jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Interacciones fundamentales!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como pueden haber deducido por el título, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos.  Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el universo. Las cuatro fuerzas fundamentales que hacen de nuestro Universo el que podemos observar y los sucesos que en él se producen, los comportamientos de la materia… Muchas veces hemos comentado aquí que, si algunas de esas fuerzas fueran diferentes, también lo sería nuestro universo.

Viene de lejos el deseo de muchos físicos que han tratado de unificar en una teoría o modelo a las cuatro fuerzas, que pudieran expresarse mediante un conjunto de ecuaciones. Einstein se pasó los últimos años de su vida intentándolo, pero igual que otros antes y después que él, aún no se ha conseguido dicha teoría unificadora de los cuatro interacciones fundamentales del universo. Se han hecho progresos en la unificación de interacciones electromagnéticas y débiles. El Modelo estándar de la física de partículas acoge a tres de las fuerzas y deja fuera a la Gravedad que se resiste y, parece, que sólo la Teoría de cuerdas podría incorporarla logrando que esas cuatro fuerzas estén juntas en una teoría. Pero Einstein dio pasos importantes.

Hace ya un siglo que la discusión de la unificación de las leyes de la Naturaleza era más bien abstracta, y lo habría seguido siendo si Einstein no hubiese dado el siguiente paso decisivo.  Él comprendió que si el espacio y el tiempo pueden unificarse en una sola entidad, llamada espaciotiempo, entonces quizá la materia y la energía pueden unirse también en una relación dialéctica.  Si las reglas pueden contraerse y los relojes pueden frenarse, razonó, entonces cualquier cosa que midamos con regla y relojes también debe cambiar. (Es deseable dejar aquí una nota aclaratoria de que, todo lo que ahora se cuenta de Einstein, en parte, tiene su fuente en otros científicos que, aportaron la base de sus ideas en las que él se inspiró para llegar hasta la relatividad, y, su efecto fotoeléctrico -que le valió el Nobel de Física- le llegó desde la mente de Planck que, con su cuanto de acción, h, le abrió el camino a aquel trabajo).

Recreación de la Tierra según la fuerza de la gravedad. | ESA -   Efe Agencia

Recreación de la Tierra según la fuerza de la gravedad. | ESA – Efe Agencia El satélite GOCE de la Agencia Espacial Europea (ESA) ha logrado obtener el modelo más preciso visto hasta ahora del campo gravitatorio de la Tierra, que se parece más a una patata que a una esfera con los polos aplanados. Así lo dijeron expertos en observación de la Tierra reunidos en la Universidad Politécnica de Múnich (sur de Alemania) para presentar los primeros resultados del satélite europeo GOCE (acrónimo en inglés de Explorador de la Circulación Oceánica y de la Gravedad).

En el trabajo que sigue, cuando hablamos de la relatividad general, nos referimos alconcepto de la fuerza gravitatoria, unas 1040 veces más débil que la fuerza electromagnética. Es la más débil de todas las fuerzas y sólo actúa entre los cuerpos que tienen masa. Es siempre atractiva y pierde intensidad a medida que las distancias entre los cuerpos se agrandan. Como ya se ha dicho, su cuanto o bosón mensajero es, el gravitón que es también un concepto útil en algunos contextos. En la escala atómica, esta fuerza es despreciablemente débil, pero a escala cosmológica, donde las masas son enormes, es inmensamente importante para mantener a los componentes del universo juntos. De hecho, sin esta fuerza no existiría el Sistema Solar ni las galaxias, y seguramente, nosotros tampoco estaríamos aquí. Es la fuerza que tira de nuestros pies y los mantiene firmemente asentados a la superficie del planeta. Aunque la teoría clásica de la gravedad fue la que nos dejó Isaac Newton, la teoría macroscópica bien definida y sin fisuras de la gravitación universal es la relatividad general deEinstein, mucho más completa y profunda.

Nadie ha podido lograr, hasta el momento, formular una teoría coherente de la Gravedad Cuántica que unifique las dos teorías. Claro que, la cosa no será nada fácil, ya que, mientras que aquella nos habla del macrocosmos, ésta otra nos lleva al microcosmos, son dos fuerzas antagónicas que nos empeñamos en casar.

Por el momento, no hay una teoría cuántica de la interacción gravitatoria satisfactoria. Es posible que la teoría de supercuerdas pueda dar una teoría cuántica de la gravitación consistente, además de unificar la gravedad con los demás interacciones fundamentales sin que surjan los dichosos e indeseados infinitos.

Un protón se puede convertir en un neutrón, en el Sol pasa continuamente. Ya sabéis que un Protón está hecho por dios Quarks up y un Quark Down, mientras que un Neutrón está conformado por dos Quarks Down y un Quark up. Pués bien, simplemente con que cambiémos un Quark doun por uno up para que el cambio se produzca. Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acción la fuerza nuclear débil. Un quark tipo U cambia a uno tipo D por medio de la interacción débil como se ve en la última figura de arriba en la que tambiñén se ven un antielectrón y un neutrino. El día que sepamos lo que son en realidad el electrón y el fotón… sabremos muchísimo más sobre el Universo.

La fuerza débil recibe su nombre porque a la escala de sus interacciones es la más débil dentro del modelo estándar. Pero ojo, esto no incluye la gravedad, puesto que la gravedad no pertenece al modelo estándar por el momento. La interacción débil ocurre a una escala de 10^{-17} metros, es decir, la centésima parte del diámetro de un protón y en una escala de tiempos muy variada, desde 10^{-13} segundos hasta unos 5 minutos. Para hacernos una idea, esta diferencia de órdenes de magnitud es la misma que hay entre 1 segundo y 30 millones de años.

Fuerza débil

Se ha medido el mayor efecto de la Fuerza Débil observado en un átomo. (Foto: American Physical Society/Carin Cain)

La interacción débil, que es unas 1010 veces menor que la interacción  electromagnética, ocurre entre leptones y en la desintegración de los hadrones. Es responsable de la desintegración beta de las partículas y núcleos. En el modelo actual, la interacción débil se entiende como una fuerza mediada por el intercambio de partículas virtuales, llamadas bosones vectoriales intermediarios, que para esta fuerza son las partículas W+, W y Z0.  Las interacciones débiles son descritas por la teoría electrodébil, que las unifica con las interacciones electromagnéticas. La teoría electrodébil es una teoría gauge de éxito que fue propuesta en 1.967 por Steven Weinberg y Abdus Salam, conocida como modelo WS.  También Sheldon Glashow, propuso otra similar.

La interacción electromagnética es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un modelo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tiene una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describe con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.

      El electromagnetismo está presente por todo el Universo

La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15 metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromodinámica cuántica.

La interacción fuerte, como se ha explicado muchas veces, es la más fuerte de todas las fuerzas fundamentales de la Naturaleza, es la responsable de mantener unidos los protones y neutrones en el núcleo del átomo. Como los protones y neutrones están compuestos de Quarks, éstos dentro de dichos bariones, están sometidos o confinados en aquel recinto, y, no se pueden separar por impedirlo los gluones que ejercen la fuerza fuerte, es decir, esta fuerza, al contrario que las demás, cuando más se alejan los quarks los unos de los otros más fuerte es. Aumenta con la distancia.

    Campo de Faraday o Escudo de fuerza que preservaría a una ciudad entera

El concepto de campo de Faraday ha dado mucho juego en Física, es un concepto ideal para explicar ciertos fenómenos que se han podido observar en las investigaciones de las fuerzas fundamentales y otros. El campo no se ve, sin embargo, está ahí, rodea los cuerpos como, por ejemplo, un electrón o el planeta Tierra que emite su campo electromagnético a su alrededor y que tan útil nos resulta para evitar problemas. Y, aunque los autores de ciencia fiscción lo han utilizado de manera más avanzada y que de momento, no se ha podido conseguir, ahí está realmente presente.

Me he referido a una teoría gauge que son teorías cuánticas de campo creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y las potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang–Mills. Esta diferencia explica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromodinámica cuántica, que describe las interacciones fuertes, y la teoría electrodébil que unifica la fuerza débil con la electromagnética. En el caso de la gravedad cuántica, el grupo gauge es mucho más complicado que los anteriores necesarios para la fuerza fuerte y electrodébil. En las teorías gauge, las interacciones entre partículas se pueden explicar por el intercambio de partículas (bosones vectoriales intermediarios o bosones gauge), como los gluones, fotones y los W y Z.

El físico Enrico Fermi, refiriéndose al gran número de partículas existentes, dijo: “Si tuviera que saber el nombre de todas las partículas, me habría hecho botánico.” Por todo lo antes expuesto, es preciso conocer los grupos o familias más importantes de partículas, lógicamente  “el espacio tiempo” nos limita y, me remitiré a  las más comunes, importantes y conocidas como:

–  Protón, que es una partícula elemental estable que tiene una carga positiva igual en magnitud a la del electrón y posee una masa de 1’672614×10-27 Kg, que es 1836,12 veces la del electrón. El protón aparece en los núcleos atómicos, por eso es un nucleón que estáformado por partículas más simples, los Quarks.

–  Neutrón, que es un hadrón como el protón pero con carga neutra y también permanece en el núcleo, pero que se desintegra en un protón, un electrón y un antineutrino con una vida media de 12 minutos fuera del núcleo. Su masa es ligeramente mayor que la del protón (símbolo mn), siendo de 1’6749286(10)×10-27 kg. Los neutrones aparecen en todos los núcleos atómicos excepto en el del hidrógeno que está formado por un solo protón. Su existencia fue descubierta y anunciada por primera vez en 1.932 por James Chadwick (1891-1974.

Los neutrinos, se cree que no tienen masa o, muy poca, y, su localización es difícil. Se han imaginado grandes recipientes llenos de agua pesada que, enterrados a mucha profundidad en las entrañas de la Tierra, en Minas abandonadas, captan los neutrinos provenientes del Sol y otros objetos celestes, explosiones supernovas, etc.

–  Neutrino, que es un leptón que existe en tres formas exactas pero con distintas masas. Tenemos el ve (neutrino electrónico) que acompaña al electrón, vμ (neutrino muónico) que acompaña al muón, y vt (neutrino tau) que acompaña a la partícula tau, la más pesada de las tres. Cada forma de neutrino tiene su propia antipartícula.

El neutrino fue postulado en 1.931 para explicar la “energía perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953 y definitivamente en 1.956. Los neutrinos no tienen carga y se piensa que tienen masa en reposo nula y viajan a la velocidad de la luz, como el fotón. Hay teorías de gran unificación que predicen neutrinos con masa no nula, pero no hay evidencia concluyente.

Se ha conseguido fotografíar a un electrón. Poder filmar y fotografiar un electrón no es fácil por dos razones: primero, gira alrededor del núcleo atómico cada 0,000000000000000140 segundos , y, segundo, porque para fotografiar un electrón es necesario bombardearlo con partículas de luz (y cualquier que haya intentado sacarle una foto a un electrón sabe que hay que hacerlo sin flash).

–  Electrón, que es una partícula elemental clasificada como leptón, con una carga de 9’109 3897 (54)×10-31Kg y una carga negativa de 1´602 177 33 (49) x 10-19 culombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres. Su antipartícula es el positrón, predicha por Paul Dirac.

zz41eea3f2.jpg

Parece mentira que una cosita tan pequeña sea tan importante para que el mundo, la Naturaleza, nuestro Universo sea como es

En los átomos existen el mismo número de protones que el de electrones, y, las cargas positivas de los protones son iguales que las negativas de los electrones, y, de esa manera, se consigue la estabilidad del átomo al equilibrarse las dos fuerzas contrapuestas.

El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1940). El problema de la estructura (si la hay) del electrón no está resuelto. Si el electrón se considera como una carga puntual, su autoenergía es infinita y surgen dificultades en la ecuación conocida como de Lorente–Dirac.

Es posible dar al electrón un tamaño no nulo con un radio ro, llamado radio clásico del electrón, dado por e2/(mc2) = 2’82×10-13cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luz. Este modelo también tiene problemas, como la necesidad de postular las tensiones de Poincaré. Muchas son las partículas de las que aquí podríamos hablar, sin embargo, me he limitado a las que componen la materia, es decir Quarks y Leptones que conforman Protones y Neutrones, los nucleaones del átomo que son rodeados por los electrones.

Claro que, al profundizar en todos estos estudios se pudieron descubrir muchas cosas. De hecho, cuando una partícula se acerca a la velocidad de c, su masa … ¡aumenta! Esto tuvo consecuencias perturbadoras.  Dos de los grandes descubrimientos de la física del siglo XIX fueron la conservación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomadas por separado, no cambian.

Sin embargo, Einstein decía que cuando un cuerpo material se acerca a la velcoidad de la luz, su masa aumenta y, si pudiera llegar  a la velocidad de c, se haría infinita. Por eso precisamente, nada, en el Universo, puede ir más rápido que la luz. Esa es la frontera que impone el Universo para la velocidad. Nació un nuevo principio de conservación que decía que la suma total de la masa y la energía debe siempre permanecer constante.  La materia no desaparece repentinamente, ni la energía brota de la nada.  En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.

La presencia de grandes masas vurva el espaciotiempo y crea la geometria del universo

Einstein completó su teoría de la relatividad con una segunda etapa que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general. Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor.  Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

Esto, a su vez, puede resumirse en la famosa ecuación de Einstein que,  esencialmente afirma:

 

T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

 

La ecuación anterior expresa que el contenido material determina la curvatura del espacio-tiempo y es, una inmenso logro de la mente humana que nos deja un mensaje que, teniendo cerca del siglo desde su nacimiento, aún está dejando resultados y nos está contando lo que el universo es y cómo funciona, de hecho, la verdadera cosmología comenzó con esa pequeña fórmula que nos hizo ver… Un universo distinto y más real.

 

Materia-energía determina la curvatura del espacio-tiempo.

Esa ecuación de arriba de la imagen, engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones).  De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.

Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría.

 

emilio silvera

 

  1. 1
    emilio silvera
    el 6 de mayo del 2013 a las 10:12

    El ªuniversoª de lo infinitesimal, de lo muy pequeño, es fascinante y, cuando accedemos a él (hasta donde podemos), nos quedamos asombrados de los comportamientos que allí podemos ver, toda vez que pasan “cosas” que en nuestro Universo mayor, de lo macroscópico, no0 pueden pasar.
    Allí están las partículas elementales unas y masivas otras pero todas, conformando ese “mundo” de fantasía que nos trae la realidad, que la hace posible, que es la fuente del mundo, de la Naturaleza y del Universo entero. Allí ocurren cosas como que un fotón fuertemente energético que se desplaza a la velocidad de la luz, choca con un electrón situado en el núcleo atómico y lo absorbe. En ese preciso momento, el electrón desaparece de la órbita que ocupa alrededor del núcleo y, de inmediato, de manera simultánea, aparece en otro órbita de más energía, es el salto cuántico del que tanto hemos oído hablar. Pero, ¿cómo se produjo ese “milagro”? ¿Por qué camino tomó el electrón para que, de manera inmediata y simultánea, pudiera aprecer en ese otro lugar?
    Por otra parte, también nos hace pensar como se comportan esa serie de partículas que llamamos ferminones y esas otras que son los Bosones. Mientras que las primeras no permiten que ninguna ocupe el lugar en el que ella está situada -se repelen las unas a las otras-, los bosones, no tienen inconveniente alguno en hacerlo y se juntan tan ricamente, de hecho, por eso es posible el láser al unirse los bosones que llaamamos fotones.
    Hay una serie de leyes o principios que en ese mundo microscópico hay que respetar y que no pueden ser violados bajo ningún concepto, están bien definidos los cometidos de las distintas familias de partículas y, tanto los fermiones como los bosones, saben lo que pueden o no pueden hacer.
    De hecho, la existencia de las estrellas enanas blancas y de neutrones son posibles gracias al Principio de Exclusión de Pauli que nos dice, precisamente eso, que ningún fermión podrá ocupar nunca el lugar de otro y, cuando tratamos de que se junten a la fuerza… ¡Aquello no funciona! Hasta tal punto es así que, cuando la masa de una estrella como nuestro Sol comienza a contraerse por la fuerza de la Gravedad, al final de su vida, cuando ya la fusión no es posible y no se opone a la misma, los electrones se ven cada vez más comprimidos y, llega un momento en el cual, se ven “enclaustrados” y, como protesta, se degeneran de tal manera que comienzan a moverse casi a la velocidad de la luz y, es precismamente ese loco movimiento el que es capaz de parar la Fuerza de Gravedad que se ve así frenada, y, la estrella se estabiliza como enana blanca.
    En el caso de la estrella de neutrones, el proceso es el mimo pero, al ser la estrella más masiva, ni la degeneración de los electrones puede frenar la fuerza gravitatortia y, los electrones se funden con los protones para formar neutrones que (como también son fermiones y están sometidos al Princioio de exclusión de Pauli), se generan y, al igual que antes los hicieron los electrones en la estrella enana blanca, ahora los electrones lo hacen en la estrella de Neutrones, quedándo frenada la fuerza gravitatoria y estabilizada la estrella de esa clase.
    Si la estrella es supermasivo, gigante o supergigante, ni esa fuerza de degeneración podrá frenar a la fuerza de Gravedad que seguirá compromiendo la materia hasta no se saber qué y, el resultado último es una singularidad, es decir, un Agujero Negro, ese objeto del que ni la luz escapa.
    Pero, la actividad que desalloran esas infinitesimales partículas es mucho más, está más allá de nuestra limitada comprensión y, pueden hacer maravilla como, por ejemplo, conformar toda una galaxias llena de mundos y de estrellas que, en realidad, sólo está compuesta por estos objetos “insignificantes” que llamamos poartículas y que, tan importantes son que, sin ellas, ni nosotros estaríamos aquí hablando de todo esto, toda vez que, también somo Quarks y Leptones.
    Saludos amigos.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting