viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Luz! Esa maravilla conformada por fotones

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

 

Hablemos un poco de la Luz, esa maravilla de la Naturaleza que nos permite contemplar el entorno en el que vivimos y nos aleja de la negra oscuridad.

Si hablamos de la Luz, tendremos que convenir que en su estado natural nos muestra sus mejores fasestas y, sin embargo, hemos sabido plasmar esa luz que la Naturaleza crea de manera artificial para poder utilizarla de mil maneras que, en cualquier Sociedad moderna de hoy, se hace imprescindible. Se dice que España es uno de los países más fotografiados por los astronautas. Y no es precisamente por su contraste de colores, sino por la cantidad de luz que desprenden las ciudades la noche. Es la llamada contaminación lumínica. Aunque eso, se podría aplicar a todas las grandes ciudades del mundo.

Por último, el exceso de luz afecta a la flora y fauna nocturnas, que precisan de oscuridad desarrollar sus ciclos vitales. Las aves se deslumbran y desorientan, se alteran los períodos de ascenso y descenso del plancton marino, lo que repercute en la alimentación de otras especies; los insectos modifican sus ciclos reproductivos, aumentan el número de plagas en las ciudades… Se rompe, además, el equilibrio poblacional de las especies, porque algunas son ciegas a ciertas longitudes de onda de luz y otras no, con lo cual las depredadoras pueden prosperar mientras se extinguen las depredadas. Respecto a las plantas, se quedan sin insectos que las polinicen. Aunque no hay estudios concretos sobre el tema, se cree que falta de polinización podría influir en la productividad de algunos los cultivos. En definitiva, que no sabemos administrar lo que tenemos.

iluminacion interior viviendas

                                                             Todos sabemos lo importante que llegar a ser la luz en nuestras viviendas

La luz es importante en nuestras vidas, tan importante que hasta hemos inventado luz artificial para alumbrar nuestras casas y ciudades y escapar de la fea oscuridad. Es una de radiación electromagnética a la que el ojo humano es sensible y sobre la cual depende nuestra consciencia visual del universo y sus contenidos.

                                           Gracias a la luz podemos contemplar el Universo y todos los objetos que nos rodean

La velocidad finita de la luz fue sospechada por muchos experimentadores en óptica, pero fue establecida en 1.676, O. Roemer (1.644 – 1.710) la midió. Sir Isaac Newton (1.642 – 1.727) investigó el espectro óptico y utilizó los conocimientos existentes establecer una primera teoría corpuscular de la luz, en la que era considerada como un chorro de partículas que provocaban perturbaciones en el “éter” del espacio.

luz5

incandescentes

Mediante el sentido de la visión, podemos captar los objetos en los que ésta se refleja. La fuente principal de la luz que vemos es el sol y es el resultado de sumar todos los colores, manifestándose pues de color blanco. La luz blanca se separa en los colores que la componen cuando pasa a través de un prisma. La luz visible es sólo una pequeña del gran espectro electromagnético. Con lo cual, un haz de luz está compuesto por pequeños paquetes de energía, denominados cuantos de luz o fotones. Al igual que la luz blanca existen otros principios luminosos que a diferencia de éste no son blancos, la explicación de ello radicaría en que dependiendo de la forma en que fuente genere luz tendremos un color u otro. Por ejemplo, las lámparas incandescentes (tungsteno) muestran un color rojizo.

La luz artificial es imprescindible cuando la luz natural desaparece. Si en una habitación bien decorada no se han tomado en los cambios de luz, todo su encanto desaparece cuando la iluminación se torna deficiente.

young

los años 1801 y 1803 Young presentó unos artículos ante la Royal Society exaltando la teoría ondulatoria de la luz y añadiendo a ella un concepto fundamental, el llamado principio de interferencia. Cuando se superponen las ondas provenientes de dos fuentes luminosas puntuales, sobre una pantalla colocada paralela a la línea de unión de los dos orificios, se producen franjas claras y oscuras regularmente espaciadas. Éste es el primer experimento en el que se demuestra que la superposición de luz producir oscuridad. Este fenómeno se conoce como interferencia y con este experimento se corroboraron las ideas intuitivas de Huygens respecto al carácter ondulatorio de la luz

Después de Newton, sucesores adoptaron los corpúsculos, pero ignoraron las perturbaciones con de onda hasta que Thomas Young (1.773 – 1.829) redescubrió la interferencia de la luz en 1.801 y mostró que una teoría ondulatoria era esencial para interpretar este tipo de fenómenos. Este punto de vista fue adoptado durante la mayor parte del siglo XIX y permitió a James Clerk Maxwell (1.831 – 1.879) mostrar que la luz forma parte del espectro electromagnético. En 1.905, Albert Einstein (1.879 – 1.955) demostró que el efecto fotoeléctrico sólo podía ser explicado con la hipótesis de que la luz consiste en un chorro de fotones de energía electromagnética discretos, esto es, pequeños paquetes de luz que él llamó fotones y que Max Planck llamó cuanto. renovado conflicto entre las teorías ondulatoria y corpuscular fue gradualmente resuelto con la evolución de la teoría cuántica y la mecánica ondulatoria. Aunque no es fácil construir un modelo que tenga características ondulatorias y cospusculares, es aceptado, de acuerdo con la teoría de Bohr de la complementariedad, que en algunos experimentos la luz parecerá tener naturaleza ondulatoria, mientras que en otros parecerá tener naturaleza corpuscular. Durante el transcurso de la evolución de la mecánica ondulatoria también ha sido evidente que los electrones y otras partículas elementales tienen propiedades de partícula y onda.

maxw_2

El fotón es una partícula con masa en reposo nula consistente en un cuanto de radiación electromagnética (cuanto de luz). El fotón también puede ser considerado una unidad de energía igual a hf, donde h es la constante de Planck y f es la frecuencia de radiación en hertzios. Los fotones viajan a la velocidad de la luz, es decir, a 299.792.458 metros por segundo. Son necesarios explicar (como dijo Einstein) el efecto fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula unas veces y de onda otras.

 

– concepto de la estructura de la luz, es una onda y una partícula.

– Las partículas de luz son “cuantos de luz” o fotones.

– El átomo propiedades cuánticas, el electrón .

El artículo sobre el efecto fotoeleléctrico fue enviado por Einstein a la revista Annalen der Physik el 17 de marzo, recibido al siguiente día y publicado el 9 de junio de 1905. Más tarde, por importante contribución, Einstein sería galardonado con el Premio Nobel de Física de 1921.

El conocimiento de la luz (los fotones), ha permitido a la humanidad avances muy considerables en electrónica que, al sustituir los electrones por fotones (fotónica) se han construido dispositivos de transmisión, modulación, reflexión, refracción, amplificación, detección y guía de la luz. Algunos ejemplos son los láseres y las fibras ópticas. La fotónica es muy utilizada en telecomunicaciones, en operaciones quirúrgicas por láseres, en armas de potentes rayos láser y… en el futuro, en motores fotónicos que, sin contaminación, moverán nuestras naves a velocidades súper-lumínicas.

                                    Tanto en medicina, trabajos industriales, o, en armamento, el láser es importante en nuestras vidas.

El electrón, otra partícula elemental importantísima todos nosotros y para el universo mismo, está clasificado en la familia de los leptones, con una masa en reposo (símbolo me) de notación numérica igual a 9’109 3897 (54) ×10-31 Kg y una carga negativa de notación numérica igual a 1’602 177 33 (49) ×10-19 coulombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; son arrancados del átomo se llaman electrones libres. La antipartícula del electrón es el positrón cuya existencia fue predicha por el físico Paúl Dirac. El positrón es un hermano gemelo del electrón, a excepción de la carga que es positiva.

El electrón fue descubierto en 1.897 por el físico Joseph John Thomson (1.856 – 1.940). El problema de la estructura (si es que la hay) del electrón no está resuelto; nuestras máquinas no tienen la potencia suficiente poder llegar, en el micromundo, a distancias infinitesimales de ese calibre. Si el electrón se considera una carga puntual su auto energía es infinita y surgen dificultades de la ecuación de Lorentz-Dirac.

Como lo queremos saber todo y llegar al fondo de todo, estamos intentando dividir el electrón, y, no creo que eso nos lleve a nada bueno. El electrón con su masa y su carga es esencial para la vida. ¡Dejemosló estar!

Es posible dar al electrón un tamaño no nulo con un radio r0 llamado el radio clásico del electrón, dado por ro = e2/(mc2) = 2’82×10-13 cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luz. modelo también tiene priblemas como la necesidad de postular las tensiones de Poincaré.

Se cree que los problemas asociados con el electrón deben ser analizados utilizando electrodinámica cuántica en vez de electrodinámica clásica.

El electrón es uno de los miembros de la familia de leptones: electrón (e), muón (μ), tau (τ) con sus correspondientes neutrinos asociados electrónico, muónico y tauónico.

espinoles y holones

Un equipo de físicos de las Universidades de Cambridge y de Birmingham ha demostrado que los electrones, que por separado son indivisibles, pueden dividirse en dos partículas nuevas llamadas espinones y holones, se concentran dentro de un estrecho cable. ¡Qué cosas!

Las tres partículas, electrón, muón y tau, son exactas, excepto en sus masas. El muón es 200 veces más masivo que el electrón. La partícula tau es unas 35.600 veces más masiva que el electrón. Los leptones interaccionan por la fuerza electromagnética y la interacción débil. cada leptón hay una antipartícula equivalente de carga opuesta ( explicamos antes, el positrón es la antipartícula del leptón electrón). Los antineutrinos, como los neutrinos, no tienen carga.

La interacción electromagnética es la responsable de las fuerzas que controlan las estructuras atómicas, las reacciones químicas y todos los fenómenos electromagnéticos. explicar las fuerzas entre las partículas cargadas pero, al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas (probar con imanes como las fuerzas desiguales y contrarias – positiva/negativa – se atraen, mientras que cargas iguales – negativa/negativa o positiva/positiva – se repelen).

Un equipo de físicos de las Universidades de Cambridge y de Birmingham ha demostrado que los electrones, que por separado son indivisibles, pueden dividirse en dos partículas nuevas llamadas espinones y holones, se concentran dentro de un estrecho cable.

Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se interpretar tanto como un campo clásico de fuerzas (Ley de Coulomb) como por el intercambio de fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tienen una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describen (como antes dije) con la electrodinámica cuántica. fuerza tiene una partícula portadora, el fotón.

Todos oímos con frecuencia la palabra “electrónica”, pero pocos pensamos que estamos hablando de electrones en diseños de dispositivos de control, comunicación y computación, basándose en el movimiento de los electrones en circuitos que contienen semiconductores, válvulas termoiónicas, resistencias, condensadores y bobinas y en la electrónica cuántica1 aplicada a la óptica, se han conseguido verdaderas maravillas que han facilitado grandes avances tecnológicos de distintas aplicaciones como la investigación o la medicina y la cirugía, otros.

Este pequeño comentario sobre la electrónica y la fotónica que antes habéis leído, demuestra cómo el conocimiento y sobre estos dos pequeñísimos objetos, el fotón y el electrón, nos ha dado unos beneficios increíbles.

Núcleo de un átomo de carbono mostrando la estructura de los <a href=

Los Quarks están confinados en el núcleo del átomo formando protones y neutrones. La Fuerza nuclear fuerte los retiene que no se puedan separar los unos de los otros a más distancia de la que es necesaria para mantener la estabilidad y, se les consiente lo que se denomina libertad asintótica de los Quarks.

Existen otras partículas aún más diminutas que, en realidad, podríamos decir que son los auténticos ladrillos de la materia, los objetos más pequeños que la conforman: los quarks.

En la antigua Grecia, sabios como Demócrito, Empédocles, Thales de Mileto o Aristóteles, ya sospecharon de la existencia de pequeños objetos que se unían para formar materia. Demócrito de Abdera decía que todo estaba formado por pequeños objetos invisibles e indivisibles a los que llamaba a-tomo o átomos (en griego significa “indivisibles”).

Pasaron muchos años de controversia sobre la existencia de los átomos y, en 1.803, el químico y físico británico John Dalton señaló que los compuestos físicos se combinaban para, en ciertas proporciones, formar agrupamiento de átomos para formar unidades llamadas moléculas.

En 1.905 llegó Einstein dar una de las evidencias físicas más importante de la existencia de los átomos, al señalar que el fenómeno conocido como movimiento browniano – el movimiento irregular, aleatorio de pequeñas partículas de polvo suspendidas en un líquido – podía ser explicado por el efecto de las colisiones de los átomos del líquido con las partículas de polvo.

Por aquella época ya había sospechas de que los átomos no eran, después de todo, indivisibles. Hacía varios que J. J. Thomson, de Cambridge, había demostrado la existencia de una partícula material, el electrón, que tenía una masa menor que la milésima de la masa del átomo más ligero. Se comprendió que estos electrones debían provenir de los átomos en sí. Y, en 1.911, el físico británico Ernest Rutherford mostró finalmente que los átomos de la materia tienen verdaderamente una estructura interna: están formados por un núcleo extremadamente pequeño y con carga positiva, alrededor del cual gira un cierto de electrones.

En 1.932, un colega de Rutherford, James Chadwick, descubrió también en Cambridge que el núcleo contenía otras partículas, llamadas neutrones, que tenían casi la misma masa del protón que una carga positiva igual en magnitud a la del electrón que es negativa, con lo cual, como todos los núcleos tienen el mismo de protones que de electrones hay en el átomo, el equilibrio de éste queda así explicado: carga positiva similar a carga negativa = a estabilidad en el átomo.

emilio silvera

 

  1. 1
    Emilio Silvera
    el 11 de septiembre del 2014 a las 8:46

    Los fotones, desde que Einstein los “bautizó” en su trabajo del Efecto Fotoeléctrico, por el que ganó el Premio Nobel de Física de 1921, son las partículas (para menos para mí) entrañables. Son las que más corren por el universo (299.792.458 metros por segundo), hacen posible los láseres y los máseres, están presentes por todas partes y, el universo, nos muestra su luminosidad gracias a ellos, sin fotones todo sería negro.

    Por otra parte, son los fotones los que hicieron posible operaciones con láser en los ojos para mejorar la visión. También son ellos, los que han constituido una nueva rama de la cienca “La Fotónica”, y, desde luego, de entre los Bosones, es el más famoso.

    A principios del siglo XX se había demostrado que la radiación electromagnética transporta energía, que puede absorberse o emitirse. Para explicar los procesos de emisión y absorción, Plank y Einstein propusieron que la energía de la radiacíón está compuesta de unidades (cuantos) indivisibles. En cada proceso elemental sólo puede emitirse o absorberse un cuanto de luz. A cada uno de estos cuantos se les denominó “fotón”. El fotón es una partícula que se denota con la letra griega $\gamma$. La energía de un fotón es proporcional a la frecuencia de la radiación:

    \begin{displaymath}
E_\gamma = h\nu
\end{displaymath}

     

     

     

    En la Física el Fotón es aquella partícula de luz que se propaga en el vacío. El fotón es la partícula responsable de las manifestaciones cuánticas del fenómeno electromagnético, porque es portadora de todas aquellas formas de radiación electromagnética, entre las que se incluyen los rayos gamma, los rayos x, la luz ultravioleta, la luz infrarroja, las ondas de radio, las microondas, entre otras.

    Al presentar una masa invariante, el fotón viaja a través del vacío a una velocidad constante, en tanto, al presentar propiedades corpusculares y ondulatorias, el fotón se comportará como una onda en fenómenos tales como la refracción de una lente y a la vez como una partícula, cuando interaccione con la materia para transferir una cantidad fija de energía.

    Desde Definicion ABC: http://www.definicionabc.com/ciencia/foton.php#ixzz3CzStdrRk

    Un fotón es capaz de atravesar un aparato sin entrar ni salir de él

    Una variación del experimento de la doble rendija, creado hace más de 200 años por el británico Thomas Young para demostrar la naturaleza ondulatoria de la luz, ha servido a un equipo de investigadores de la Universidad de Tel Aviv (Israel) para desvelar un comportamiento de los fotones que resulta insólito incluso desde los estándares de la mecánica cuántica. Los científicos han probado que un fotón es capaz de pasar por un lugar sin haber entrado en él ni salir jamás, lo que puede explicarse desde la doctrina clásica de la mecánica cuántica, pero que a juicio de los investigadores se entiende mucho mejor desde una interpretación en la que el presente de una partícula es consecuencia de la combinación de sus estados cuánticos pasados y futuros.

    Es curioso como Planck, al referirse a las constantes de la Naturaleza (la velocidad de la luz lo es), decía:

    “Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”

    Planck, en sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros, ya que, al ser números naturales que no inventaron los hombres, todos los seres inteligentes del Universo  tendrían que hallar el mismo resultado. No importa en qué planeta pudieran habitar, si son seres inteligentes, empleando los grafos más extraños que a nosotros nada nos pudiera decir, lo cierto es que hay un lenguaje universal: ¡Las matemáticas! que, independientemente de los guarismos empleados, al final de todo 2 x 5 = 10 y 2 + 2 + 2 + 2 + = 10. Empleen las ecuaciones o fórmulas que puedan con los números que puedan utilizar, no podrán variar los resultados de los números puros y adimensionales creados por la Naturaleza: Esas constantes que persisten en el tiempo y nunca cambian y que hacen de nuestro universo el que podemos observar, además de posible la vida. A esos extraterrestres, también, la constante de estructura fina le daría 1/137.

    Existe un lazo entre la estructura del universo en conjunto y las locales internas que se necesitan para que la vida se desarrolle y persista. Si las constantes tradicionales varían, entonces las teorías astronómicas tienen grandes consecuencias para la biología, la geología y la propia vida.

    No podemos descartar la idea ni abandonar la posibilidad de que algunas “constantes” tradicionales de la naturaleza pudieran estar variando muy lentamente el transcurso de los miles de millones de años de la historia del universo. Es comprensible por tanto el interés por los grandes números que incluyen las constantes de la naturaleza. Recordemos que Newton nos trajo su teoría de la Gravedad Universal, que más tarde mejora Einstein y que, no sería extraño, en el futuro mejorará algún otro con una nueva teoría más completa y ambiciosa que explique lo grande (el cosmos) y lo pequeño (el átomo), las partículas (la materia) y la energía por interacción de las cuatro fuerzas fundamentales.

    ¡Es todo tan complejo!

    Responder
  2. 2
    emilio silvera
    el 11 de septiembre del 2014 a las 11:06

    El CINTURÓN FOTÓNICO fue inicialmente descubierto cuando el famoso astrónomo británico Edmund Halley comenzó una serie de estudios sobre las Pléyades (conocidas como: Las siete cabrillas) a comienzo del siglo XVIII. Halley es reconocido por su descubrimiento del cometa Halley, que parecía demostrar las leyes newtonianas del movimiento planetario. Halley descubrió que por lo menos 3 de las estrellas del grupo de las Pléyades no estaban en las mismas posiciones registradas en tiempos bíblicos por varios astrónomos griegos.
     
     
    Los fotones son mucho más de lo que a aismple vista nos pueden parecer. Su velocidad marca el límite al que algo puede desplazarse por nuestro Universo, son de distintas energías según a la radiación electromagnética que esté sirviendo en ese momento, de ellos está hecha la Luz que nos deja contemplar los objetos de materia que, al recibir su reflejo y contacto, quedan al descubierto ante nuestros ojos desnudos. El Fotón, es mucho más de lo que se puede percibir.
     

     
     
    La fotónica es la ciencia de la generación, control y detección de fotones, en particular en el espectrovisible e infrarrojo cercano, pero que también se extiende a otras porciones del espectro que incluyen al ultravioleta (longitudes de onda de 0,2 – 0,35 µm), infrarrojo de onda larga (8 – 12 µm) e infrarrojo lejano (75 – 150 µm), en donde actualmente se están desarrollando de manera activa los láser de cascada cuántica. La fotónica surge como resultado de los primeros semiconductores emisores de luz inventados a principios de 1960 en General Electric, MIT Lincoln Laboratory, IBM, y RCA y hechos factibles en la práctica por Zhores Alferov y Dmitri Z. Garbuzov y colaboradores que trabajaban en el Ioffe “Physico-Technical Institute y casi simultáneamente por Izuo Hayashi y Mort Panish que trabajaban en los Bell Telephone Laboratories.
    De la misma manera que las aplicaciones de la electrónica se han ampliado de manera contundente desde que el primer transistor fuera inventado en 1948, las nuevas aplicaciones particulares de la fotónica siguen apareciendo. Aquellas de las cuales se consideran aplicaciones consolidadas y económicamente importantes de los dispositivos fotónicos de semiconductores incluyen: almacenamiento óptico de datos, telecomunicaciones por fibra óptica, impresión láser (basada en la xerografía), visualizadores y bombeo óptico en láseres de alta potencia. Las aplicaciones potenciales de la fotónica son virtualmente ilimitadas e incluyen: síntesis química, diagnóstico médico, comunicación de datos on-chip, defensa con armas láser y obtención de energía mediante fusión, entre otras aplicaciones interesantes.”

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting