lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo siempre asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

Resultado de imagen de Especies que han poblado la TierraResultado de imagen de Especies que han poblado la TierraResultado de imagen de Especies que han poblado la TierraResultado de imagen de Especies que han poblado la TierraResultado de imagen de Especies que han poblado la TierraResultado de imagen de Hominidos que han poblado la Tierra

 

¡Han sido y son tantas formas de vida las que han pasado y están en la Tierra! Dicen los expertos que sólo el uno por ciento de las especies que han existido viven actualmente en nuestro planeta y, teniendo en cuenta que son millones, ¿Cuántas especies han pasado por aquí? Nosotros, la especie Homo, somos unos recién llegados en comparación con la edad del Universo, nuestro tiempo aquí, comparado con los 13.750 millones de años que tiene el Universo… ¡Es un simple parpadeo!

 

          Resultado de imagen de El ecosistema superior de la Tierra

 

Nuestro mundo, aunque en la Galaxia existan muchos como él, es un lugar privilegiado que conforma un Ecosistema superior en su conjunto formado por muchos ecosistemas locales aislados los unos de los otros y sin embargo, todos conexionados. La Diversidad de regiopnes diferentes que existen dentro del mismo planeta es asombroso y, lo mismo nos podemos encontrar en un lugar como ese que vemos arriba, o en una isla paradisíaca, una selva, un desierto, o perdidos en un inmenso y embravecido océano, en la ventisca de nieve de inmensas montañas y, también, en grutas enormes en las profundidades del planeta.

                                           

 

Ni afirmar ni negar podemos. En lo referente a la vida en otros mundos, todo podría ser posible y la vida tanto inteligente como vegetativa en múltiples formas y con distintos metabolismos, como ocurre aquí en nuestro planeta, es posible que esté presente en aquellos mundos que como el nuestro tengan aquellos requisitos necesarios para su sustento. Atmósfera calentada por una estrella benigna que suministre calor al planeta, océanos y bosques, y, en definitiva, todo aquellos que es necesario para mantener latente formas de vida que como la nuestra, parecida o totalmente diferentes, se desarrollen en un ambiente adecuado a las condiciones que cada especie pudiera requerir. La ausencia de pruebas no es prueba de ausencia.

  

  Un extraño pequeño mundo donde llueve metano y haría las delicias de las compañías petrolíferas

 

Titán, el mayor satélite de Saturno, es un lugar misterioso. Su gruesa atmósfera es rica en compuestos orgánicos, algunos de los cuales podrían implicar la presencia de signos de vida si se hallasen en nuestro planeta. ¿Cómo se han originado éstos? ¿Pueden ayudarnos a descubrir como la vida se formó en la Tierra? Y, estando ahí presentes estos compuestos bioquímicos, ¿estará presente allí alguna clase de vida?

 

  

 

                 Una galaxia y un átomo

Lo grande y lo pequeño de eso nos habla la Relatividad General y la mecánica cuántica

 

1 - Curso de Relatividad General - YouTubePor qué la ecuación de Schrödinger, que describe la evolución temporal de una partícula subatómica, utiliza variable compleja? - Quora

        Ecución de la Relatividad General                             Ecuación de la Mecánica Cuántica

 

 

Existen dos pilares fundamentales en los cuales se apoya toda la Física moderna. Uno es la relatividadgeneral de Albert Einstein, que nos proporciona el marco teórico para la comprensión del Universo a una escala máxima: estrellas, Galaxias, cúmulos(o clusters) de Galaxias, y aún más allá, hasta la inmensa expansión del propio Universo.

De la otra parte, en el extremo contrario, está ese “mundo” de lo infinitesimal donde imperan las partículas subatómicas y sus extraños comportamientos, el mundo de los cuantos, donde los Quarks se unen en tripletes para formar protones y neutrones que serán los futuros nucleones de los átomos que se juntarán para conformar la materia y los cuerpos mayores. Todo lo grande está hecho de cosas pequeñas.

 

Pero hablemos ahora de las cosas del Universo.
                        La impresionante imagen del Webb que revela cúmulos masivos de galaxias se unen
                                                                               Grupos de galaxias

 

El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos c徂mulos de galaxias que, al colisionar con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.

 

El telescopio James Webb capta la imagen infrarroja más nítida y profunda del Universo

 

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.

 

            La Nebulosa Piel De Zorro desde el CFHT

                           Resultado de imagen de La nebulosa del Unicornio

                                 Resultado de imagen de El telescopio capta la imagen conocida por el árbol de navidad

                        La piel de Zorra, el Unicornio y el árbol de Navidad

Pero está claro, como digo, que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares y mundos, la Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

 

Resultado de imagen de la diversidad de la Vida

 

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

 

                                        Microcristales de arcilla

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

Resultado de imagen de Los Quarks confinados en los nucleones

 

Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

 

Cuadernos de Física: El átomo de Hidrógenouranio - Wikcionario, el diccionario libre

 

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Resultado de imagen de Los átomos se juntan para formar moléculas

                                                Los átomos se juntan para formar moléculas

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

 

Detectan la primera molécula orgánica quiral en el espacio interestelarLa Gran Nube de Magallanes contiene moléculas orgánicas sorprendentemente complejasPrimera detección de una molécula interestelar con tres átomos de oxígeno

            Ya son muchas decenas de moléculas encontradas en las nubes interestelares

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

72.836 fotos e imágenes de Moleculas - Getty ImagesPor qué tu cerebro no es un hígado si casi todas las células tienen el mismo ADN?

                                                      Moléculas y Células

 

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales spdfgh. Este pequeño número nos proporciona una gran diversidad.

Resultado de imagen de la hibridación´

                        Hibridación del Carbono

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también neguentropía (La neguentropía se puede definir como la tendencia natural de que un sistema se modifique según su estructura y se plasme en los niveles que poseen los subsistemas dentro del mismo. Por ejemplo: las plantas y su fruto, ya que dependen los dos para lograr el método de neguentropía.)

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas iso-electrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

 

 

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetra-valencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?

Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espaciotiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presente en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diezmilésima… ¡La Vida no sería posible!

 

Resultado de imagen de NGC 3603 - Clúster de explosión de estrella

 

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

 

Imagen relacionada

 

NGC 3603 alberga miles de estrellas de todo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.

 

Resultado de imagen de El colapso de las estrellas masivas

 

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas. Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estudiando los remanentes de supernovas muy antiguas no se podían ver.

 

                             Resultado de imagen de Sher 25,

 

También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima).  ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.

 

                                   Resultado de imagen de Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.Resultado de imagen de Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

                  Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alrededor de estas estrellas de neutrones y púlsares que se conviertan en magnetares.

 

Estrella de neutrones radiosilenciosa - Wikipedia, la enciclopedia libreDescubren un enigmático objeto estelar que desafía la física de las estrellas de neutrones | CienciaDetectan el púlsar (estrella de neutrones) más lento | El Economista

 

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condición. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y también una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

 

 

Las estrellas de neutrones y quarks explicadas para todos los públicos: así se forman dos de los objetos más asombrosos del universo

 

La densidad de estas estrellas es increíblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta el día de hoy solo se conocen unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nuestros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

 

 

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

 

 

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

 

 

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, nacerán nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

 

                         El remanente estelar después de la explosiòn puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

 

foto

¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

emilio silvera

 

  1. 1
    emilio silvera
    el 3 de noviembre del 2023 a las 14:18

    Lo más asombroso del Universo, para nosotros, es el hecho de que estemos aquí, que seamos conscientes de Ser, que a partir de la “materia inerte”, se pudiera llegar hasta los pensamientos, las ideas y los sentimientos.

    ¿Cómo se podría explicar algo así?

    Todo eso nos hace pensar que, el Universo, sabía que íbamos a venir. Y, para hacerlo posible puso en marcha todos los mecanismos necesarios que son de una complejidad tal que, hasta el momento presente, nadie ha sabido darle una explicación plausible y científica que nos deje satisfechos.

    ¿Qué capacidad pueden tener unas partículas infinitesimales para que, miembros de las distintas familias, se coloquen en el lugar adecuado y preciso para que se formen los átomos.

    ¿Acaso esas partículas tienen entendimiento?

    Si no lo tienen… ¿Cómo es posible que se colocaran adecuadamente y combinadas de la manera exacta para que el átomo tomara “vida”, se juntara con otros átomos para formar moléculas, que estas se reunieran para conformar células y, finalmente, estas células también se juntaran en la adecuada situación para formar cuerpos de materia.

    Y, qué decir que, a partir de esa materia “inerte” pusieran surgir pensamientos.

    Son muchos los “asombros” que tendríamos que relacionar para expresar todas las cosas que nos han maravillado.

    La propia existencia de las estrellas que se forman a partir de una anomalía gravitatoria en un conglomerado de gas y polvo, se forma una especie de vórtice que gira más y más, va atrayendo más material y cada vez el núcleo se ve más condensado, y, llegado a un punto, entra en escena la fusión de elementos sencillos para transmutarlos en otros más complejos.

    El contenido de las galaxias que son universos islas como nos decía Kant.

    Un sin fin de maravillas que nos llevaría muchas páginas explicar hasta donde nuestros limitados conocimientos nos permitiera, y, desde luego, habría que llenar muchas bibliotecas con dichos escritos, ya que, el Universo es lo que todo lo contiene.
    Cuando repaso estas cuestiones, se me viene a la mente aquellas palabras del gran pensador:

    “… que no está muerto lo que duerme eternamente, y, con el paso de los eones, hasta la misma muerte tendrá que morir”.

    ¿será posible que tanta grandeza termine de 4esa manera?

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting