viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Con el cambio del siglo, cuando Einstein empezaba a trabajar en la electrodinámica de los cuerpos en movimiento, la satisfactoria versión de Lorentz de la teoría de Maxwell había ganado amplia aceptación. También es bien conocido el experimento de Michelson-Morley (experimento óptico sensible) queriendo detectar  el movimiento de la Tierra a través del éter que falló y Lorentz trató de explicar dicho fallo a través de su teoría.

El trabajo de Einstein se basaba en una nueva perspectiva sobre el problema. En lugar de considerar el fracaso de los experimentos electromagnéticos y ópticos para detectar el movimiento de la Tierra a través del éter como algo a deducir de las ecuaciones electrodinámicas, el tomó este trabajo como una prueba empírica de la validez del principio de relatividad en electrodinámica y óptica. De hecho, él afirmaba la validez universal del principio, haciendo de éste un criterio para la aceptabilidad de cualquier ley física. A este respecto dio al principio de relatividad un papel similar al principio de termodinámica, un ejemplo que le sirvió de guía, según afirmó más tarde. Más que ser deducciones de otras teorías, tales principios se toman como postulados para cadenas de razonamiento deductivo que dan como resultado la formulación de criterios generales que deben satisfacer todas las teorías físicas.

Einstein se enfrentó entonces al problema de hacer la electrodinámica de Maxwell-Lorentz compatibles con el principio de relatividad. Lo hizo por medio de un principio extraído de la misma electrodinámica, el principio de la constancia de la velocidad de la luz. El que la velocidad de la luz es independiente de la de su fuente, y tiene un valor constante en el sistema del éter en reposo, puede deducirse de la teoría de Maxwell-Lorentz. Einstein desechó el éter de dicha teoría y tomó la constancia de la velocidad de la luz como un segundo postulado, apoyado por toda la evidencia empírica a favor de la teoría de Maxwell-Lorentz.

Cuando se combina con el principio de relatividad, esto lleva a una conclusión aparentemente paradójica: la velocidad de la luz debe ser la misma en todos los sistemas de referencia inerciales. Este resultado entra en conflicto con la ley newtoniana de adición de velocidades, obligando a una revisión de los fundamentos cinemáticos subyacentes a toda la física. Einstein mostró que la simultaneidad de sucesos distantes sólo está definida físicamente con relación a un sistema de referencia inercial concreto, lo que conduce a transformaciones cinemáticas entre las coordenadas espaciales y temporales de dos sistemas inerciales que concuerdan formalmente con las transformaciones de Lorentz que había introducido en 1904.

Einstein demostró que las ecuaciones de Maxwell-Lorentz  para el espacio vacío permanecen invariante (en forma) bajo las nuevas transformaciones cinemáticas cuando se definen adecuadamente las leyes de transformación para los campos eléctrico y magnético. Dedujo leyes de transformación apropiadas para densidades de carga y velocidades a partir del requisito de que las ecuaciones de Maxwell permanecen invariantes cuando se añaden corrientes de convección. Finalmente, suponiendo que las ecuaciones de Newton son válidas para una partícula cargada en reposo, fue capaz de utilizar una transformación cinemática para deducir las ecuaciones de movimiento de una partícula cargada (“electrón”) con velocidad arbitraria.

Muchos fueron los artículos que se escribieron por aquellos tiempos sobre todo este entramado de la física y, Einstein, como no sería de extrañar, estaba al día de todos ellos pero, su enfoque del problema, que conduce a la combinación peculiar de estas ideas en su artículo sobre la Relatividad, es único –especialmente el reconocimiento de que se necesita una nueva cinemática de aplicabilidad universal como base para un enfoque consistente de la electrodinámica de cuerpos en movimiento.

El trabajo de Einstein sobre la relatividad nació de su ya antiguo interés en la electrodinámica y la óptica de cuerpos en movimiento. En su primer ensayo científico, escrito en 1895, discutía la propagación de la luz a través del éter. Poco después se supo de aquella idea (más tarde famosa): “Si uno persiguiera una onda luminosa con la velocidad de la luz, se encontraría con un campo ondulatorio independientemente del tiempo. Sin embargo, ¡no parece que exista nada semejante! Éste fue el primer experimento mental infantil relacionado con la teoría de la relatividad especial”.

Ya sobre 1989, Einstein estudió a fondo a la teoría electromagnética de Maxwell, aparentemente con la ayuda del libro de texto de Drude. En 1899, después de estudiar los artículos de Hertz sobre el tema, estaba trabajando sobre la electrodinámica de cuerpos en movimiento. En 1901, Einstein le explicó sus ideas sobre el tema al profesor Alfred Kleiner de la Universidad de Zurich, quien le animó a publicarlas pero, no hay evidencia alguna de que lo hiciera.

Los comentarios de Einstein muestran que en 1899 su punto de vista sobre la electrodinámica eran similares a los de Lorentz; pero, aparte de esta similitud, no hay evidencia de que Einstein hubiera leído todavía nada escrito por Lorentz. Hay evidencia contemporánea directa, o evidencia indirecta fuerte, que indica que hacia 1902 Einstein había leído o estaba leyendo trabajos sobre electrodinámica y óptica de Drude, Helmholtz, Hertz, Lorentz, Voigt y Föppl.

Durante estos años aparecieron en los Annalen varios artículos importantes sobre electrodinámica y óptica de cuerpos en movimiento. En sus artículos sobre Relatividad, él citaba varios trabajos publicados antes de 1905, y es posible que leyera uno o más de estos antes de 1905. Einstein también leía extensamente sobre los fundamentos de la ciencia. Más tarde atribuyó gran importancia para su desarrollo de la teoría de la relatividad a su lectura de Hume, Mach y Poincaré.

Hacer aquí un trabajo pormenorizado de todos los acontecimientos que llevaron a Einstein a su relatividad especial, requeriría un libro en sí mismo. En la maraña de sucesos y personajes que nutren la historia de la ciencia se han conocido momento muy singulares de los que han surgido cambios revolucionarios. 1905 fue uno de esos hitos. En aquel año maravilloso, Albert Einstein (un desconocido empleado de 3ª en la Oficina de Patentes de Berna en Suiza), publicó cinco artículos, hoy imprescindibles para conocer el desarrollo de la Física, y, en más de un sentido, de la Humanidad.

Dos de aquellos artículos fueron especialmente importantes: “Sobre el punto de vista heurístico concerniente a la producción y transformación de la luz” –en el que Einstein extendió a la radiación electromagnética la discontinuidad cuántica, que Max Planck había introducido en la física cinco años antes- en que creo la teoría de la relatividad especial, que revolucionaba nociones filosóficamente tan fundamentales como las de espacios y tiempo, socavando la física anterior. También su trabajo contiene una sencilla expresión matemática, E = mc2, sobre cuya verdad darían fe las explosiones nucleares que pusieron fin a la Segunda Guerra Mundial.

emilio silvera

 

  1. 1
    emilio silvera
    el 4 de diciembre del 2013 a las 10:20

    Es cierto que si nos ponemos a pensar de manera profunda en un concreto tema que ha despertado nuestra curiosidad, y, mediante el pensamiento tratamos de dilucidar los enigmas que tal cuestión puede encerrar, se nos ocurren mil cuestiones y encontramos múltiples maneras de obtener de aquello los diversos caminos que podrían ser. Es decir, podemos teoríazar y conjeturar cuanto queramos y, aunque en alguna ocasión podamos acertar, lo cierto es que, para concretar sobre esos posibles resultados enigmáticos, la mayoría de las veces hemos tenido que trabajar mucho, observar y experimentar, o, incluso, contemplar de manera contiunuada los comportamientos de la Naturaleza para que, al fín, un día se nos iluminara la Mente para comprender el suceso.
    Es el duro y continuado trabajo el que nos trae las respuestas y nos da el conocimiento que, de otra manera, nunca podremos alcanzar. El ser muy listo, si no hace lo necesario para saber… ¡Nunca sabrá! Podrá suponer e imaginar pero, lo que se dice saber…
    Aplicaos el cuento y… ¡hala, a estudiar!

    Responder
  2. 2
    Yolanda Teresa Soriano carrazzoni
    el 6 de diciembre del 2013 a las 15:27

    Gracias estoy de acuerdo me encantan tus investigaciones y comentarios algunos los he publicado en mi FACEBOOK

    BENDICIONES
     

    Responder
    • 2.1
      emilio silvera
      el 7 de diciembre del 2013 a las 7:42

      ¡Hola, amiga Yolanda!
      Es bueno querer saber sobre los secretos de la Naturaleza y sobre los pensamientos que nuestras mentes generan. Nunca dejaremos de perseguir ese saber del “mundo”, ni dejaremos de preguntar el por qué la Naturaleza, el Universo, se comporta de esa o aquella manera. Nosotros somos una parte del Universo que piensa, y, teniendo dentro ese ingrediente que llamamos curiosidad, vamos siempre persiguiendo las respuestas y tratando de desvelar los secretos que la Naturaleza esconde. También nosotros, somos uno de los más grandes secretos que se puedan desvelar.
      ¡De la materia “inerte” a los pensamientos!
      ¿Cómo pudo ocurrir una cosa así?
      Bueno, seguiremos buscando la respuesta que, aunque no será nada fácil de encontrar… Mientras la hallamos, iremos viviendo una aventura inimaginable: Descubriremos que somos la materia evolucionada que nació en las estrellas y quién sabe, hasta dónde podremos llegar.
      Un cordial saludo amiga, y, no dejes de publicar en tu FACEBOOK. todas las cosas que de este lugar te puedan llamar la atención.
      ¡Que la salud y la suerte te acompañen!

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting