase fig.1 y fig.2), la cual consiste en los números complejos ordinarios en conjunción con el símbolo \infty\! para representar el infinito.

La esfera de Riemann, superficie de Riemann compacta, el teorema de la aplicación de Riemann, las superficies de Riemann y aplicaciones complejas… He tratado de exponer en unas líneas la enorme importancia de este personaje para las matemáticas en general y la geometría y para la física en particular. Es uno de esos casos a los que antes me refería. Después de él, la Humanidad ha tenido un parón en el desarrollo de las ideas hasta que asimilaron las suyas y, después, llegó Einstein y otros que supieron aplicarlas. Einstein, sin el Tensor métrico de Riemann, nunc habría podido finalizar su Teoría de la Relatividad General.

 

Explorando la forma del espacio-tiempoAsí se curva el espacio | Café y teoremas | Ciencia | EL PAÍS

             La Geometría de Riemann de los espacios curvos que Einstein aprovechó

Tenemos que convenir que todo, sin excepción, es relativo y resulta ya evidente la gran crisis de la noción de realidad “veritas” que el mundo padece, la ciencia BASE, la matemática, sufrió el varapalo a partir de la matemática topológica de Poincaré, y el desarrollo sorpresivo de la matemática del caos; de pronto el idealismo de la ecuación diferencial queda derribado : el mundo que funciona como un reloj de Tolomeo queda finiquitado; ¿donde puñetas está la materia perdida?; de pronto nuestras consciencias “comprenden” que la “verdad” no existe, es decir, que no existe nuestra realidad del mundo.

Y, mientras tanto, nuestras mentes siguen su camino, siempre queriendo ir más allá y siempre profundizando en los secretos de la Naturaleza de lo que tenemos muchos ejemplos, tales como nuestras consideraciones sobre los dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.

Velocidad de la luz GIF - Encontrar en GIFER

Todo es finito, es decir, que tiene un fin, y la velocidad de la luz no podía ser una excepción

Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco (otro ejemplo de la evolución que, con el tiempo, se produce en nuestras mentes). Él no tenía forma alguna de anticipar la extraordinaria velocidad de la luz.

Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida y, si consideramos que esa fuerza que hace posible la unión de la materia reside en el corazón de los átomos (en sus núcleos), podemos hacernos una clara idea de lo ilimitado que puede ser el pensamiento humano que, ya en aquellos tiempos -en realidad mucho anters- pudo llegar a intuir las fuerzas que están presentes en nuestro Universo.

 

Interacción nuclear fuerte - Didactalia: material educativo

Los Quarks están confinados dentro de los nucleones (protones y neutrones)

En los núcleos atómicos reside la fuerza (nuclear fuerte) que hace posible la existencia de la materia que comienza por los átomos que, al juntarse y formar células, hace posible que éstas se junten y formen moléculas que a su vez, se reunen para formar sustancias y cuerpos.

Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.

Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.

 

El campo magnético de la Tierra explicado en espectaculares ...

El escudo magnético de la tierra nos defiende de los campos magnéticos del Sol

El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo.

Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que en unidades ordinarias es aproximadamente 3 × 108 metros por segundo. Maxwell, guiado por los experimentos de Faraday, hizo posible un hecho que cambió la historia de la humanidad para siempre. Un hecho de la misma importancia que el descubrimiento del fuego, la rueda o los metales. El matemático y poeta escocés unificó los campos eléctrico y magnético a través de unas pocas ecuaciones que describen como estos campos se entretejen y actúan sobre la materia.

 

Por qué las leyes de Maxwell no se pueden aplicar en la empresa?

 

Claro que, estos importantísimos avances han sido simples escalones de la “infinita” escalera que tenemos que subir y, la misma relatividad de Einstein no ha sido (después de un siglo) aún comprendido en su plenitud y muchos de sus mensajes están escondidos en lo más profundo de nuestras mentes que, ha sabido parcialmente descubrir el mensaje de Einstein pero, seguimos buscando.

Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.

 

 

Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!

Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede hacerse compatible con la constancia de una velocidad finita de la luz.

 

Velocidad de la luz - Wikipedia, la enciclopedia libre

 

¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.

¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.

 

Año luz - Concepto, ejemplos de distancias y otras unidades

 

La velocidad de la luz en el vacío es una constante de la Naturaleza y, cuando cientos de miles de millones de millones salen disparados de esta galaxia hacia el vacío espacial, su velocidad de 299.792.450 metros por segundo, es constante independientemente de la fuente que pueda emitir los fotones y de si ésta está en reposo o en movimiento.

Así que, la antigua imagen de la naturaleza de la luz entró en conflicto a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.

 

Las ondas luminosas como las sonoras, actúan de una u otra manera dependiendo del medio en el que se propagan.

En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas.

El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio de relatividad.

 

Representación del punto en sistema diédrico. Posiciones en el espacio

 

Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir grupos de todos los diferentes rayos de luz que pasan a ser familias de íneas de universo.

 

Por qué la velocidad de la luz es constante? La relatividad de Einstein y la  naturaleza increíble de los fotones

                                  La maravilla de los cuantos llamados fotones

Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.

 

http://1.bp.blogspot.com/_izXgyZyERt8/TD5SSEgSC_I/AAAAAAAAAKs/Yz8_ncHGpzI/s1600/5_4gw_mente.jpg

El Universo está dentro de nuestras Mentes

¡La Mente! Qué caminos puede recorrer y, sobre todo ¿Quién la guía? Comencé este trabajo con la imagen del ojo humano y hablando de los sentidos y de la consciencia y mira donde he finalizado…Sí, nos falta mucho camino por recorrer para llegar a desvelar los misterios de la Mente que, en realidad, es la muestra más alta que el Universo nos puede mostrar de lo que puede surgir a partir de la sencillez de los átomos de hidrógeno que, evolucionados, primero en las entrañas de las estrellas y después en los circuitos de nuestras mentes, llega hasta los pensamientos y la imaginación que…son palabras mayores de cuyo alcance, aún no tenemos una idea que realmente refleje su realidad.

 

Estrellas, que son y como evolucionan. – Astro Gredos

Todo en nuestro universo ambia, comienza siendo una cosa y finaliza siendo otra

Pero, ¿existe alguna realidad?, o, por el contrario todo es siempre cambiante y lo que hoy es mañana no existirá, si “realmente” es así, ocurre igual que con el tiempo. La evolución es algo que camina siempre hacia adelante, es inexorable, nunca se para y, aunque como el tiempo pueda ralentizarse, finalmente sigue su camino hacia esos lugares que ahora, sólo podemos imaginar y que, seguramente, nuestros pensamientos no puedan (por falta de conocimientos) plasmar en lo que será esa realidad futura.

Emilio Silvera Vázquez

La masa del universo, la inflación, el tamaño…

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Encuentran la «masa perdida» del Universo

                                      UNIVERSIDAD DE MONASH
La Dra. Jasmina Lazendic-Galloway, Amelia Fraser-McKelvie y el Dr. Kevin Pimbblet. En mayo de 2.011, pudimos ller la noticia:

“Un estudiante de la Universidad Monash de Melbourne ha resuelto un problema que ha desconcertado a los astrofísicos durante décadas, el descubrimiento de parte de la llamada «masa perdida» del Universo.

El descubrimiento, publicado en la revista Monthly Notices de la Royal Astronomical Society, ha sido liderado por Amelia Fraser-McKelvie, de 22 años y becaria en la Escuela de Física de la facultad, que en una investigación con rayos X ha conseguido identificar en tres meses la conocida como «missing mass»”.

   Particularmente no creo que estemos preparados para encontrar -si es que existe- esa “masa perdida”

La idea de la masa perdida se introdujo porque la densidad observada de la materiaen el universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no hubo razón teórica firme para suponer que el universo tenía efectivamente la masa perdida. En 1981, Alan Guth -del que ya hablamos aquí-, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado.

Para lo que aquí tratamos, el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente su valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang.

 

Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido representa una especie de S que nos habla del pasado y del futuro.

Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en cuenta es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.

 

¿por qué el hielo flota sobre el agua?

Las moléculas de agua se separan y flota

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanza la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería sert demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

 

 

Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060  longitudes de Planck. Acordáos de aquellos números que en aquel trabajo que titulé,  ¿Es viejo el Universo?, os dejaba aquí expuestos unos datos interesantes sobre nuestro universo. Volvamos a verlos:

 

 

Vista desde un planeta sin vida al espacio y los planetas ia generativa |  Foto Premium

La edad actual del universo visible ≈ 1060 tiempos de Planck

 

El telescopio espacial 'Planck' envía su primera foto del universo | Público

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

 

La masa del universo, la inflación, el tamaño… : Blog de Emilio Silvera V.

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

 

El universo observable |

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

 

El Universo según Planck - Eureka

Temperatura actual del Universo visible ≈ 10-30 de la Planck

 

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación  consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría cabida en el Universo, el átomo sería mayor.

 

Universo observable - Wikipedia, la enciclopedia libre

Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pués, que el nombre inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó desde la línea de partida que señalan los 10-35 segundos hasta aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!

 

Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto material vciajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordaos de la masa de pan que crece llevando las pasas como adorno-, y, ahora, esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.

Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.

Las consecuencias del período de rápida  expansión se puede describir mejor con referencia a la visión einsteniana de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de materia. A causa de esa materia, el espacio-tiempo tendrá alguna forma característica.

Se dice que el espacio está arrugado y, conforme a la expansión, el universo será plano independientemente de la forma en que pudiera empezar encogido y arrugado para después expandirse y hacerse cada vez más plano, grande, de menor densidad y frío. La lisura no es ningún accidente, es la consecuencia necesaria de la física de la congelación que tuvo lugar en el segundo 10-35.

 

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo.  El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo.  El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

Esa es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada.  A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes,  durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica.  Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

 

Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar hasta las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.

A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar proto-galaxias.

 

Un cuásar que expele plasma ilustra el origen de las primeras galaxias

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro brilla un quásar blanco-azulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos ahora.   El Universo es aún altamente radiactivo.  Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.

 

File:Supercúmulo de Virgo.jpg

El Supercúmulo de Virgo, o Supercúmulo Local, es el supercúmulo de galaxias que contiene al Grupo Local y con él, a nuestra galaxia, la Vía Láctea. Tiene la forma de un disco plano, con un diámetro de 200 millones de años luz. El supercúmulo contiene alrededor de 100 grupos y cúmulos de galaxias, y está dominado por el cúmulo de Virgo, localizado cerca de su centro. El Grupo Local está localizado cerca del borde del cúmulo de Virgo, al cual es atraído.

Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años.   El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como para permitir que partículas ligeras –los fotones– atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.

(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por  la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia.  Los electrones, aliviados del constante acoso de los fotones, son ahora libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.

 

El James Webb ha descubierto la galaxia más antigua nunca vista: como una  cosa tan pequeña puede brillar tanto

Poco a poco, el Universo evolucionó y continuó expandiéndose mientras se formaban nuevas galaxias

Disponiendo de átomos, la química puede avanzar, para conducir, mucho tiempo después, a la formación de alcohol y formaldehído en las nubes interestelares y la construcción de moléculas bióticas en los océanos de la Tierra primitiva. La temperatura ambiente del Universo se eleva rápidamente cuanto más marchamos hacia atrás en el tiempo, a los cinco minutos del big bang es de 1.000 millones de grados kelvin.

Por elevada que se esta energía, a la edad de cinco minutos el Universo ya se ha enfriado lo suficiente para que los nucleones permanezcan unidos y formen núcleos atómicos.  Podríamos haber comptemplado a protones y neutrones unirse para formar núcleos de deuterio (una forma de hidrógeno), y a los núcleos de deuterio aparearse para formar núcleos de helio (dos protones y  dos neutrones). De esta manera, un cuarto de toda la materia del Universo se combina en núcleos de helio, junto con rastros de deuterio, helio-3 (dos protones y un neutrón) y litio.   Todo el  proceso, se cree que termina en tres minutos y veinte  segundos.

 

Un universo de Ciencia Ficción: 1966-VIAJE ALUCINANTE - Richard Fleischer

Si pudiéramos montarnos en una nave y recorrer todo el proceso desde el comienzo tiempo… ¡sería alucinante!

Asomarse a la historia del universo puede ser un viaje alucinante que nos cuente cómo pudieron pasar las cosas para que ahora, el Universo sea tal como lo podemos contemplar y, para que eso haya sido posible, mucha imaginación hemos tenido que emplear para poder inventar artilugios y generar ideas que, inspiradas en la observación y el experimento, nos llevaron a saber…¡lo poco que sabemos!

Emilio Silvera Vázquez

La masa del universo, la inflación, el tamaño…II

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            No es que el Universo sea más de lo que imaginas… ¡Es más de lo que nunca podremos imaginar!

¡El Universo! Que trataba de explicar en la parte I de este trabajo, en el que, sin quererlo, me remonté a aquellos primeros momentos, cuando nacieron el espacio y el tiempo y se fraguó, la materia misma que podemos ver y de la que todo está hecho, desde el objeto más diminuto hasta la más inmensa galaxia.

 

Descubren por qué el tiempo en el universo primitivo transcurría en cámara  lenta - Infobae

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  se supone que no había núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de nuevo rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es extremadamente denso (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, ahora pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor parte  de la materia como si no existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo de cada uno de ustedes en el tiempo que os lleve leer esta página.  Y en el tiempo en que hayan leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

De esa manera, oleadas de neutrinos liberados en un segundo después del Big Bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

 

Un equipo internacional de científicos del experimento MINOS en el laboratorio del Acelerador Nacional Fermi (Fermilab) ha anunciado la medición más precisa del mundo hasta la fecha de los parámetros que rigen las oscilaciones antineutrino (de atrás y hacia adelante), es decir las transformaciones de antineutrinos de un tipo a otro y sus masas.

Si los neutrinos “cósmicos” -como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas- pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo. A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

 

Cómo nace una estrella | National Geographic

El Universo, el Tiempo y la Entropía… ¡Nacieron juntos. Millones de años más tarde, nacieron las primeras estrellas

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el trabajo de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark.  Esta asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior. Nada hemos podido saber de lo que pasó antes del Tiempo de Planck.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo. La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  Ahora hay bastante energía ambiente para permitir la creación y el mantenimiento de gran número de bosones w y z.

 

http://francisthemulenews.files.wordpress.com/2012/05/dibujo20120501-fermilab-batavia-chicago-eeuu.jpg?w=580&h=331

Debajo de este bonito conjunto que es el CERN, está el famoso acelerador LHC que intenta llegar a ese pasado que aquí estamos descubriendo ahora. Aquellos primeros momentos, cuando el Tiempo y el espacio hicieron su aparición para dar cobijo a la materia.

 

Bosones W y Z - Wikipedia, la enciclopedia libreBosones W y Z - Wikipedia, la enciclopedia libre

Así que estas partículas, los bosones w± y z °–las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, es posible que en el futuro, sea la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

 

El universo primitivo, en una espectacular imagen en 3D

 

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las condiciones cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

Aún no había Carbono que se produciría mucho más tarde, en las estrellas, mediante el proceso triple alfa. El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión solo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio (abajo gráfico).

Proceso triple-alfa - Wikipedia, la enciclopedia libre

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interaccionan y producían calor y formaron las primeras estrellas.

 

 

13050104fuerzasuniverso

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 13.700 y 15.000 millones de años, cuando la perfecta simetría -que se pensaba, caracterizó el Universo-, se hizo añicos para dar lugar a las simetrías rotas que hallamos a nuestro alrededor y que nos trajo las fuerzas y constantes Universales que,  paradójicamente, hicieron posible nuestra aparición para que ahora, sea posible que, alguien como yo esté contando lo que pasó.

 

La era de Planck : Blog de Emilio Silvera V.

La era de Planck

Realmente, carecemos de una teoría que nos explique lo que pasó en aquellos primeros momentos y, hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo niño.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada. Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

Emilio Silvera Vázquez