May
18
Sigamos aprendiendo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.
Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.
Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).
La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.
Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación. Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.
Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.
La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.
Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.
Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia?
Continuemos pues aprendiendo cosas nuevas.
En alguna de estas páginas dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en trabajo cuando dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.
El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo hasta el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).
Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un trabajo. El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.
Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún trabajo, por muy alta que sea aquella.
El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión.
Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados entre sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.
Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo.
El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el nombre de “termodinámica“, que en griego significa “movimiento de calor”.
Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. Esta regla es tan fundamental que se la denomina “primer principio de la termodinámica”.
La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos básica, y que denomina “segundo principio de la termodinámica.”
Según este segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más trabajo, ni pueden producirse cambios.
¿Está degradándose el universo?
Pensemos en un reloj. Los relojes funcionan gracias a una concentración de energía en su resorte o en su batería. A medida que el resorte se destensa o la reacción química de la batería avanza, se establece un flujo de energía desde el punto de alta concentración al de baja concentración, y como resultado de este flujo anda el reloj. Cuando el resorte se ha destensado por completo o la batería ha finalizado su reacción química, el nivel de energía es uniforme en todo el reloj, no hay ya flujo de energía y la maquinaria se para. Podríamos decir que el reloj se ha “degradado”. Por analogía, decimos que el universo se “degradará” cuando toda la energía se haya igualado.
Si es cierto el segundo principio de la termodinámica, todas las concentraciones de energía en todos los lugares del universo se están igualando, y en ese sentido el universo se está degradando. La entropía alcanzará un máximo cuando la energía del universo esté perfectamente igualada; a partir de entonces no ocurrirá nada porque, aunque la energía seguirá allí, no habrá ya ningún flujo que haga que las cosas ocurran.
La situación parece deprimente (si el segundo principio es cierto), pero no es para alarmarse ahora, ya que el proceso tardará billones de años en llegar a su final y el universo, tal como hoy existe, no sólo sobrevivirá a nuestro tiempo, sino que con toda probabilidad también a la humanidad misma.
De todo esto podemos obtener una consecuencia clara y precisa; de acuerdo con el segundo principio de la termodinámica, la entropía del universo está en constante aumento, es decir, la energía que contiene tiende a igualarse en todas partes. Así que, como cualquier proceso que iguala las concentraciones de energía está aumentando el desorden en el sistema, nuestro universo cada vez tiene un mayor desorden con los movimientos aleatorios libres de las partículas que lo componen, cuyo comportamiento no es más que una especie de medida del desorden que en el universo se produce de manera continuada.
La entropía está presente en la vida cotidiana: objetos que se descolocan, cosas que se desordenan, vestidos que se ensucian, un vaso que se cae y se rompe, los muebles que se llenan de polvo, el suelo que recoge las marcas de los pies que lo pisan, todo eso es entropía y, para arreglarla, tenemos que disponer bien las cosas, recoger los objetos caídos, lavar la ropa y limpiar el suelo o quitar el polvo, con lo cual, la entropía continúa estando presente en el esfuerzo que todo ello conlleva y deteriora la lavadora, la aspiradora y nos causa a nosotros por el esfuerzo realizado (deterioro-entropía).
La entropía está ineludiblemente unida al tiempo, ambos caminan juntos. En procesos elementales en los que intervienen pocos objetos es imposible saber si el tiempo marcha hacia delante o hacia atrás. Las leyes de la naturaleza se cumplen igual en ambos casos. Y lo mismo ocurre con las partículas subatómicas.
Un electrón curvándose en determinada dirección con el tiempo marchando hacia delante podría ser igualmente un positrón curvándose en la misma dirección, pero con el tiempo marchando hacia atrás. Si sólo consideramos esa partícula, es imposible determinar cuál de las dos posibilidades es la correcta.
En aquellos procesos elementales en que no se puede decir en que dirección marcha el tiempo, no hay cambio de entropía (o es tan pequeña la variación que podríamos ignorarla). Pero en los procesos corrientes, en las que intervienen muchas partículas, la entropía siempre aumenta. Que es lo mismo que decir que el desorden siempre aumenta.
Un saltador de trampolín cae en la piscina y el agua salpica hacia arriba; cae un jarrón al suelo y se hace añicos; las hojas caen de los árboles y se desparraman por el suelo.
Se puede demostrar que todas estas cosas, y en general, todo cuanto ocurre normalmente en derredor nuestro, lleva consigo un aumento de entropía. Estamos acostumbrados a ver que la entropía aumenta y aceptamos ese momento como señal de que todo se desarrolla normalmente y de que nos movemos hacia delante en el tiempo. Si de pronto viésemos que la entropía disminuye, la única manera de explicarlo sería suponer que nos estamos moviendo hacia atrás en el tiempo: las salpicaduras de agua se juntan y el saltador saliendo del agua asciende al trampolín, los trozos del jarrón se juntan y ascienden hasta colocarse encima del mueble y las hojas desperdigadas por el suelo suben hacia el árbol y se vuelven a pegar en las ramas. Todas estas cosas muestran una disminución de la entropía, y sabemos que esto está tan fuera del orden de las cosas que la película no tiene más remedio que estar marchando al revés.
En efecto, las cosas toman un giro extraño cuando el tiempo se invierte, que el verlo nos hace reír.
Por eso la entropía se denomina a veces “la flecha del Tiempo”, porque su constante aumento marca lo que nosotros consideramos el “avance del tiempo”.
emilio silvera