lunes, 07 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hay “cosas” que dan vergüenza ajena

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿Cómo se puede hablar tanta tontería en tan poco tiempo?

El entrevistado nos habla (asegurando), de la inmortalidad que está a la vuelta de la esquina.

¿Cómo se puede hablar así?

Este buen señor que parece que ha estudiado algunas cosas, no cae en la cuenta de que, la Naturaleza es la que nos marca el camino, y, no seremos nosotros, los llamados a cambiar su ritmo. ¿Cómo podemos nosotros evitar que los volcanes, los terremotos, las placas tectónicas y otros fenómenos naturales se puedan evitar, si esos son, precisamente, los cambios que hace la Tierra (que en parte se comporta como si de un ser vivo se tratara), para reciclarse.

Así que nos habla de que la inmortalidad…  Ya está con nosotros.

Claro que, el hombre no se ha parado a pensar que, si hablamos de inmortalidad, lo estamos haciendo de un concepto filosófico, ya que, en nuestro Universo, la Eternidad no existe, todo tiene un Principio y un final, la duración de cada cosa o de casa Ser, dependerá de su “misión” en este universo. Así que, el que se nos diga que viviremos eternamente… ¡Se hace cuesta arriba el creerlo!

Ya lo decía aquel gran pensador: “Con el paso de los Eones, hasta la muerte morirá.”

Y, por otra parte, ¿Quién quiere vivir eternamente? Al menos en lo que a mí concierne, pondría muchas razones para no desearlo. En uno de los trabajos que exponemos hoy en este Blog, se habla de la Entropía, ese “ingrediente” que nació con el Tiempo, y, que su discurrir inexorable lo cambia todo, nada perdura, todo cambia, incluso las estrellas que viven miles de millones de años… ¡Tienen que morir!

En fin, podríamos estar hablando de la imposibilidad de la inmortalidad durante mucho tiempo, y, la conclusión final sería: ¡Imposible!

Amigo, podría buscar otro tema para llamar la atención, el que ha buscado es fácilmente rebatible, y, no quedará nada bien, asegurar cuestiones que no son posibles…

Emilio Silvera Vázquez

 

 

 

Las Galaxias:pequeños universos creadores de mundos y de…vida.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (21)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Vía Láctea está torcida

NUESTRA GALAXIA:

El Sistema Solar está a 27.000 años luz del Centro Galáctico, una distancia que nunca podremos recorrer (creo), y, la capacidad que tenemos de poder salir de la Galaxia para hacerle una fotografía… ¡Es nula!

Sólo parcialmente la podemos contemplar y, cuando la veamos desde fuera será señal de que, nuestros avances han sido considerables y hemos podido salir (ahora sí) al Espacio Exterior, ya que, lo que ahora podemos hacer es andar por las afuera de nuestro barrio. Visitar los mundos vecinos (que ya es una proeza) no será suficiente para las necesidades que en el futuro, tendrá planteada la Humanidad que, en unas pocas decenas de años verá cuadruplicada su población y, para cuando eso llegue…¿Qué podremos hacer? La Tierra, tiene sus límites.

 

La Vía Láctea está llena de ondas (y es más grande de lo que creíamos)

La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles durante la noche, además de otros muchos objetos que, por su inmensa lejanía, requieren sofisticados telescopios para poner sus imágenes ante nosotros. Es escrita con G mayúscula para distinguirla de las inmensas pléyades de  galaxias que reunidas en cúmulos y supercúmulos adornan el Universo en su conjunto. Su disco, el de nuestra Vía Láctea,  es visible a simple vista como una débil banda alrededor del cielo.

 

Nuestra galaxia tiene tres componentes principales. Uno es el disco de rotación de unas 6×1010 masas solares consistentes en estrellas relativamente jóvenes (población II), cúmulos cubiertos de gas y polvo, estando estrellas jóvenes y material interestelar concentrados en brazos espirales. El disco es muy delgado, de unos 1.000 a. l., comparado con su diámetro de más de 100.000 años luz. Aún continúa una activa formación de estrellas en el disco, particularmente en las nubes moleculares gigantes.

El segundo componente principal es un halo débil y aproximadamente esférico con quizás el 15 – 30% de la masa del disco. El halo está constituido por estrellas viejas (población II), estando concentradas parte de ellas en cúmulos globulares, además de pequeñas cantidades de gas caliente, y se une a un notable bulbo central de estrellas, también de la población II.

 

El cúmulo globular M55 desde CFHT

                                                                          Cúmulo Globular M55

El tercer componente principal es un halo no detectado (que algunos dicen ser de materia oscura) con una masa total de al menos 4×1011 masas solares. En total, hay probablemente alrededor de 2×1011 estrellas en la Galaxia (unos 200 mil millones), la mayoría con masas menores que el Sol.

Leer más

¡¡La Vida!! Ese Misterio que no podemos explicar.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

B.log.ia 2.0: Taxonomía: la ciencia de clasificar

 

Por supuesto, los Biólogos deben clasificar los organismos de acuerdo con sus características visibles y, para inferir las relaciones de parentesco, deben atender tanto a los organismos vivos como a los fósiles de las especies ya extinguidas. Tanto la naturaleza como la cantidad de datos disponibles han aumentado tremendamente durante las últimas décadas. En particular, los paleontólogos parece que no acaben nunca de descubrir los más increíbles escondrijos de fósiles -auténticas cuevas de Aladino de antiguas criaturas cuya existencia nunca hubiéramos podido imaginar-. En fechas tan rcientes como los años sesenta, los biólogos todavía dudaban de que pudiéramos nunca encontrar fósiles significativos del período Precámbrico -el período geológico de hace más de 545 millones de años, cuando todavía no había evolucionado ningún organismo con caparazón o esqueleto duro, de modo que la fosilización parecía imposible.

 

Resultado de imagen de El esquisto de Burgess (comúnmente llamado en inglés: «Burgess Shale» ) es el nombre de un célebre yacimiento de fósiles, ubicado en las inmediaciones del collado de Burgess en el Parque Nacional Yoho de la provincia de Columbia Británica, en Canadá.Burgess shale ▷ Información, Historia, Biografía y más.La vida maravillosa

 

El esquisto de Burgess (comúnmente llamado en inglés: «Burgess Shale» ) es el nombre de un célebre yacimiento de fósiles, ubicado en las inmediaciones del collado de Burgess en el Parque Nacional Yoho de la provincia de Columbia Británica, en Canadá.

 

Burgess Shale, Canadá » Geología Ciencia

Burguess Shale es un yacimiento paleontológico ubicado en el Parque Nacional Yoho, en las Montañas Rocosas canadienses en la frontera oriental de la Columbia Británica. El yacimiento principal se encuentra a 2400m, en la falda de la cresta que conecta los montes Field y Wapta.

Hoy (en la imagen de arriba se quiere significar) conocemos varios yacimientos de fósiles precámbricos en varios continentes. Del posterior período Cámbrico -y en particular del Burgess Shale de Canadá -arriba-, de unos 530 millones de años de antigüedad y estudiado muy especialmente por Simón Conway Morris de la Universidad de Cambridge- han surgido series de organismos con aspecto de antrópodos muy diferentes e cualquiera de los actuales.

 

            Un predador gigante del Cámbrico, hallado en el Sáhara | Sociedad | EL PAÍSArtrópodos, la vida en cómodas piezas coleccionables

            Depredador gigante del Cámbrico hallado en el Sahara y Antrópodos

Un predador gigante del Cámbrico, hallado en el Sahara. Las arenas del Sáhara han brindado a los investigadores ejemplares gigantes de anamalocaris, uno de los animales más extraños del Cámbrico y el de mayor tamaño, hallado por primera vez en el yacimiento de Burgess Shale (Canadá). Peter van Roy y Derek Briggs, que estudian la fauna fósil de los yacimientos marroquíes de Fezouata, publican en Naturesu hallazgo y señalan que se trata de los anomalocaris de mayor tamaño y más recientes hallados hasta la fecha.

 

                                                    Imagen relacionada

Anomalocaris (“gamba extraña”) es un género de animales extintos, perteneciente a la familia de los anomalocarídidos la cual se relaciona con los artrópodos. Se estima que los Anomalocaris existieron entre comienzos y mediados del período Cámbrico, desde hace aproximadamente 525 hasta 510 millones de años. Sus primeros fósiles fueron descubiertos en el esquisto de Ogygopsis, llegando a poseer más hallazgos en el famoso esquisto de Burgess.

 

 

El Anomalocaris expone rasgos muy llamativos como “brazos” armados con espinas, ojos compuestos, lóbulos laterales que rodeaban todo el cuerpo, entre otros. Las diferentes especies de Anomalocaris estaban en la cima de la cadena alimentaria en los océanos del planeta. Alcanzando hasta un metro de largo, se trataba de una criatura realmente gigantesca para su época, por lo que depredaba toda clase de fauna contemporánea.

 

Fósil de Orthoceras: características, distribución » Ciencias de la geología

Los paleontólogos disponen ahora de una maravillosa serie de aves fósiles -organismos frágiles que no se focilizan fácilmente- que enriquecen enormemente nuestra apreciación de la evolución de las aves que solía basarse únicamente en Archaeopteryx. En 1998 nos llegó la noticia del hallazgo de fósiles de dinosaurios con plumas -dinosaurios que están claramente relacionados con las aves pero que tradicionalmente no se clasificarían entre las aves.

 

         Recreación de un 'Tianyulong confuciusi'm, un dinosaurio con plumas encontrado en China. / Nature

Recreación de un ‘Tianyulong confuciusi’m, un dinosaurio con plumas encontrado en China. / Nature

Los fósiles humanos, tan confusos y esquivos en el pasado, conforman hoy una secuencia más satisfactoria, aunque más diversa, hasta nuestros antepasados de las llanuras de África de hace 4,5 millones de años; sólo uno de los diversos linajes desembocó en la especie Homo sapiens. En suma, los descubrimientos recientes de fósiles han sido maravillosos, y todas las nuevas extraordinarias criaturas son agua para el molino de los taxónomos. Si no intentamos clasificarlas, no sabremos nunca qué son realmente.

Las imágenes de abajo corresponden a fósiles de homínidos, dichas huellas fueron escaneadas y digitalizadas por el profesor Mateo Bennett, de la Universidad de Bournemouth, en el Reino Unido. Recontruidas por expertos, este ha sido el resultado final. Si los llevamos al peluquero, se duchan y le ponemos un buen vestido y traje con los abalorios y complementos, ¿Quién los distinguiría de los hombres y mujeres de hoy, y, sin embargo, tienen muchísimos años.

 

                                                                  

La evidencia fósil sugiere que los primeros humanos modernos podrían haberse dividido en numerosas poblaciones aisladas antes de dejar África en una serie de migraciones, según un estudio de la Universidad de Vienna en Austria (Alemania). La investigación se publica esta semana en la revista ‘Proceedings of the National Academy of Sciences’ (PNAS).

Los investigadores descubrieron que, en vez de una única dispersión desde África hacia el exterior, su evidencia muestra que los primeros humanos modernos se dividían ya en diferentes poblaciones. ¡Qué mérito tienen nuestros antepasados que, sin más medios que sus piernas y su propias energías, se recorrieron el mundo buscando el acomodo para su mejor supervivencia.

¿Qué podemos decir de las Bacterias, Arqueas y Protozoos?

 

                                               http://2.bp.blogspot.com/_DU9ZgZKsSVc/TIrJ3K1ZLeI/AAAAAAAAAC0/qEUrVsBIsmk/s1600/carl+woose.jpg

Woese en 1977 agrupa los seres vivos en seis Reinos: Eubacterias, Arqueobacterias, Protista, Fungi, Vegetal y Animal. A través de sus investigaciones llega a la conclusión de que las arqueobacterias son procariotas pero no bacterias. En 1990 propone tres Dominios: Bacterias, Arqueas y Eucariotas. El Dominio es de categoría taxonómica superior al Reino.

 

 

Lynn Margulis y Karlene Schwartz revisan la propuesta de Wittaker y en 1997 establecen Cinco Reinos: Monera, Protoctista, Fungi (en el que incluyen Líquenes), Vegetal, Animal.

Cavalier-Smith en 1998 divide los seres vivos en dos Imperios y seis Reinos: Bacterias, Protozoos, Cromistas, Fungi, Vegetal, Animal.

Estas clasificaciones han ido variando al aparecer nuevas formas de estudiar su historia evolutiva, como por ejemplo, las técnicas que permiten comparar el ADN de las especies. Y no siempre han sido aceptadas por toda la comunidad científica, todo lo contrario, en algún caso han sido (y siguen siendo) muy discutidas. Así es el proceso de construcción de la Ciencia.

 

Qué es una Célula?

                                                                             ¿Qué es una célula?

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el  de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones, como en el caso del ser humano. Las células suelen poseer un tamaño de 10 µm y una masa de 1 ng, si bien existen células mucho mayores.

 

                               Resultado de imagen de lA JOVEN tIERRA, LA tIERRA IGNEA

     Y pensar que aquí comenzó todo hace ahora 4.000 millones de años. La Tierra comenzó a enfriarse y unos 500 de años más tarde de haberse formado, aparecieron los primeros “seres” unicelulares.

 

Organismos unicelulares ? Qué son ➡️ características ➡️ ReproducciónOrganismos unicelulares: las móneras - Blogodisea

 

Aquella primera célula que supo replicarse lo comenzó todo, allí empezó la aventura de la vida que nos ha traído hasta aquí. La aparición del primer organismo vivo sobre la Tierra suele asociarse al nacimiento de la primera célula. Si bien existen muchas hipótesis que especulan cómo ocurrió, usualmente se describe que el proceso se inició gracias a la transformación de moléculas inorgánicas en orgánicas bajo unas condiciones ambientales adecuadas; tras esto, dichas biomoléculas se asociaron dando lugar a entes complejos capaces de autorreplicarse. Existen posibles evidencias fósiles de estructuras celulares en rocas datadas en torno a 4 o 3,5 miles de millones de años.

                                                            ▷ Diferencia Entre Una Célula Animal Y Una Célula Vegetal » Características, Alimentación, Hábitat, Reproducción, Depredadores

                                                                  Células animal y vegetal

 

 

Existen dos grandes tipos celulares: las procariotas (que comprenden las células de arqueas y bacterias) y las eucariotas (divididas tradicionalmente en animales y vegetales, si bien se incluyen además hongos y protista, que también tienen células con propiedades características).

 

 

Es maravilloso poder comprobar la proliferación de la vida en cualquier lugar y entorno de nuestro planeta que, hasta en lugares que parecen imposibles para albergar la vida, allí está presente, se adapta al medio díscolo y, a veces imposible, testaruda sigue adelante, imparable, las ganas de vivir es más fuerte que la precariedad y el medio de condiciones imposibles.

 

                   Fuentes hidrotermales pobladas de vida marina | National Geographic

Una comunidad gusano de tubo crece en la cima de un montículo de lava cerca de una fuente hidrotermal del Golfo de California. Los grandes gusanos en esta imagen miden aproximadamente 1.5 metros de largo. (2ª imagen),

Las fosas pueden ser más productivas que muchos lugares en las zonas abisales o hasales, pero los verdaderos oasis en el mar profundo son las fuentes hidrotermales y las emanaciones de metano. La quimiosíntesis entrega la energía a estas comunidades únicas, cuya biomasa es comúnmente dominada por especies grandes que tiene relaciones mutualistas con microbios simbiontes, oxidadores de azufre. Compuestos reducidos, tales como sulfuros y metano, sirven como fuente de energía química para bacterias y arqueas, permitiendo que la productividad en estos ambientes del fondo marino compita con aquella que vemos en sistemas marinos menos profundos.

 

Grupo de cangrejos

Cerca de uno de los fuentes hidrotermales recién descubiertas podemos ver a un grupo de cangrejos.

Las comunidades de fuentes hidrotermales no han sido encontradas en el margen chileno hasta ahora, pero su existencia ha sido predicha por el hecho de que suelen ser encontradas en centros de expansión, como es la dorsal meso-oceánica Chilena, la cual es subducida por debajo de Chile continental. El agua expulsada desde las fuentes hidrotermales puede variar entre los 20 y 400ºC y es rica en compuestos reducidos como sulfuros y metano. El sustrato rígido esta formado por basalto enfriado, la precipitación de sulfuros metálicos y organismos como gusanos tubulares y bivalvos.

 

                                                       Artes de Pesca: GUSANO DE TUBO GIGANTE

Los gusanos tubulares que tienen una tasa más rápida de crecimiento en el mundo, Riftia pachyptila, se asientan en lugares en donde tienen un acceso directo a un flujo de agua tibia, rica en sulfuros, la cual absorben en sus rojas plumas branquiales.

 

Aquí tenemos el Laboratorio gigante en el que surgieron tantas maravillas

 

Podemos vivir en otro planeta?Cómo se busca vida en otros planetas?

 

Hoy la astronomía ha dejado de ser esa ciencia que antiguamente se dedicaba a buscar y contar estrellitas en nuestro cielo nocturno, a buena hora, hoy diríamos que astronomía es una ciencia dedicada a la búsqueda de vida fuera de nuestro planeta y también de escudriñar en los mas recónditos lugares del cosmos buscando los secretos que nuestro universo aun no nos quiere develar.

Para ello, es que hoy, muchas ciencias se han unido a este casi legado Galileano. Ya cada día se nos hace mas común escuchar hablar de astro-biólogos, exo-químicos, geofísicos y muchos otros, y la verdad es que todos apuntan a un solo pistilo, la vida.

Pero si bien hoy existen sondas espaciales visitando planetas y lunas, telescopios dentro y fuera de nuestra tierra, cual gigantescos ojos observando y estudiando nuestros vecinos desde el mas cercano hasta los mas de afuera del vecindario. Es precisamente aquí, en nuestro planeta donde se desarrollan los mayores estudios y experimentos de cómo y que tipo de vida podría haber allí afuera.

 

Abdel Majluf

 

Algunos de estos datos los he tomado prestados de la bonita e instructiva página de nuestro amigo Abdel, él la titula “Universo para Todos” y, desde luego, hay que reconocerle el mérito de su afán divulgativo. Gracias amigo chileno.

Sí, amigos míos, la vida pudo llegar desde fuera. Así lo inducen nuevas evidencias. Un meteorito con un tipo de nitrógeno distinto del que se encuentra en la tierra el cual produce amonio si se calienta parece inclinar cada vez más la balanza a que la vida en nuestro planeta proviene de un fenómeno cósmico.

¿Qué opinas tú?

Que os guste el reportaje.

¡La Entropía! con el paso del tiempo, todo lo destruye

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

   

La Mecánica Cuántica! ¡El Efecto Túnel! Y, ¿Cuánto más? : Blog de Emilio  Silvera V.

 

Los núcleos para formar átomos están rodeados por varios niveles de electrones y todos sabemos que un átomo es la parte más pequeñaque puede existir de un elemento, es la fracción mínima de ese elemento. Consta de un denso núcleo de protones y neutrones (los nucleones) rodeados de electrones moviéndose a velocidades cercanas a las de la luz. Es lo que se conoce como estructura electrónica del núcleo y que tiene que ver con los niveles de energía que los electrones ocupan en sus orbitales.

 

Archivo:Es-Orbital s.png

El orbital s tiene simetría esférica alrededor del núcleo atómico. En la figura siguiente se muestran dos formas alternativas para representar la nube electrónica de un orbital s: en la primera, la probabilidad de encontrar al electrón (representada por la densidad de puntos) disminuye a medida que nos alejamos del centro; en la segunda, se representa el volumen esférico en que el electrón pasa la mayor parte del tiempo.

 

Es-Orbitales p.png

 

La forma geométrica de los orbitales p es la de dos esferas achatadas hacia el punto de contacto (el núcleo atómico) y orientadas según los ejes de coordenadas. En función de los valores que puede tomar el tercer número cuántico ml (-1, 0 y 1) se obtienen los tres orbitales p simétricos respecto a los ejes xz e y. Análogamente al caso anterior, los orbitales p presentan n-2 nodos radiales en la densidad electrónica, de modo que al incrementarse el valor del número cuántico principal la probabilidad de encontrar el electrón se aleja del núcleo atómico. El orbital “p” representa también la energía que posee un electrón y se incrementa a medida que se aleja entre la distancia del núcleo y el orbital.

Vasyamos al trabajo de hoy.

 

Entropia ¿Qué es? Ejemplos Aprende Facil - Areaciencias

Muchas veces he dejado aquí una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

 

 

 

El paso del Tiempo no perdona, la Entropía siempre aumenta

 

La entropía descrita en una sola imagen

En realidad, la Entropía, no nos debe resultar tan extraña como esa imagen de arriba. Es algo que está presente en toda nuestra vida cotidiana. Sus efectos los podemos ver en todo lo que nos rodea y también sentir en nosotros mismos. Nada permanece igual, todo cambia y se transforma: Es la Entropía destructora que hace estragos en connivencia con el tiempo.

 

 

Está claro que la madre ha sufrido más intensamente los efectos de la entropía que la graciosa niña que ahora está comenzando su andadura por la vida. ¡El Tiempo! Ese inexorable transcurrir de la fatídica flecha que nos lleva, desde el mismo instante  del nacimiento, hasta el inevitable final: Es la Entropía destructora, ese mecanismo del que se vale nuestro Universo para renovarlo todo, incluso la vida que, de otra manera, no podría evolucionar, y, de alguna manera, ese surgir de la vida nueva, y las nuevas estrellas y nuevos mundos que nacen en las galaxias, se podría considerar como entropía negativa, es decir, algo que está ocurriendo para que el Caos no sea total.

 

Resultado de imagen de El manantial que mana en lo alto de la montaña

 

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo hasta el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un trabajo. El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

 

 

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún trabajo, por muy alta que sea aquella.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropíaCuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión.

 

                  Rudolf J. E. Clausius

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados entre sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera:

 

Entropía cero y el origen del universo – La leyenda de Darwan

¡Que la entropía aumenta con el paso del Tiempo en cualquier sistema cerrado!

 

 

El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el nombre de “termodinámica”, que en griego significa “movimiento de calor”.

La termodinámica (significa “calor” y  dinámico, que significa “fuerza”) es una rama de la física que estudia los fenómenos relacionados con el calor.

 

Resultado de imagen de termodinamica 001 Motor de combustión interna: transferencia de energía.

Motor de combustión interna: transferencia de energía.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así como de la transformación de unas formas de energía en otras.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creadaEsta regla es tan fundamental que se la denomina “primer principio de la termodinámica”.

La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos básica, y que denomina “segundo principio de la termodinámica.”

Según este segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más trabajo, ni pueden producirse cambios.

¿Está degradándose el universo?

 

           El tiempo corre y las piezas se desgastan

Pensemos en un reloj. Los relojes funcionan gracias a una concentración de energía en su resorte o en su batería. A medida que el resorte se destensa o la reacción química de la batería avanza, se establece un flujo de energía desde el punto de alta concentración al de baja concentración, y como resultado de este flujo anda el reloj. Cuando el resorte se ha destensado por completo o la batería ha finalizado su reacción química, el nivel de energía es uniforme en todo el reloj, no hay ya flujo de energía y la maquinaria se para. Podríamos decir que el reloj se ha “degradado”. Por analogía, decimos que el universo se “degradará” cuando toda la energía se haya igualado.

Si es cierto el segundo principio de la termodinámica, todas las concentraciones de energía en todos los lugares del universo se están igualando, y en ese sentido el universo se está degradando. La entropíaalcanzará un máximo cuando la energía del universo esté perfectamente igualada; a partir de entonces no ocurrirá nada porque, aunque la energía seguirá allí, no habrá ya ningún flujo que haga que las cosas ocurran.

 

La situación parece deprimente (si el segundo principio es cierto), pero no es para alarmarse ahora, ya que el proceso tardará billones de años en llegar a su final y el universo, tal como hoy existe, no sólo sobrevivirá a nuestro tiempo, sino que con toda probabilidad también a la humanidad misma.

De todo esto podemos obtener una consecuencia clara y precisa; de acuerdo con el segundo principio de la termodinámica, la entropía del universo está en constante aumento, es decir, la energía que contiene tiende a igualarse en todas partes. Así que, como cualquier proceso que iguala las concentraciones de energía está aumentando el desorden en el sistema, nuestro universo cada vez tiene un mayor desorden con los movimientos aleatorios libres de las partículas que lo componen, cuyo comportamiento no es más que una especie de medida del desorden que en el universo se produce de manera continuada.

 

Imágenes de Tres generaciones mujeres libres de derechos | Depositphotos

 

Las tres generaciones de arriba nos habla del tiempo que pasa, y la entropía que es su compañera inseparable y, de los estragos que, en nosotros y en todas las cosas puede causar ese principio universal de que nada desaparece pero todo cambia.

La entropía está presente en la vida cotidiana: objetos que se descolocan, cosas que se desordenan, vestidos que se ensucian, un vaso que se cae y se rompe, los muebles que se llenan de polvo, el suelo que recoge las marcas de los pies que lo pisan, todo eso es entropía y, para arreglarla, tenemos que disponer bien las cosas, recoger los objetos caídos, lavar la ropa y limpiar el suelo o quitar el polvo, con lo cual, la entropía continúa estando presente en el esfuerzo que todo ello conlleva y deteriora la lavadora, la aspiradora y nos causa a nosotros por el esfuerzo realizado (deterioro-entropía).

La entropía está ineludiblemente unida al tiempo, ambos caminan juntos. En procesos elementales en los que intervienen pocos objetos es imposible saber si el tiempo marcha hacia delante o hacia atrás. Las leyes de la naturaleza se cumplen igual en ambos casos. Y lo mismo ocurre con las partículas subatómicas.

 

Cómo funciona una cámara de niebla - NaukasLa Cámara de Niebla

 

La figura muestra, al 50% del tamaño real, la trayectoria de un electrón entrando por la izquierda en una cámara de burbujas.

Un electrón curvándose en determinada dirección con el tiempo marchando hacia delante podría ser igualmente un positrón curvándose en la misma dirección, pero con el tiempo marchando hacia atrás. Si sólo consideramos esa partícula, es imposible determinar cuál de las dos posibilidades es la correcta.

En aquellos procesos elementales en que no se puede decir en que dirección marcha el tiempo, no hay cambio de entropía (o es tan pequeña la variación que podríamos ignorarla). Pero en los procesos corrientes, en las que intervienen muchas partículas, la entropía siempre aumenta. Que es lo mismo que decir que el desorden siempre aumenta.

 

Un saltador de trampolín cae en la piscina y el agua salpica hacia arriba; cae un jarrón al suelo y se hace añicos; las hojas caen de los árboles y se desparraman por el suelo. El paso de los años nos transforman de jóvenes en viejos, ¿quién puede remediar eso?

 

 

      En lugares como este nacen nuevas estrellas, nuevos mundos y, en ellos… ¡Nuevas formas de Vida!

El Universo no es infinito y se renueva cíclicamente a partir del Caos destructor para que surja lo Nuevo. ¡Qué me gustaría saber de donde surgió, en realidad, el Universo! ¿Será una fluctuación del vació que expulsó este universo nuestro de otro mayor? ¿Será, acaso, el mismo universo que se renueva una y otra ves? No estamos seguros de nada. Lo cierto es que, sólo tenemos el Big bang, el Modelo que más se ajusta a las observaciones, y, sin la seguridad de que ese sea el comienzo cierto. Hay un “momento” que los científicos no han podido sobrepasar, se llama el “Tiempo de Planck” no se saber que pudo pasar más allá.

Se puede demostrar que todas estas cosas, y en general, todo cuanto ocurre normalmente a nuestro alrededor, lleva consigo un aumento de entropía. Estamos acostumbrados a ver que la entropía aumenta y aceptamos ese momento como señal de que todo se desarrolla normalmente y de que nos movemos hacia delante en el tiempo. Si de pronto viésemos que la entropía disminuye, la única manera de explicarlo sería suponer que nos estamos moviendo hacia atrás en el tiempo: las salpicaduras de agua se juntan y el saltador saliendo del agua asciende al trampolín, los trozos del jarrón se juntan y ascienden hasta colocarse encima del mueble y las hojas desperdigadas por el suelo suben hacia el árbol y se vuelven a pegar en las ramas.  Todas estas cosas muestran una disminución de la entropía, y sabemos que esto está tan fuera del orden de las cosas que la película no tiene más remedio que estar marchando al revés.

En efecto, las cosas toman un giro extraño cuando el tiempo se invierte, que el verlo nos hace reír. Por eso la entropía se denomina a veces “la flecha del Tiempo”, porque su constante aumento marca lo que nosotros consideramos el “avance del tiempo”.

 

 

Quizás, algún día, la imaginación de los seres humanos, tan poderosa, pueda idear la manera de detener el Tiempo y con él, eliminar la Entropía destructora. Por disparatada que pueda parecer la idea, yo no la descartaría…del todo. De hecho, ya se han hecho algunas pruebas y experimentos en tal dirección.

Todo esto me lleva a pensar que, si finalmente el universo en el que estamos es un universo con la densidad crítica necesaria para el universo curvo y cerrado que finaliza en un Big Crunch, en el que las galaxias se frenarán hasta parar por completo y comenzaran de nuevo a desandar el camino hacia atrás, ¿no es eso volver atrás en la flecha del tiempo y reparar la entropía?

 

La galaxia NGC 3344, situada a 25 millones de años-luz de nosotros en la Constelación de Leo, presume de estrellas nuevas azuladas y llenas de energía que, nos habla del surgir de lo nuevo, de la entropía negativa que se produce continuamente en el universo, donde no todo se destruye con el paso del tiempo, sino que, a partir del Caos… ¡Surge lo nuevo!

En un comentario que les hacía, en respuesta a otros contertulios José Luis, Fandila y Kike -en el trabajo “Las galaxias y la Vida”-, hace algún tiempo,  les decía:

 

Podcast IA: Astrónomos detectaron la imagen más nítida del nacimiento de  una estrella

   Cada nueva estrella que surge hace aumentar la entropía negativa.

No parece algo que podamos asimilar, ¿la Entropía al que no aumenta, sino lo contrario? No es posible.

Bueno, amigos..… ¡O quizás sí!

 

Ciclo de las Estrellas - Instituto Milenio de Astrofísica MAS

Como bien dices, el simple hecho de replicarse significa Entropía negativa, es decir, es la manera que tenemos los de nuestra especie (otras también), de generar esa clase de entropía y, cuando en las galaxias nacen nuevas estrellas, también se está produciendo ese fenómeno que va contra la entropía y el Caos final, toda vez que, algo nuevo surge para que todo siga igual.”

 

Papeleo recién nacido: la guía para no perderte – NACE®

Entropía negativa, es la única forma que tenemos de luchar contra ella

Lo cierto es que sí existe la entropía negativa y, continuamente la podemos contemplar a nuestro alrededor, hay procesos que son cíclicos y reversibles como, por ejemplo y para no ir más lejos… ¡el de la vida! ¿Que son otras vidas? Sí, cierto, otras vidas con los genes de la que se fue y, de esa manera, continúa la aventura que comenzó hace algunos cientos de miles de años en nuestra especie. Si eso no es entropía negativa…

Por otra parte, en cosas más simples y simplemente mecánicas, hay cosas que se repiten una y otra vez y, en nuestro entorno, la Naturaleza lo hace con las estaciones, las mareas y un sin fín de fenómenos naturales que, desde que podamos recordar, están aquí con nosotros.

Por otra parte, no es cierto que la temperatura del universo esté siempre en aumento, el hecho de que las galaxias se estén alejando las unas de las otras como consecuencia de la expansión, hace que cada vez sea más frío y, de hecho, se cree que la muerte térmica del universo llegará cuando alcance el cero absoluto, es decir, -273,16º Celsius, a esa temperatura ni en los átomos habrá movimiento alguno.

 

Resultado de imagen de Principio de aumento de Entropía

 

Es cierto que cuanto mayor sea la entropía de un sistema mayor también será el desorden y la energía disponible disminuirá. El propio universo, considerado como un sistema cerrado se verá abocado a ese escenario final, ya que, de manera irremisible, su entropía aumenta más y más y lo está llevando  hacia su muerte térmica.

Existe una energía interna de la que habla la ciencia que estudia las leyes que gobiernan la conversión de una forma de energía en otra, la dirección en la que fluye el calor y la disponibilidad de energía para que siga produciéndose trabajo. Se basa en el principio de que en un sistema aislado en cualquier lugar del universo hay una cantidad medible de energía, llamada la energía interna (U) del sistema. Esta es la suma de la energía potencial y cinética total de los átomos y moléculas del sistema que pueden ser transferida directamente como calor; excluye, por tanto, la energía nuclear y química. El valor de U sólo puede cambiar si el sistema deja de estar aislado, toda vez que, si deja de estar aislado y se junta con otro, habrá transferencia de masa, energía, calor.

 

 En cada uno de estos escenarios de arriba, sin excepción, se crean nuevos escenarios y se producen nuevas energías

En ese caso, tenemos que pensar en cómo se fusionan las galaxias y, a menor escala, también nosotros, de alguna manera, lo hacemos para generar nueva sabia, nueva energía y nueva vida que, de alguna manera, viene a contrarrestar los efectos de la entropía destructora que no puede impedir que esa nueva vida surja, y, de la misma manera, en las galaxias, nacen nuevas estrellas y nuevos mundos.

 

Resultado de imagen de En el Universo como sistema cerrado que es, la Entropía aumenta

 

Todo esto nos puede llevar a pensar que, si nuestro universo es considerado un sistema cerrado, al final del camino, la entropía se saldrá con la suya pero… ¡Siempre hay un pero! ¿Y si nuestro universo no está sólo y se está acercando, de manera inexorable, a otro universo vecino para fusionarse con él? En ese caso, se producirán fenómenos termodinámicos que darán lugar a un escenario nuevo. No es ninguna tontería pensar en esa posibilidad, de estudios recientes ha salido el resultado asombroso de que nuestro universo parece tener vecinos.

Es cierto que los procesos naturales obedecen a la primera ley de la termodinámica (el principio de conservación de la energía). Sin embargo, aunque todos los procesos naturales obedecen a esta ley, no todos los procesos que la obedecen pueden ocurrir en la naturaleza. La mayoría de los procesos son irreversibles, es decir, solo pueden ocurrir en una dirección y la dirección que un proceso natural puede tomar es el objeto del segundo principio de la termodinámica al que antes Kike se refería y que puede ser formulado en una gran variedad de formas:

 

Resultado de imagen de Transmisión de calor de un cuerpo a otro

 

“El calor no puede ser transferido desde un cuerpo a un segundo cuerpo a temperatura mayor sin producirse ningún efecto, y, la entropía de un sistema sistema cerrado aumenta con el tiempo. Lo lógico es que del cuerpo caliente se transfiera calor al frío hasta igualar las temperaturas”

 

Entropia y entalpia | PPT

Esos conceptos introducen la Temperatura y la Entropía, los parámetros que determinan la dirección en la que un proceso irreversible puede ocurrir. Como decíamos antes, si se llega al cero absoluto, el valor de la entropía sería cero, es decir, el cambio de la entroìa sería nulo, como se cree que pasaría si el universo llega a ese final que algunos vaticinan de su muerte térmica.

Claro que, yo no soy tan agorero y parto de una base muy cierta: No lo sabemos todo y, lo poco que sabemos está sujeto a cambios (como nuestras teorías) a medida que vamos evolucionando y adquiriendo nuevos conocimientos. Ahora, podemos tener la impresión de que estamos a merced de esa Entropía que nos lleva al Caos y hacia la destrucción pero… (de nuevo un pero), ¿son inamovibles nuestros conocimientos actuales?

Creo en la generación de entropía negativa (por llamarla de alguna manera), y, el ejemplo de las estrellas nuevas que nacen continuamente y también, de nuestra propia descendencia… ¡Es una prueba irrefutable! De todas las maneras y, como siempre digo:

“Sabemos tan poco”

Emilio Silvera Vázquez

Sí, es cierto. Nosotros somos parte del Universo: La que piensa

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Cosas del Universo!    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Con frecuencia hemos hablado aquí de la Mente y de la Materia, del Universo y de las galaxias que lo pueblan, de los Mundos y de la Vida, de las múltiples teorías que observando y experimentando hemos creado para poder explicar la Naturaleza, de las Constantes Universales y de las cuatro Fuerzas Fundamentales. En fin, hemos hablado de los objetos exóticos que pueblan el universo y de las maravillas que ocurren en el corazón de las estrellas que, a temperaturas de millones de grados, transmutan los elementos simples en otros más complejos. De todo eso y de muchas más cosas hemos hablado aquí y, posiblemente, algún lector, haya podido aprender alguna cosa. Siempre hemos procurado exponer los temas de la manera más sencilla posible y, si lo hemos logrado o no, serán ustedes los que lo tengan que juzgar.

 

Una galaxia es un universo en miniatura, allí pueden estar representados todos y cada uno de los objetos que pueblan el Cosmos. En el ámbito de una galaxia todas las fuerzas del universo actúan allí a nivel local, La Gravedad mantiene allí unidas a las estrellas y los mundos, las Nebulosas y las ingentes cantidades de gas y polvo que contienen para crear estrellas nuevas. Allí, en las galaxias, residen agujeros negros, estrellas de neutrones y una gran variedad de estrellas y de sistemas solares, así como cometas errantes y enormes meteoritos que vagan por el espacio interestelar. En una galaxia, amigos míos, podemos encontrar todo aquello que en el universo existe. Las hay muy pequeñas, enanas con menos de un millón de estrellas y también, las hay gigantes y supergigantes que llegan a tener muchos cientos de miles de millones de estrellas. Algunas tienen diámetros que sobrepasan los 600.000 años-luz.

Pueden estar aisladas y también en pequeños grupos (como nuestro Grupo Local de Galaxias donde reinan Andrómeda y la Vía Láctea. Pero, también existen enormes estructuras, cúmulos y súper-cúmulos de galaxias como el de Virgo. Muchos son los tipos de galaxias conocidos y, referidas al material que las conforma, a su condiciones físicas específicas, o, también, a otras circunstancias especiales, raras o exóticas, la familia de las galaxias es grande y muy variada.

 

http://jehuelverdadero.files.wordpress.com/2012/01/cambiar-la-vida5b15d.jpg

Y, en todo ese aparente maremágnum, apareció la vida. “La Vida, como una cúpula de vidrio multicolor, mancha el blanco resplandor de la eternidad.” De la misma manera que no llegamos a comprender el Universo, tampoco conocemos lo que la vida es, y, hasta las definiciones que hemos encontrado para explicarla, ni se acercan a la realidad, a la grandiosidad, a la maravillosa verdad que el universo nos muestra a través de la vida, en la que, a veces, subyacen los pensamientos y los mejores sentimientos.

Aquí, como decía al principio, hemos comentado sobre los muchos procesos científicos que, de alguna manera, han podido involucrar a más de uno que, habiendo sentido curiosidad y teniendo ganas de saber, han seguido con cierta fidelidad lo que aquí pasaba. Hemos podido explicar que, la Astronomía, al destrozar las esferas cristalinas que, según se decía, aislaban la Tierra de los ámbitos etéreos que se hallan por encima de la Luna, nos puso en el Universo. También hemos podido contaros que la Física cuántica destruyó la metafórica hoja de cristal que supuestamente separaba al observador distante del mundo observado. Juntos, hemos podido descubrir que estamos todos, inevitablemente enredados en aquello que no conocemos pero que, deseamos conocer.

 

http://shedsenn.files.wordpress.com/2012/03/misterios.jpg

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, nos reveló una unidad cósmica que se extiende desde la fusión nuclear en el núcleo de las estrellas, hasta la química de la Vida. La Evolución darwiniana, al destacar que todas las especies (al menos de la vida terrestre que conocemos), están relacionadas y que todas surgieron a partir de la “materia inerte”, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida yb que, en definitiva, estamos hechos del mismo material que están hechos los mundos.

 

Resultado de imagen de En realidad formamos parte del UniversoResultado de imagen de En realidad formamos parte del Universo

Somos parte del Universo (una de esas partes que piensan), estamos hechos de “polvo de estrellas”

La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces por hombres sabios en otras esferas del pensamiento. Acordémonos de lo que dijo Heráclito: “Todas las cosas son una sola cosa”; Lao-tse en China, describió al hombre y la Naturaleza como gobernados por un solo principio (lo llamó el Tao); y la creencia en la unidad de la Humanidad con el Cosmos estaba difundida entre los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que “todas las cosas están conectadas, como la sangre que une a una familia”.

 

Resultado de imagen de el jefe indio suquamish Seattle,

“Si nadie puede poseer la frescura del viento ni el fulgor del agua, ¿Cómo es posible que usted se proponga comprarlos?” Le dijo al Presidente de los EE.UU. Y, en su carta seguía diciendo: Cada pedazo de esta tierra es sagrado para mi pueblo. Cada rama brillante de un pino, cada puñado de arena de las playas, la penumbra de la densa selva, cada rayo de luz y el zumbar de los insectos son sagrados en la memoria y vida de mi pueblo. La savia que recorre el cuerpo de los árboles lleva consigo la historia del piel roja.”

Resultado de imagen de Interconexión de todos los seres vivos de la TierraResultado de imagen de Interconexión de todos los seres vivos de la Tierra

Pero hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enogullecen de su lúcida búsqueda de hechos objetivos, empíricos. Desde los mapas de cromosomas y los registros fósiles que representan la interconexión de todos los seres vivos de la Tierra, hasta la semejanza de  las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos parte del universo en su conjunto.

 

Hace tiempo ya que, me resulta difícil no creer en la presencia de Vida en otros Mundos. “Un triste espectáculo. Si están habitados, ¡qué campo para el sufrimiento y la locura! Si no están habitados, ¡qué despilfarro de espacio!” La verificación científica de nuestra participación en las acciones del Cosmos tiene, desde luego, muchas implicaciones. Una de ellas, de la que hemos hablado aquí con frecuencia, es que, si la vida inteligente ha podido evolucionar aquí en la Tierra también puede haberlo hecho en otras partes del universo.

En cualquier planeta como la Tierra (de los que se ha calculado que existen  miles de millones sólo en nuestra Galaxia) que orbite una estrella como el Sol (de las que existen diez mil de millones sólo en nuestra Galaxia), si están situados a la distancia adecuada para que esté presente el agua líquida, lo más probable es, que la vida prolifere y, con el tiempo suficiente, evolucionar hasta la inteligencia. tranquilamente podemos especular que no somos la única especie que ha estudiado el universo y que se ha preguntado sobre su papel dentro de él.

 

Nuestra comprensión de la relación entre la mente y el universo puede depender de que podamos tomar contacto con otra especie inteligente con la cual compararnos. Raramente la Ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo. Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizás imposibles- de formular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolución cósmica reduce un poco esta dificultad al ofrecer a nuestra consideración el estado muy diferente del universo en los primeros momentos de la evolución cósmica). La cuestión de la vida extraterrestre, pues, va más allá de problemas como el de si estamos solos en el Universo, o si podemos esperar tener compañía cósmica o si debemos temer tener invasiones exteriores; sino que también sería una manera de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.

 

Goethe  dice en su Fausto: “primero que todo debéis estudiar la metafísica”. La metafísica es la auténtica disciplina de las grandes escuelas de oriente y occidente afirman enfáticamente que todo fenómeno de la naturaleza se halla íntimamente conectado con todos los fenómenos que le rodean. Ningún fenómeno puede estar aislado y cuando se le estudia aisladamente puede parecer un absurdo. La ley de causa y efecto es el engranaje secreto de la mecánica de la naturaleza.

 

Resultado de imagen de La Metafísica que va mucyho más allá del pensamiento

Cuando se trata de estudiar al Ser… Los filósofos echan mano de la Metafísica

Hay cuestiones que van mucho más allá de nuestros pensamientos, sobrepasan la propia filosofía y entran en el campo inmaterial de la Metafísica, quizá el único ámbito que realmente pueda explicar lo que la Mente es. Allí reside la esencia de lo complejo, del SER. Ya sabéis:

“Todo estado presente de una sustancia simple

es naturalmente una consecuencia de su estado

anterior, de modo que su presente está cargado de su futuro.”

Sabemos eso pero, ¿Qué futuro es el nuestro? Si extrapolamos lo anterior a nosotros y a nuestro futuro resultará que, el futuro será para nosotros lo que queramos que sea, es decir, lo podemos construir con nuestras acciones de hoy que harán el mañana.

Emilio Silvera Vázquez