Mar
14
El mundo que nos rodea
por Emilio Silvera ~
Clasificado en El Universo misterioso ~
Comments (1)
No siempre sabemos ver el mundo que nos rodea. El que miremos no significa que estemos viendo lo que realmente hay delante de nuestros ojos y, muchas veces, no son los ojos los únicos que pueden “ver” lo que hay más allá de lo que la vista puede alcanzar. Anoche, hasta una hora avanzada, estuve releyendo el Libro “Así de Simple” de John Gribbin, y, pareciéndome interesante os saqué un pequeño resumen del comienzo. Aquí os lo dejo.
El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.
La puesta de sol
Desde la época de Galileo (más o menos, a comienzos del siglo XVII) la ciencia ha hecho progresos –enormes-, ignorando en gran medida estas complejidades y centrándose en cuestiones sencillas, intentando explicar por qué las manzanas caen al suelo y por qué el Sol se levanta por el este. Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.
Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética.
¿Cómo se comportan los átomos según sus elementos? Los protones y electrones se atraen por la interacción electromagnética, mientras que los protones y neutrones se atraen entre sí por la fuerza nuclear, fuerza exclusiva de las partículas que componen el núcleo del átomo.
No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo. Las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que existe en el universo. La razón es que, a escalas más reducidas, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos.
Pero este proceso no puede continuar indefinidamente, ya que, si se unen cada vez más átomos, su masa total aumenta hasta tal punto que la Gravedad aplasta toda la estructura importante y la aniquila. Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que un ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla. Esta es la razón por la cual la ciencia puede decirnos más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas o los planetas que sobre el modo en que las personas nos comportamos.
Funciones de onda del átomo de Hidrógeno.
Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos interiores y exteriores, de las ráfagas de partículas que en sus épocas activas, nos envía continuamente hacía la superficie del planeta y, que no sólo provoca esas bonitas Auroras, sino que, su intensa radiación y magnetismo incide en todos los artilugios que tenemos para leer los datos de… ¡tantas cosas!
Cuando los problemas sencillos se rindieron ante el empuje de la investigación, fue algo natural que los científicos abordaran rompecabezas más complicados que iban asociados con sistemas complejos, para que por fin fuera posible comenzar a comprender el funcionamiento del mundo a una escala más humana compleja y, para ello, hubo que esperar hasta la década de 1960, que fue cuando aparecieron los poderosos y rápidos (para lo que se estilaba en aquella época) ordenadores electrónicos.
Estos nuevos inventos empezaron a ser conocidos por un público más amplio entre mediados y finales de la década de 1980, primero con la publicación del libro, ahora convertido en un clásico, Order out of Chaos, de Ilya Prigogine e Isabelle Stergers, y luego, con Chaos, de James Gleick.
Las personas sencillas que, aunque tengan una educación aceptable, no están inmersas en el ámbito de la ciencia, cuando oyen hablar de Complejidad y Caos en esas áreas, sienten, de primeras, una especie de rechazo por aquello que (ellos creen) no van a comprender. Sin embargo, la cuestión no es tan difícil como a primera vista pudiera parecer, todo consiste en tener la posibilidad de que alguien, de manera “sencilla” (dentro de lo posible), nos explique las cosas dejando a un lado las matemáticas que, aunque describen de manera más amplia y pura aquellos conceptos que tratamos, también es verdad que, no siempre, están al alcance de todos. Un conocimiento básico de las cosas más complicadas, es posible.
También la relatividad general y la mecánica cuántica, se consideraron, cuando eran nuevas, como unas ideas demasiado difíciles para que cualquiera las entendiera, salvo los expertos –pero ambas se basan en conceptos sencillos que son inteligibles para cualquier persona lega en la materia, siempre que esté dispuesta a aceptar su parte matemática con los ojos cerrados-. E la misma manera, el Caos y la Complejidad, también pueden ser entendidos y, si tenemos la suerte de tener un buen interlocutor que nos sepa explicar, aquellos conceptos básicos sobre los que se asientan tanto el Caos como la Complejidad, veremos maravillados como, de manera natural, la luz se hace en nosotros y podemos entender lo que antes nos parecía inalcanzable.
La Nebulosa de Orión
Salta a cualquier parte del artículo
Se cree que las galaxias se han formado por la acumulación gravitacional de gas, algún tiempo después de la época de la recombinación. Las nubes de gas podrían haber comenzado a formar estrellas, quizás como resultado de las colisiones mutuas. El tipo de galaxia generado podría depender del ritmo al que el gas era transformado en estrellas, formándose las elípticas cuando el gas se convertía rápidamente en estrellas, y las espirales si la transformación de estrellas era lo suficientemente lenta como para permitir crecer de forma significativa un disco de gas.
Nubes moleculares en Orión que son los materiales primigenios para complejidades futuras
Las galaxias evolucionan al convertir progresivamente su gas remanente en estrellas, si bien no existe probablemente una evolución entre las diferentes tipos de la clasificación del conocido sistema de Hubble. No obstante, algunas galaxias elípticas pudieron haberse creado por la colisión y posterior fusión de dos galaxias espirales.
NGC 5426 y NGC 5427 son dos galaxias espirales de tamaños similares involucradas en una danza espectacular. No es seguro que esta interacción culmine en una colisión y a la larga en la fusión de las dos galaxias, aunque éstas ya han sido ya afectadas. Conocidas ambas con el nombre de Arp 271, su danza perdurará por decenas de millones de años, creando nuevas estrellas como resultado de la mutua atracción gravitacional entre las galaxias, un tirón observable en el borde de las estrellas que ya conectan a ambas. Ubicada a 90 millones de años-luz de distancia hacia la constelación de Virgo (la Virgen), el par Arp 271 tiene unos 130.000 años-luz de extensión. Fue descubierta originalmente en 1785 por William Herschel. Muy posiblemente nuestra Vía Láctea sufrirá una colisión similar en unos cinco mil millones de años más con la galaxia vecina Andrómeda, que ahora está ubicada a cerca de 2,6 millones de años-luz de la Vía Láctea.
Arp 271: Sí mirando las imagines nos da la sensación de cierto Caos y Complejidad
Tenemos que entender que, algunos sistemas (“sistema” no es más que una palabra de la jerga científica para asignar cualquier cosa, como un péndulo que oscila, o el sistema solar, o el agua que gotea de un grifo) son muy sensibles a sus condiciones de partida, de tal modo que una diferencia mínima en el “impulso” inicial que les damos ocasiona una gran diferencia en cómo van a acabar, y existe una retroalimentación, de manera que lo que un sistema hace afecta a su propio comportamiento. Así, a primera vista, parece que la guía es sencilla y, nos puede parecer mentira que así sea. Sin embargo, esa es la premisa que debemos tener en cuenta. Nos podríamos preguntar: ¿Es realmente verdad, que todo este asunto del Caos y de la Complejidad se basaba en dos ideas sencillas –la sensibilidad de un sistema a sus condiciones de partida, y la retroalimentación-¿ La respuesta es que sí.
La mayor parte de los objetos que pueden verse en el cielo nocturno son estrellas, unos pocos centenares son visibles a simple vista. Una estrella es una bola caliente principalmente compuesta por hidrógeno gaseoso. El Sol es un ejemplo de una estrella típica y común. La gravedad impide que el gas se evapore en el espacio y la presión, debida a la alta temperatura de la estrella, y la densidad impiden que la bola encoja. En el corazón de la estrella, la temperatura y la densidad son lo suficientemente altas para sustentar a las reacciones de fusión nuclear, y la energía, producida por estas reacciones, hace su camino a la superficie y la irradia al espacio en forma de calor y luz. Cuando se agota el combustible de las reacciones de fusión, la estructura de la estrella cambia. El proceso de producir elementos, cada vez más pesados, a partir de los más livianos y de ajustar la estructura interna para balancear gravedad y presión, es llamado evolución estelar.
Observar una estrella a través del telescopio permite conocer muchas de sus importantes propiedades. El color de una estrella es un indicador de su temperatura y ésta, a su vez, depende de una combinación entre la masa de la estrella y su fase evolutiva. Usualmente, las observaciones también permiten encontrar la luminosidad de la estrella o la tasa con la cual ella irradia energía, en forma de calor y luz.
Todas las estrellas visibles a simple vista forman parte de nuestra galaxia, la Vía Láctea. La Vía Láctea es un sistema compuesto por unos cien mil millones de estrellas, junto con una considerable cantidad de material interestelar. La galaxia tiene forma de un disco chato sumergido en un halo débil y esférico. La gravedad impide que las estrellas se escapen y, sus movimientos, hacen que el sistema no colapse. La Vía Láctea no posee un límite definido, la distribución de las estrellas decrece gradualmente con distancias crecientes del centro. El SDSS detecta estrellas más de un millón de veces más débiles que las que podemos ver a simple vista, lo suficientemente lejos para ver la estructura de la Vía Láctea.
De algún modo, esto es como decir que “todo lo que hay” sobre la teoría especial de la relatividad es que la velocidad de la luz es la misma para todos los observadores. Sin embargo, la complejidad de la estructura que se levanta sobre este hecho sencillo resulta asombrosa y requiere algunos conocimientos matemáticos para poder apreciarla plenamente. Claro que, eso no quita para que, un buen comunicador le pueda transmitir a otras personas mediante explicaciones sencillas lo esencial de la relatividad especial y general y también, sobre la esencia de la mecánica cuántica, y, de la misma manera, podríamos hablar del Caos y de la Complejidad. Debemos ser conscientes de que, el Caos, puede surgir a partir del Orden y que, la Complejidad, siempre llega a través de la sencillez de un comienzo. Podemos estar al borde del Caos y, de manera milagrosa ver que, también a partir de él surge la normalidad y lo nuevo que, no en pocas ocasiones pueden ser nuevas formas de vida. De la misma manera, las transformaciones de los elementos sencillos, bajo ciertas condiciones, llegan a adquirir una complejidad inusitada que, de alguna manera, es necesaria para que, en este mundo que nos rodea, existan seres que, como nosotros, sean el ejemplo más real y de más alto nivel que está presente en el Universo. Y, de la misma manera que nosotros estamos aquí, en un minúsculo sistema solar habitando un pequeño planeta que reúne todas las condiciones necesarias para la vida, de la misma forma digo, estarán poblados otros muchos planetas de otros muchos sistemas solares repartidos por nuestra Galaxia y por las otras que, a cientos de miles pululan por el Universo, y, todos esos seres “racionales”, se preguntaran las mismas cosas que nosotros y estarán interesados en descubrir los mismos misterios, los mismos secretos de la Naturaleza que, presintiendo que existen, tienen la intuición de que serán las respuestas esperadas para solucionar muchos de los problemas e inseguridades que ahora, en nuestro tiempo, nos aquejan.
Claro que, la mente nunca descansa. Acordaos de Aristarco de Samos que, en el siglo III a. C., ya anunció que la Tierra orbitaba alrededor del Sol y, Copérnico, que se llevó el premio, no lo dijo hasta el año 1543. Esto nos viene a demostrar que, a pesar de la complejidad del mundo, lo realmente complejo está en nosotros, en nuestras mentes que, presienten lo que pueda ser, intuyen el por qué de las cosas, fabrican pensamientos que, mucho más rápidos que la luz, llegan a las galaxias lejanas y, con los ojos de la mente pueden, atisbar aquellas cosas de las que, en silencio, ha oído hablar a su intuición dentro de su mente siempre atenta a todo aquello que puede ser una novedad, una explicación, un descubrimiento.
Vista de la Tierra y el Sol
Ahora estamos centrados en el futuro aquí en la Tierra pero, sin dejar de la mano ese futuro que nos espera en el espacio exterior. Es pronto aún para que el hombre vaya a las estrellas pero, algún día, ese será su destino y, desde ya, debe ir preparándose para esa aventura que sólo está a la espera de tener los medios tecnológicos necesarios para hacerla posible. Mientras tanto, jugamos con las sondas espaciales que enviamos a planetas vecinos para que, nos vayan informando de lo que están hechos aquellos mundos –grandes y pequeños- que, en relativamente poco tiempo, serán visitados por nuestra especie para preparar el salto mayor.
Emilio Silvera Vázquez
Mar
14
¿Planetas como la Tierra? ¡Miles de millones!
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
Ciencia-ABC
La NASA descubre diez nuevos planetas que podrían albergar vida
La NASA descubre 219 posibles planetas y diez serían habitables. Diez de los nuevos posibles planetas descubiertos por la NASA tienen el tamaño de la Tierra y orbitan a una distancia de una estrella que permitiría la existencia de agua si se tratara de un cuerpo rocoso.
El telescopio espacial Kepler ha detectado 219 candidatos a exoplanetas, diez de ellos de tamaño similar a la Tierra y en la zona de habitabilidad de sus estrellas.
Estos diez exoplanetas están a una distancia de sus estrellas que les permite tener agua en superficie, siempre y cuando su atmósfera sea adecuada – NASA/JPL-Caltech.
La NASA ha ampliado este lunes su catálogo de exoplanetas, planetas situados en estrellas más allá del Sol, con la publicación de 219 nuevos cuerpos. Tal como anunció la agencia espacial estadounidense, en una rueda de prensa celebrada en el Centro Ames de Investigación, en California (EE.UU.), diez de estos 219 exoplanetas podrían tener una temperatura compatible con la presencia de agua en superficie y, por tanto, algunas de las condiciones necesarias para albergar vida.
Con esta ampliación, la NASA elevó hasta 4.034 el número de posibles exoplanetas descubiertos por el telescopio espacial Kepler, 50 de los cuales parecen tener un tamaño similar a la Tierra y podrían tener agua en superficie. Sin embargo, todos estos son solo candidatos a exoplanetas hasta que nuevas observaciones confirmen su presencia. Hasta el momento, solo se ha verificado la existencia de 2.335 exoplanetas, y solo 30 de estos podrían albergar agua.
Dos poblaciones de planetas
El catálogo se ha elaborado gracias a cuatro años de observaciones llevadas a cabo por el telescopio espacial Kepler en una pequeña franja del cielo de la constelación del Cisne. Estas últimas observaciones son muy relevantes para comprender cómo es el «vecindario» de los planetas de la Vía Láctea. Gracias a ellas, se sospecha que la mitad de los exoplanetas pequeños son rocosos y normalmente tienen un tamaño un 75 por ciento mayor que el de la Tierra. La otra mitad está formada por planetas gaseosos, que capturan importantes cantidades de helio e hidrógeno del espacio y que resultan ser un poco más pequeños que Neptuno.

«Comprender la frecuencia de los planetas en la galaxia ayudará a diseñar las futuras misiones de la NASA para buscar directamente otra Tierra», dijo Mario Pérez, científico de la División Astrofísica del Directorado de Misiones Científicas.
De hecho, tal como dijo Susan Thompson, investigadora del telescopio Kepler y científica del Instituto de Búsqueda de Vida Inteligente (SETI), «este cuidadoso catálogo es el primer paso para contestar directamente a una de las preguntas más importantes de la astronomía: ¿cuántos planetas como la Tierra hay en la galaxia?».
Zoología de planetas
Para lograr responder a esta pregunta, los científicos usaron el telescopio del Observatorio Keck (en Hawái, EE.UU.) para medir el tamaño de 1.300 estrellas situadas en el campo de visión de Kepler. Después estimaron el radio de 2.000 exoplanetas con una precisión exquisita.
«Nos gusta pensar que estamos clasificando planetas de la misma forma en que los biólogos identifican nuevas especies de animales», dijo Benjamin Fulton, primer autor del estudio que ha analizado la composición de la población de los exoplanetas. «En este sentido, descubrir dos grupos distintos de exoplanetas es como descubrir que los mamíferos y los lagartos pertenecen a dos ramas distintas de un árbol familiar».
Esta es la octava actualización del catálogo de Kepler, y ha sido elaborado gracias a un nuevo procesamiento de los datos recogidos durante cuatro años de trabajo.
Cuando un planeta tapa a su estrella
El telescopio espacial Kepler es capaz de detectar nuevos planetas por medio de tránsitos, que son un fenómeno que ocurre cuando el brillo de las estrellas desciende sutilmente (cerca de un uno por ciento) cuando un planeta pasa delante de ellas. Cuando esto pasa periódicamente, y siempre teniendo en cuenta el tipo de estrella que se observa y el tamaño que tiene, los astrónomos pueden estimar la duración de las órbitas de los planetas, y por tanto su composición y tamaño. Sin embargo, en muchos casos es necesario esperar años hasta poder confirmar que las estimaciones hechas realmente se cumplen.
Actualmente, el telescopio espacial Kepler está observando otra región del cielo, en la que busca exoplanetas, explora cúmulos estelares o recopila información de Trappist-1, el interesante sistema solar con siete planetas de tamaño parecido a la Tierra.


Entender la composición de la población de exoplanetas en las estrellas vecinas es el primer paso para cartografiar la Vía Láctea. Pero si se quiere averiguar más sobre si es posible encontrar vida más allá de la Tierra, resulta fundamental analizar las atmósferas de los exoplanetas, puesto que estas son cruciales para decidir si esta podrá existir allí o no.
La atmósfera es la causante de que haya vida en la Tierra pero no en Marte (un frío desierto) ni en Venus (un auténtico infierno), aunque los tres planetas estén en la zona de habitabilidad del Sol, en la que teóricamente sería posible encontrar agua líquida en superficie.
Por delante queda una tarea ingente. Solo un pequeño porcentaje de los planetas existentes pueden ser detectados a través de tránsitos, que ocurren cuando la órbita sitúa a los planetas entre la Tierra y sus estrellas, pero otros muchos no tapan a sus estrellas y no pueden ser detectados. En este sentido, aunque es difícil hacer estimaciones, se considera que solo en la Vía Láctea debe de haber decenas de miles de millones de planetas de tamaño similar a la Tierra.
———————————————————————————————————————–
A esta noticia se le debería añadir (para mejor comprensión de de lo que tratan de explicar), que solo en la Vía Láctea existen unos 30.000 millones de estrellas como el Sol, de la clase G2V amarillas.
De esa inmensa cantidad de estrellas, un gran porcentaje tienen sus propios planetas que la orbitan, y, no pocos, han venido a caer en la zona habitable, con lo cual, tendrán agua líquida, temperaturas soportables para formas de vida, atmósfera…
Podríamos seguir enumerando razones por las que la vida debe estar presente en una infinidad de mundos y, si acudimos a la paradoja de Fermi, cuando preguntó en relación con la Vida extraterrestre ¿Dónde es6tá todo el mundo?, la respuesta es sencilla, todo el mundo está a muchos años luz de nosotros como nosotros lo estamos de ellos, y, nuestra especie surgió en el Universo hace solo unos pocos cientos de miles de años después de evolución de otros seres primarios, y, hemos tardado mucho tiempo en saber donde estábamos, de la misma manera, hay que comprender que las estrellas han necesitado 10.ooo millones de años para “fabricar” los elementos de los que restamos hechos todas las especies vivas de la Tierra, y, también habrá pasado igual con las especies que reinen en otros mundos.
Como he comentado muchas veces, el Universo es igual en todas partes y, en todas sus regiones, por lejos que estén, suceden las mismas cosas en las mismas circunstancias. El que no tengamos confirmación de la existencia e vida en esos mundos lejanos se debe a las distancias que nos separan, y, desde luego, “ellos” tendrán las mismas dificultades que nosotros para poder4 contactar, cosa que no será nada fácil por el lenguaje y los guarismos matemáticos diferentes a los nuestros que tengan adoptados.
Claro que, si la Naturaleza ha decidido que estemos tan alejados los unos de los otros, siendo la Naturaleza sabia… ¡Por algo será!
Y como decía aquel gran cosmólogo: La ausencia de pruebas, no es prueba de ausencia.
Emilio Silvera
Mar
14
Diversidad de estrellas, Diversidad de Mundos…¿Diversidad de vida?
por Emilio Silvera ~
Clasificado en El Universo dinámico ~
Comments (0)
Sí, en el Universo hay diversidad de estrellas, Diversidad de Mundos…¿Diversidad de vida no basada en el Carbono en otros mundos, y, diversidad de universos?
De la misma forma que ocurre con las estrellas de las que existen una gran variedad, en colores -según los elementos de los que cada una esté conformada, dimensiones, masa, y otros parámetros que las definen, con los mundos ocurre otro tanto. No solo existen mundos rocosos y gaseosos (clasificación que sería una simplicidad), sino que, dependiendo de una serie de requisitos y circunstancias, los mundos pueden ser de muchas y diversas maneras y materiales.
¿Cómo se viviría en un mundo así? ¿Cómo sentiríamos la Gravedad de ese enorme planeta vecino tan cercano? Existen mundos en el espacio exterior que están alumbrados por estrellas enanas rojas cercanas a ellos, otros, se ven alumbrados por una luz intensamente roja proveniente de una estrella de carbono, también los hay que están a merced de estrellas múltiples, es decir, sistemas de tres o más estrellas ligadas por su atracción gravitacional múltiple (se estima que alrededor de un tercio de todas las binarias conocidas son realmente triples). También ha surgido mundos dependientes de una estrella peculiar, una estrella que se saber que es variable. ¿Cómo sentarían esos cambios o variaciones a sus posibles habitantes? Es posible que, sean estrellas en transición que no permiten la aparición de la vida en sus planetas hasta que no queda estabilizada.
Se han detectado planetas que orbitan alrededor de una estrella magnética, es decir, una estrella con un campo magnético descomunal (como se ha revelado el desdoblamiento Zeeman de las líneas de su espectro). Son conocidas por el término de estrella AM Herculis, una clase de variable cataclísmica entre las que pueden encontrarse algunas enanas blancas con campos magnéticos extremadamente intensos (del orden de 100 tesla). No parece que ningún planeta que la orbite a una distancia prudencial, pueda albergar la vida bajo esas extremas condiciones. ¿Cómo es posible explicar la enorme potencia de los campos magnéticos de las así llamadas ‘estrellas magnéticas’?
Mediante el uso de simulaciones numéricas en tres dimensiones han hallado las configuraciones de campo magnético que subyacen en los potentes campos magnéticos que se observan en las superficies de las llamadas estrellas magnéticas tipo A y las enanas blancas magnéticas. (Nature, 14/Oct/2004).
El campo magnético de este tipo de estrellas es continuo y estático, en contraste con el campo del Sol y de otras estrellas similares a éste, que son más débiles y consisten de pequeñas regiones, y cambian de modo continuo. Imaginar mundos habitables orbitando este tipo de estrellas es complicado.

Ilustración de estrella magnética
Como decimos, son muchos y variados los mundos que por ahí fuera se pueden encontrar. Es de lo más común encontrar estrellas a las que orbitan mundos de variado pelaje. Cuando se forma una estrella con una descomunal masa de gas y polvo interestelar que se junta por obligada por la fuerza de la Gravedad y se contrae más más sobre sí misma, hasta que el calor en el centro es tan descomunal que se produce la fusión nuclear y la estrella nueva nace a la vida, todo ese enorme conglomerado de material gira y incandescente mientras continúa aumentando su densidad, y, mientras tanto va girando y, algunos trozos de esa masa exterior que aún no llega a ser plasma, debido a la fuerza del giro se ve desprendida de la nueva estrella y, según sea el trozo despedido, se aleja más o menos hasta quedar retenido por la fuerza de gravedad que la estrella genera. Los trozos comienzan a enfriarse mientras giran y se forman nuevos planetas que, dependiendo de la distancia al nuevo sol y de sus masas, se configurarán de una u otra forma (planetas rocosos y gaseosos).
El descubrimiento de nuevos planetas no cesa y, a medida que mejoran los aparatos que los detectan, se acorta el tiempo que nos queda para poder localizar otros mundos que, como la Tierra, sean idóneos para albergar alguna clase de vida.
Como podeis ver en las imágenes de arriba y abajo, el Universo está plagado de Mundos. Si como antes decía, es común que las estrellas estén acompañadas por planetas, si pensamos que sólo en nuestra Galaxia, la Vía Láctea existen más de cien mil millones de estrellas, ¿cuántos planetas no tendremos en nuestra propia casa? Y, si pensamos en el Universo entero, la cifra podría ser descomunalmente grande, y, si eso es así (que lo es), ¿Cuántos planetas habitados podrían existir?.
La impresionante imagen de Antares, la estrella agonizante que se está convirtiendo en supernova
¿Alguna vez he pensado cómo sería vivir en un planeta cuya estrella fuese como Antares?, una supergigante 10 000 veces más luminosa que el Sol y cuyo diámetro sería de unos 700 millones de kilómetros, su densidad de unas 20 masas solares y la remperatura superficial de unos 4 ooo K. Está claro que habría que tener en cuenta muchas cuestiones para que, la vida en ese hipotético planeta pudiera ser posible, al menos como la conocemos aquí. La luminosidad incidiría en la clase de visión que los posibles habitantes pudieran tener, y, por otra parte, al ser la temperatura en la superficie de la estrella más baja que la de nuestro Sol, ¿a qué distancia debería estar situado el planeta para que los rayos del sol calentaran a sus habitantes y plantas?, y, no olvidemos los efectos de la Gravedad de tan enorme sol que, para hacerla soportable para esos imaginarios habitantes, tendría que estar situado lejos, mientras que la baja temperatura aconseja que el planeta esté cercano a la estrella. Estas contradicciones, posiblemente, impediría la vida tan como la conocemos y, de haberla, sería otra clase de vida distinta a la nuestra.
En verdad, el problema de la vida en un planeta no es cosa fácil. ¡Son tantos los requisitos exigidos! Y, así y todo, si pudiéramos desplazarnos por lejanas rutas estelares, lo que podríamos contemplar superaría en mucho a todo lo que podamos imaginar. Ya sabeis, no pocas veces la realidad supera a la imaginación. Mundos de ensueño, criaturas imposibles, ¡cuántas maravillas! alberga nuestro Universo. Con razón se define como todo lo que existe: Espacio -Tiempo- Materia…Y, desde hace algún tiempo…Mentes pensantes que lo observan todo.
Que no estamos solos en el Universo no es novedad para muchos, cuando todos creemos que la Tierra puede no ser el único planeta con vida siempre solemos pensar en la vida extraterrestre, dando asi vida a una infinidad de hipótesis e historias acerca de cómo sería ésta. Lo cierto es que varios astrofísicos han anunciado la posibilidad de que existan varios planetas similares a la Tierra.
Inmensos y bellos planetas dobles, mundos gemelos que alumbrados por una estrella Gigante inusual de tipo espectral G, K o M y que presenta Litio en su espectro. Las reacciones nucleares en el núcleo de la estrella produce Berilio, que es transportado por convección hacia las capas superiores, donde captura un electrón para convertirse en Litio. Es una estrella T Tauri, muy joven y todavía recien salida de su cascarón, ya que, el Litio es probable que se hallara en el gas del cual se formó la estrella y será pronto destruido cuando la estrella alcance la secuencia principal. Esos mundos gemelos, mientras tanto, también siguen evolucionando y, pasados algunos miles de millones de años, es posible (sólo posible) que, algunos signos de vida puedan aparecer en su océanos.
Las estrellas pueden ser clasificadas de muchas maneras.
El estudio fotográfico de los espectros estelares lo inició en 1885 el astrónomo Edward Pickering en el observatorio del Harvard College y lo concluyó su colega Annie J. Cannon. Esta investigación condujo al descubrimiento de que los espectros de las estrella están dispuestos en una secuencia continua según la intensidad de ciertas líneas de absorción. Las observaciones proporcionan datos de las edades de las diferentes estrellas y de sus grados de desarrollo.
Clase A: Comprende las llamadas estrellas de hidrógeno con espectros dominados por las líneas de absorción del hidrógeno. Una estrella típica de este grupo …
Las diversas etapas en la secuencia de los espectros, designadas con las letras O, B, A, F, G, K y M, permiten una clasificación completa de todos los tipos de estrellas. Los subíndices del 0 al 9 se utilizan para indicar las sucesiones en el modelo dentro de cada clase.
Clase O: Líneas del helio, el oxígeno y el nitrógeno, además de las del hidrógeno. Comprende estrellas muy calientes, e incluye tanto las que muestran espectros de línea brillante del hidrógeno y el helio como las que muestran líneas oscuras de los mismos elementos.
Las estrellas de Wolf-Rayet o estrellas Wolf-Rayet (abreviadas frecuentemente como WR) son estrellas masivas (con más de 20-30 masas solares), calientes y evolucionadas que sufren grandes pérdidas de masa debido a intensos vientos estelares.
Este tipo de estrellas tiene temperaturas superficiales de entre de 25.000 – 50.000 K (en algunos casos incluso más), elevadas luminosidades, y son muy azules, con su pico de emisión situado en el ultravioleta. La superficie estelar también presenta líneas de emisión anchas de Carbono, Nitrógeno y Oxígeno. Tienen un color Blanco-Verdoso.
Clase B: Líneas del helio alcanzan la máxima intensidad en la subdivisión B2 y palidecen progresivamente en subdivisiones más altas. La intensidad de las líneas del hidrógeno aumenta de forma constante en todas las subdivisiones. Este grupo está representado por la estrella Epsilon Orionis.
Alnilam (Épsilon Orionis / ε Ori / 46 Orionis / HIP 26311) es, con magnitud aparente +1,70, la cuarta estrella más brillante en la constelación de Orión. Forma parte del llamado Cinturón de Orión (o «Las Tres Marías») junto a Mintaka (δ Orionis) y Alnitak (ζ Orionis), siendo la más brillante de las tres, pese a que es la más lejana (1340 años luz). Su nombre proviene del árabe Al Nizam, «el hilo de perlas».
Clase A: Comprende las llamadas estrellas de hidrógeno con espectros dominados por las líneas de absorción del hidrógeno. Una estrella típica de este grupo es Sirio, la más brillante de todo el cielo nocturno vista desde la Tierra. Su color es blanco, y, es muy conocida desde la antigüedad; por ejemplo, en el antiguo egipto, la salida helíaca de Sirio marcaba la época de las inundaciones del Nilo, y ha estado presente en civilizaciones tan dispares como la griega y la polinesia.
Sirio arriba
Clase F: En este grupo destacan las llamadas líneas H y K del calcio y las líneas características del hidrógeno. Una estrella notable en esta categoría es Delta Aquilae.
Clase G: Comprende estrellas con fuertes líneas H y K del calcio y líneas del hidrógeno menos fuertes. También están presentes los espectros de muchos metales, en especial el del hierro. El Sol pertenece a este grupo y por ello a las estrellas G se les denomina “estrellas de tipo solar”.
Clase K: Estrellas que tienen fuertes líneas del calcio y otras que indican la presencia de otros metales. Este grupo está tipificado por Arturo, una estrella anaranjada-amarillenta de enormes proporciones que comparada con nuestro Sol, la hace imponente y a éste minúsculo.
Clase M; Espectros dominados por bandas que indican la presencia de óxidos metálicos, sobre todo las del óxido de titanio. El final violeta del espectro es menos intenso que el de las estrellas K. La estrella Betelgeuse es típica de este grupo.
Hemos dado un repaso a los mundos que son y los que podrían ser. Las estrellas son tan importantes para los mundos que, dependiendo de sus configuraciones: brillo, masa, densidad, y, muchos otros parámetros que las definen, podrán tener planetas en los que puedan florecer o no la vida. Y, aunque hemos encontrado una larga lista de nuevos planetas extrasolares, debemos comprender que las dificultades para encontrar “Tierras” son muchas, toda vez que nuestro planeta es pequeño y si otros similares que puedan existir están a una distancia similar (1 UA) a la nuestra, con las distancias que se trabajan (decenas, cientos o miles de años-luz), el mismo brillo de la estrella los oculta. Para hacernos una idea veamos la imagen de los planetas del Sistema Solar a escala.
Planetas del Sistema Solar a escala y ordenados con respecto a su distancia con el Sol. Los planetas son: 1: Mercurio, 2: Venus, 3: Tierra, 4: Marte, 5: Júpiter, 6: Saturno, 7: Urano, 8: Neptuno. Viendo ésta imagen, podemos caer en la cuenta del por qué, la mayoría de los planetas extrasolares descubiertos hasta el momento son del tipo jupiteriano. “Las Tierras” resultan extremadamente “pequeñas” para poder localizarlas con facilidad con la actual tecnología.
En nuestro planeta, al igual que en el Espacio las estrellas, la diversidad está presente en las múltiples formas de vida que lo pueblan.
Emilio Silvera Vázquez
Mar
14
Revoluciones científicas ¡La Relatividad!
por Emilio Silvera ~
Clasificado en Física Relativista ~
Comments (2)
Dentro de 150 años podríamos publicar una foto similar y decir:
Es la primera persona que alcanza los 158 años de edad y aparenta 50, se logró ralentizar el envejecimiento gracias a descubrimientos en genética, ya han quedado atrás aquellos factores que ahora, en el año 2.175 han desaparecido, tales como:
Aquellas afecciones más comunes de la vejez cabe citar la pérdida de audición, las cataratas y los errores de refracción, los dolores de espalda y cuello, la osteoartritis, las neumopatías obstructivas crónicas, la diabetes, la depresión y la demencia y otras ya desterradas casi por completo.
El Nuevo Acelerador de Partículas Albert Einstein, utilizando energías de 1019 GeV, ha logrado llegar hasta las cuerdas vibrantes de la Teoría, verificando así, cerca de 200 años más ta5rde, la dichosa teoría de Ed. Witten y otros antes y después que el. Ya sabemos realmente cuales son los componentes primigenios de la materia.
La Nave Aurora (que partió de la Tierra hace 9 días), llega al planeta Próxima b utilizando el Hiperespacio (una manera de doblar el Espacio acortando las distancias entre regiones muy lejanas), de tal manera que se logra burlar esa imposibilidad de alcanzar la velocidad de la luz (no de vencerla), y, por fin se podrá explorar esas regiones antes fuera de nuestro alcance.
Hoy, día 11 de enero de 2.175, se celebra el 40 aniversario de la publicación de la nueva Teoría de la Gravedad Cuántica que, las nuevas máquinas de computación cuántica pudieron confirmar que dicha teoría estaba subyacente en la Teoría de cuerdas.
El Modelo Estándar de la Física de Partículas está completo, ya operan en el las cuatro fuerzas fundamentales, y, cuando se juntan las Teorías de Planck y de Einstein… ¡No apareen los dichosos infinitos!
Hace ahora un años que se logró perforar la superficie de Europa, y, para el asombro de todos, se captaron imágenes con un robot sumergido, de asombrosos animales, algunos de inmensas proporciones. Todavía quedan muchos secretos por descubrir en aquel pequeño “mundo”.
Finalmente ese primer contacto se producirá
Hace ya más de 50 años que se pudo descartas la existencia de la “materia oscura”, confundida con la sustancia primigenia original en el Universo, gracias a la cual se pudieron formar las galaxias. Se pudo verificar que el movimiento anómalo de las galaxias era debido a la atracción gravitatoria que un universo vecino ejerce sobre el nuestro, al igual que el nuestro la ejerce sobre aquel.
Llegan a su fin las reuniones de los Presidentes de todos los Gobiernos del Mundo, las señales recibidas desde un mundo lejano (por fin verificadas que provienen de seres inteligentes por sus mensajes matemáticos (no importa los signos que puedan utilizar “ellos”, finalmente el resultado de sumar 2 + 2 = 4.
No sabemos como serán y qué intenciones tendrán, lo mejor es prevenir mejor que curar. La votación para elegir a un Presidente mundial dará comienzo el próximo día 7 de enero de 2.175. Se impone la necesidad de unificar criterios para poder hacer frente a lo que se avecina.
Así podríamos continuar formulando cientos de preguntas como: ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrá, por fin aparecido la dichosa materia oscura? Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.
Una cosa nos debe quedar bien clara, nada dentro de 150 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.
Nuevas maneras de sondear la Naturaleza y desvelar los secretos. Son muchas las cosas que no sabemos
Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.
En amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números. Mira abajo sino es así.
¿Son tantas!
En cualquier evento de Ciencia, ahí aparecen esos galimatías de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.
Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra revolución de la Física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos dio un golpecito en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.
Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:
Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.
La invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. Einstein utilizó este principio como un postulado de la relatividad especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.
Interferómetro de Michelson
Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento con el interferómetro de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relatividad general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse. Granot y sus colegas estudiaron la radiación de una explosión de rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA Fermi Gamma-Ray Space Telescope, el 10 de mayo de este año. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los fotones con energías diferentes llegaron a los detectores de Fermi en diferentes momentos.
En múltiples trabajos publicados se habían considerado problemas en los que dos acontecimientos (eventos) que no ocurrían simultáneamente (al mismo tiempo) para un observador eran simultáneos para otro, o problemas en los que dos acontecimientos diferentes tenían lugar en la misma posición para uno de los observadores, lo cual nos permitía hacer una simplificación del tipo t = t’ o una simplificación del tipo x = x’. Pero hay acontecimientos que no ocurren al mismo tiempo para dos observadores distintos y que tampoco se repiten en el mismo lugar en ninguna de las coordenadas espaciales. Sobre este tipo de acontecimientos aún podemos llevar a cabo un análisis definiendo matemáticamente una “distancia” entre dichos acontecimientos que incluya en una sola definición las diferencias de tiempo (temporales) y las diferencias de posición (espaciales). Las transformaciones de Lorentz se utilizan como herramienta poderosa para 5resolver problemas.
Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones de rayos gamma.
De la calidad de Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a Einstein se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiancia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.
Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta la Gravedad de Newton.
Einstein nos decía que el espacio se curva en presencia de grandes masas
En la Teoría Especial de la Relatividad, Einstein se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sistemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del observador.
La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación que así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de sus vidas.
El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura
Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).
Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.
Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.
Todo lo grande está hecho de cosas pequeñas
Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert Einstein, quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, en verdad, Einstein, reconoció públicamente tal ayuda.
En la segunda parte de su teoría, la Relatividad General, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.

¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia
Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann ) sobre la distorsión del espacio-tiempo.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.
No deja de crecer al engullir la materia circundante, su diámetro se hice mucho más grande
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.
Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de Einstein, el Universo no fue el mismo.
El análisis de la Gravitación que aquí quedó plasmado interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.
De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.
Tan importante es el trabajo de Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magía y sin que nadie las llame, surgen, emergen, las ecuaciones de Einstein de la Relatividad General.
Emilio Silvera Vázquez