Feb
24
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (1)
Ciencia
Ponen en marcha un nuevo detector que busca, en la más completa oscuridad bajo el suelo de Dakota del Sur (EE.UU.), un diminuto «flash» que suponga un hito en el mundo de la ciencia
A 1,5 kilómetros bajo la superficie terrestre, un grupo de científicos está intentando descubrir la identidad exacta de la materia oscura. Con un nuevo detector, que empezaron a construir en 2008 y han puesto en funcionamiento ahora, investigadores de 17 universidades de todo el mundo participan en el experimento LUX en las profundidades de una antigua mina de oro. Se trata de buscar en el ambiente más oscuro posible, a salvo de cualquier haz de luz de cualquier longitud de onda, un minúsculo flash que indicaría una colisión entre una partícula de materia oscura y una partícula de materia normal.
Los científicos que participan en el experimento Large Underground Xenon (LUX) han informado de unos primeros resultados prometedores, tanto desde el punto de vista tecnológico como científico. Este experimento se ha creado para determinar la naturaleza de la materia oscura, una sustancia invisible que los físicos creen que está a nuestro alrededor y que constituiría la mayor parte de la materia en el universo, pero que apenas tiene efecto en nuestras vidas cotidianas. Los científicos acaban de publicar los primeros resultados que, dicen, validan el diseño y el rendimiento de la prueba. Esta investigación desafía estudios previos que afirmaban ‘avistamientos’ de la materia oscura, y ahora está comenzando el proceso de descubrir la identidad exacta de la partícula de materia oscura, un proceso equivalente al trabajo realizado por el Large Hadron Collider en la identificación del bosón de Higgs.
El nuevo laboratorio está situado en una antigua mina de oro cerca de un kilómetro y medio por debajo de las montañas Black Hills, en el estado norteamericano de Dakota del Sur. Los trabajos en el LUX comenzaron en 2008, y el experimento quedó listo para una primera prueba a principios de 2013. En este entorno los científicos están operando algunos de los equipos más sensibles del mundo en un ambiente extremadamente protegido, porque están buscando los minúsculos y extremadamente raros flashes de luz que indicarían una colisión entre una partícula de materia oscura y una partícula de materia normal.
“Hacen falta muchos años para construir estos instrumentos, y siempre estamos empujando las nuevas tecnologías al límite”, afirma el Dr. Enrique Araújo, del Departamento de Física del Imperial College de Londres, quien dirige el equipo de esta universidad que está trabajando en LUX. “Es muy significativo que estuvimos trabajando mucho tiempo en el diseño de LUX hasta que finalmente pudimos presionar el botón “on”. Muchos experimentos nunca alcanzan esta etapa”. Los físicos creen que la materia oscura constituye alrededor de un cuarto de la energía del Universo. Esto es mucho si lo comparamos con la materia ordinaria, que constituye sólo una vigésima parte. El resto se compone de una energía oscura aún más misteriosa.
Datos de mayo de 2004. La zona verde representa el resultado del experimento DAMA, en comparación con los límites de precisión de los experimentos CDMS y EDELWEISS. (como podréis ver, son muchos los experimentos que han buscado las partículas de “materia oscura” sin resultado alguno (introducción del blog que nada tiene que ver con el reportaje).
Desde que el experimento fue instalado bajo tierra en febrero, los investigadores han estado buscando han estado buscando Particulas Masivas de Interacción Débild, WIWPs (Weakly Interacting Massive Particles), que son las principales candidatas a constituir la materia oscura en nuestra galaxia y en el resto del universo. Estas partículas se cree que tienen masa como las partículas normales y que crean una pequeña fuerza de gravedad, pero no pueden ser observados directamente ya que no emiten ni rebotan la luz en ninguna longitud de onda. En escalas más grandes su presencia puede inferirse a partir del movimiento de las estrellas en las galaxias, y de las galaxias individuales en los cúmulos galácticos.
Procedentes del espacio
Las colisiones entre las WIMPs y la materia normal son raras y muy difíciles de detectar porque las partículas de rayos cósmicos provenientes del espacio pueden enmascarar los ya tenues destellos que se esperan de las WIMPs. Sin embargo, pocos rayos cósmicos pueden penetrar tan profundamente como para alcanzar el subterráneo en el que han instalado el experimento LUX y, además, el detector está protegido de la radiación de fondo porque está sumergido en un tanque de blindaje de agua ultra-pura.
“Somos capaces de detectar las tenues destellos de luz usando de manera muy eficaz buenos materiales reflectores y sensores de fotones muy sensibles”, dice el Dr. Araújo, quien añade que “LUX tiene significativamente una mayor sensibilidad que los mejores experimentos sobre materia oscura que se han hecho anteriormente en el mundo, especialmente para las WIMPs más ligeras, que causan las señales más débiles . “
El experimento LUX no encuentra partículas WIMPs de “materia oscura” de menos de 33 GeV (Giga electrón Voltio).
El nuevo resultado LUX desafía las evidencias de otros experimentos, como el CoGeNT y el DAMA, en los que los científicos afirmaron previamente disponer de datos sobre la naturaleza de las WIMPs. El Dr. Araújo cree que “una serie de resultados previos vieron unas WIMPs con una masa especialmente baja. Aunque esta situación pudiera llegar a darse, los nuevos datos revelan que, en esas ocasiónes, se trataba de un caso de identidad equivocada”.
Hace una década, los científicos del programa ZEPLIN, dirigido por el Reino Unido, desplegaron el primer detector de materia oscura de este tipo bajo tierra, en la mina Boulby en North Yorkshire. “Hemos tenido un papel pionero en lo que ha sido la más sensible tecnología de búsqueda de la materia oscura del mundo al construir y operar con tres detectores en Boulby”, explica Araújo. “El último y más sensible, el ZEPLIN III, permitió concluir nuestro programa en 2011, y poco después disfrutamos de LUX”.
Científicos como el Dr. Araújo ya están diseñando, y pronto comenzarán la construcción, del experimento de nueva generación LZ, que es la unión de los dos programas LUX y ZEPLIN. Con 7 toneladas de xenón líquido como objetivo, el LZ será 30 veces mayor que el LUX y tendrá más de 100 veces mejor alcance. Será tan sensible que estará solamente limitado por la interferencia de las señales de fondo de los neutrinos astrofísicos. Estas partículas igualmente teóricas fueron hace tiempo candidatas a explicar el problema de la materia oscura, pero los físicos ya saben hoy que no son lo suficientemente masivas como para conseguir este objetivo.
El detector de LUX contiene 370 kg de xenón líquido, de los que 250 kg son útiles para la búsqueda de materia oscura. El análisis de los resultados de LUX durante los primeros 100 días de ejecución del experimento equivalen a un estudio de 85,3 días de un volumen de 118 ± 6,5 kg de xenón. La eficiencia de detección de LUX es excelente, como muestra esta comparación de los eventos observados con las simulaciones por ordenador (en el caso de que no haya partículas WIMP de baja masa).
Como muestra esta figura se han observado 160 sucesos (unos 2 al día) entre 2 y 30 phe (S1), siendo todos ellos consistentes con el fondo esperado, es decir, con la hipótesis nula (que no hay partículas WIMP de baja masa).
Este resultado de LUX es unas 20 veces más sensible que los resultados publicados a día de hoy por su competencia: Edelweiss II, CDMS II, ZEPLIN-III y XENON100. La ausencia de partículas WIMP de baja masa contradice los resultados (o indicios) sobre la modulación anual observada en CoGeNT y DAMA/LIBRA, que deben tener otro tipo de explicación. Por supuesto, los resultados de LUX tratan la búsqueda de partículas WIMP cuya interacción elástica con los nucleones del núcleo de xenón es independiente del espín (interaccionan por igual con neutrones y protones). Por ello no se puede descartar la existencia de partículas WIMP cuya interacción con los nucleones sea dependiente del espín.
LUX continuará tomando datos durante 2014 y 2015 lo que mejorará su sensibilidad de forma significativa, aunque no se mejoras espectaculares. Lo dicho, un nuevo resultado negativo en la búsqueda la materia oscura, que cada día parece más escondida en lugares recónditos del espacio posible de parámetros.
Corazón de titanio
El corazón del experimento LUX es un “termo” de titanio de casi dos metros de altura con un tercio de tonelada de xenón líquido enfriado a menos 100 grados centígrados. Cuando una WIMP impacta contra un átomo de xenón retrocede -como una bola de billar blanca cuando golpea el triángulo de apertura de bolas de colores en el snooker- y se emiten fotones de luz al tiempo que se liberan electrones de los átomos circundantes. Los electrones son atraídos hacia arriba por un campo eléctrico y son absorbidos en una capa delgada de gas xenón en la parte superior del tanque, liberando más fotones.
Los detectores de luz en la parte superior y la parte inferior del tanque son cada uno capaz de detectar estas dos firmas de fotones. Las ubicaciones de las dos señales se puede establecer claramente en el espacio de unos pocos milímetros. La energía de la interacción puede medirse con precisión a partir de la luminosidad de los pulsos de luz. Las partículas que interactúan en el xenón causarán estas señales, pero se espera que las interacciones de las WIMP tengan tamaños característicos muy diferentes de los causados por las partículas ordinarias.
Ene
30
“México no es que me duela; me da verguenza”
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (1)
La periodista se da una baño de masas en la Facultad de Filología de la Complutense antes de recibir el doctorado ‘honoris causa’

Elena Poniatowska, este jueves, en la Complutense. / LUIS SEVILLANO (EL PAÍS)
La escritora mexicana Elena Poniatowska (París, 1932), una de las voces más críticas del México trágico, y a la vez mágico y querido, de nuestros días, se dio ayer un baño de masas en un acto organizado por la Facultad de Filología de la Universidad Complutense de Madrid, preludio del doctorado honoris causa que hoy le entregará la institución. “Estoy muy emocionada”, dijo la autora.
Tras el homenaje en el que hubo representación teatral y debate, decenas de estudiantes esperaron pacientemente para que la autora de La noche de Tlatelolco (1971) les firmara un ejemplar del libro que, inencontrable en España, acaba de publicar en una edición especial la propia Universidad en colaboración con la editorial Escolar y mayo. Incluso accedió a ponerse un pin en forma de triángulo rojo, la identificación de los republicanos españoles en los campos de concentración nazis, que le entregó una alumna cuyos familiares estuvieron en Mauthausen. En las paredes de la facultad y en el salón de actos donde tuvo lugar el encuentro, había carteles con los rostros de los 43 estudiantes de la Escuela Normal de Ayotzinapa asesinados el pasado 26 de septiembre en Iguala (Estado de Guerrero) a manos de los sicarios del narco tras ser confundidos con miembros de un cartel rival, según la versión oficial del Gobierno mexicano.
A sus casi 83 años, la escritora y periodista (“periodista ante todo, siempre lo digo, y lo voy a ser toda la vida”, recalca) va rejuveneciendo décadas a medida que habla hasta que asoma el joven rostro de aquella informadora que denunció la matanza por orden del Gobierno del PRI de decenas de estudiantes (aún se desconoce el número) en la Plaza de Tlatelolco en 1968, uno de los capítulos más duros de la historia mexicana hasta la masacre de Iguala.
El Gobierno tardó mucho en el caso Iguala. Somos un país racista”
No solo son joviales sus ojos, sino su risa de niña, su ironía y su sentido del humor en el que canta verdades, salpicadas por el colorista y creativo español de México. Su vitalidad es tal que en una comida posterior al acto, dio cuenta de una paella y dos vasos de vino tinto, mientras desgranaba maldades contra algunos escritores contemporáneos y seguía firmando libros. “España me da puras maravillas” dijo, refiriéndose a un galardón, el primero que le concede una institución académica española, que se suma al Premio Cervantes 2013, al Premio Alfaguara 2001, a la Legión de Honor francesa o al Mary Moors Cabot de Periodismo de la Universidad de Columbia, entre otros muchos. “En México hemos sentido en estos últimos tiempos el calor con que nos mira España”.
España me da puras maravillas y sentimos el calor con que nos mira”
Firmemente comprometida con la causa de los derechos humanos, la autora de biografías como Tinísima o Leonora ve un paralelismo entre los sucesos de Tlatelolco e Iguala y arremetió contra el Gobierno de Enrique Peña Nieto.
“El Gobierno se tardó mucho en la investigación, lo que demuestra que México es un país racista porque eran estudiantes pobres y los pobres tienen pocas oportunidades y los ricos, muchas porque existe una enorme impunidad”, aseguró. “El presidente, su esposa y hasta el ministro de Economía se han comprado casas a precios millonarios que para sí quisieran muchos actores de Hollywood. No sé cómo Meryl Streep no se viene a México. Se comportan como si fueran Luis XIV o los dictadores Duvalier de Haití. Me da la patada. No es que me duela México, es que me da vergüenza”.
Infatigable (“yo no me cansé”, dijo, en un juego de palabras con el lema Ya me cansé que inundó las redes sociales y las calles mexicanas después de que el procurador general Jesús Murillo Karam, manifestara refiriéndose al caso Iguala: “Ya me cansé”), Poniatowska afirmó que no hay nada como la indignación “para mantenerte encendido como una llamarada y voy a seguir indignada. Ojalá se sepa la verdad algún día”.
Secretaria de Cultura
Firme partidaria de Andrés Manuel López Obrador, líder carismático de la izquierda mexicana y ahora dirigente de Morena (Movimiento de Regeneración Nacional), que llegó a proponerla en las últimas elecciones como secretaria de Cultura (“un cargo para el que no valía porque soy desorganizada”), Poniatowska mira con simpatía a Podemos (“me hace gracia el de la coleta, aunque no conozco la política española, y más los griegos de Syriza”).
Ene
21
Futuro: Athena explorará el Universo caliente
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
El Athena será lanzado al espacio en 2028 y costará 1.300 millones de euros

Ilustración de una galaxia con un agujero negro en su centro. / ESA/AOES Medialab
“Athena, combinando el hecho de ser un gran telescopio de rayos X con los instrumentos científicos más avanzados, abordará cuestiones clave de la astrofísica: y por qué la materia ordinaria se junta formando galaxias y grupos de galaxias que vemos hoy en el cielo y los agujeros negros crecen e influyen en su entorno”, explica la ESA en un comunicado. “Los científicos creen que en el centro de casi todas las galaxias hay agujeros negros desempeñando un papel fundamental en su formación y evolución. Para investigar esta conexión, Athena observará las emisiones muy calientes de materia justo antes de ser tragada por un agujero negro”.
El futuro observatorio ha sido propuesto por un equipo internacional liderado por siete científicos europeos, incluido Xavier Barcons, investigador del Instituto de Física de Cantabria IFCA (CSIC– Universidad de Cantabria), según informa esa institución.
Athena a una distancia de un millón y medio de kilómetros de la Tierra, en torno al punto de equilibrio gravitatorio Lagrange-2, donde están, entre otros, los telescopios Herschel, Planck y Gaia de la ESA y a donde se enviará el James Webb, futuro sustituto del telescopio espacial Hubble.
“Agujeros negros, cúmulos de galaxias, estrellas de neutrones, restos de supernovas, estrellas activas o incluso atmósferas de planetas del Sistema Solar estarán en el punto de mira de Athena”, resume el IFCA.
Esta misión nueva de la ESA, inscrita en el programa Cosmic Visions. “Su elección asegura que el éxito de Europa en el campo de la astronomía de rayos X se mantendrá más allá de la vida útil de nuestro observatorio insignia XMM-Newton”, ha declarado Álvaro Giménez, director de Ciencia y Exploración Robótica de la ESA.
A partir de ahora los científicos y los ingenieros deben abordar los retos tecnológicos del nuevo telescopio, incluida la óptica del mismo y la refrigeración, ya que uno de los detectores funcionará a solo 50 milésimas de grado sobre el cero absoluto (273 grados bajo cero). Todavía está en discusión la posible participación en Athena de socios internacionales, como la NASA y la agencia espacial japonesa JAXA, según informa el IFCA.
Ene
11
Kepler-438b, la otra Tierra
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (8)
-
Un 12% mayor, el 438b es el gemelo de la Tierra
-
Está situado en la zona ‘Ricitos de oro’, el hogar extraterrestre de los planetas habitables
-
Este es nuestro viaje ‘Interestellar’a 470 años luz con Guillermo Torres, su descubridor

KEPLER-438B. Tamaño: 14.286 km/ diámetro. Temperatura media. 10/20ºC. Calendario: 1año: 35,23 días
“Existe un lugar muy lejano, donde el calor y la luz de nuestro sol no alcanzan, en el que flota una tierra similar a la que habitamos. Un nuevo mundo un poco más grande y frío, con temperaturas que oscilan entre 10 y 20 grados, pero en principio acogedor para la vida. Está situado en un barrio del universo llamado Ricitos de oro (Goldilocks), fuera del sistema solar, poblado de planetas potencialmente habitables. “¡Tierra a la vista!”, estuvo tentado a exclamar Guillermo Torres, el astrofísico que lo ha avistado por primera vez, mientras desde Hawai apuntaba con el ojo del telescopio Keck, una córnea de 10 metros de diámetro, en dirección a Kepler-438b. Un gemelo de la Tierra, rocoso y con sol propio, nunca visto hasta ahora. Allí nos vamos.
“Yo soy uno más a los mandos de esta nave”, tira de metáfora este cazador de planetas habitables del Harvard-Smithsonian Center for Astrophysics (CfA). Mientras detalla a Crónica la geografía del planeta hallado insiste en que con él se embarcaron en la aventura 26 exploradores más, entre astrofísicos, analistas de datos, ingenieros de software… Todos ellos a la búsqueda de un hogar nuevo que pueda servir como plan “B” a la humanidad. Y ése sería Kepler-438b, la última tierra prometida, donde la cantidad de luz que recibe de la estrella que orbita es más o menos la misma que la que nos llega de nuestro sol, lo que propicia la existencia de agua en forma líquida. Un sueño parecido al que persigue el ingeniero Cooper (Matthew McConaughey) en la inquietante y profética Interstellar. Aunque en cierta medida, Guillermo Torres se adelantó con el guión. Mientras Christopher Nolan rodaba la película, estrenada en 2014, el científico Torres ya se había acercado lo suficiente a Kepler-438b.
¿Cómo llegar allí?
No será nada fácil que podamos salir de la Galaxia para llegar a Kepler-438B.
Hay que salir de la galaxia en la que estamos y recorrer 470 años luz para encontrarlo. Demasiado lejos. Un año luz equivale a 9.460.730.472.580 km. Y de momento no existe una nave ni un agujero de gusano que sirva de pasadizo hacia otro sistema solar que nos lleve a una Tierra 2.0, como lo pinta el filme de Nolan. En él apenas quedan ya recursos ecológicos en nuestro planeta, el agua escasea y el hambre se extiende por todas partes.
Pero no todo está perdido. En el momento más oscuro, cuando ya no resta ninguna esperanza, la ciencia nos revela el camino: viajar a otras estrellas. Y lo más rápido y seguro es hacerlo por un agujero de gusano. No en vano Nolan ha contado con el asesoramiento estelar de Kip Thorne, el padre teórico de estos túneles cósmicos, quien también asesoró al estadounidense Carl Sagan mientras éste escribía su novela de ciencia ficción Contacto. Claro que nadie los ha visto nunca, suponiendo que pudiesen existir. “Ufff. Ya me hubiera gustado”, dice Torres entre sonrisas.
-Queda por saber si hay rastros de vida en Kepler-438b…
-Es pronto todavía, pero reúne condiciones. Hoy por hoy, si hubiera que elegir tendríamos que mirar hacia este planeta.
-O sea, ¿cree que más allá de nuestro mundo existe uno en el que se podría vivir?
-No uno sino muchos. Estoy plenamente convencido, y esa opinión la comparte hoy la mayoría de astrofísicos.
Túnel en Saturno
Para encontrar ese agujero de gusano de Interstellar habría que ir hasta las cercanías de Saturno, y de ahí a Kepler-438b. Llegamos a Saturno, entramos en el túnel, salimos por el otro extremo y nos encontramos con un paisaje espectacular en la pantalla del cine: varios planetas orbitando un agujero negro. “Sería un viaje de años y eso, tecnológicamente, es imposible”, reconoce nuestro astrofísico. Además, en Interstellar los tripulantes de la nave dominan las técnicas de hibernación humana, todavía verdes, por lo que la duración del viaje no es un problema tan grave como en la actualidad.
-¿Contempla usted un escenario catastrófico como el de la película que obligase al hombre a buscar un lugar fuera de la galaxia?
-No quiero ni pensarlo, tampoco se puede saber si el momento llegará. De lo que sí estoy convencido es de la necesidad de saber si estamos o no solos en el universo. Y creo que ahí fuera existen vecinos inteligentes.
No ha sido fácil el viaje a Kepler-438b. Tras descartar cientos de miles de falsas alarmas de planetas que llegaban desde el telescopio espacial Kepler (que da nombre al nuevo mundo), el de Hawai y desde otro que se encuentra en una montaña de Sacramento, en Nuevo México, ocurrió lo inesperado. De los ocho planetas situados en la zona de Ricitos de oro, la de las tierras habitables, sólo dos prometían. El que más se parecía al elegido era Kepler-442b, un tercio mayor pero más gaseoso, lo que en práctica reduce la posibilidad de que acumule agua en su superficie. Y lo mismo ocurrió con los otros seis.
-Dígame, ¿qué ha de tener un planeta para que se pueda vivir en él?

LA TIERRA. Tamaño: 12.756 km/diámetro. Temperatura media: 15 / 25ºC. Calendario: 1 año: 365 días
-La primera condición es que esté en una zona habitable del universo. Segundo, que tenga una superficie sólida, rocosa, para que el agua pueda acumularse. Y tercero, que tenga atmósfera… Ahora bien, eso no quiere decir que sea igual a la Tierra. Puede haber formas de vida diferentes a la nuestra y, a la vez, ser compatibles… Pero esa es otra historia. Lo que sí puedo afirmar es que Kepler-438b es un candidato prometedor para albergar vida.
Entre otras cosas, porque, a diferencia de cientos de planetas del tamaño de la Tierra y más pequeños, el nuevo mundo circula en una órbita que lo mantiene suficientemente alejado de su estrella para que el agua de la superficie no se evapore.
Gracias a la información obtenida por el telescopio Kepler, lanzado al espacio en 2009 para observar simultáneamente unas 150.000 estrellas y analizar su brillo cada 30 minutos, se ha podido estimar que podría haber hasta 11.000 millones de mundos habitables en órbitas de estrellas similares al sol.
Los ingredientes
Según un equipo de científicos que investiga las características que se deberían buscar para encontrar mundo lejanos, los ingredientes básicos que darían forma a estos planetas habitables son bien conocidos. Estos se habrían formado tras una mezcla abundante de oxígeno y hierro. Una cantidad generosa de magnesio y silicio y, en dosis más pequeñas, aluminio, níquel, calcio y azufre. Se le añade agua procedente de asteroides y toda esta masa se cocina durante millones de años. Una receta que ha sido posible obtener gracias a un instrumento de otro telescopio, el Galileo, instalado en la isla canaria de La Palma, que mide la masa de los planetas y, a través de ella, su composición.
Fue necesario crear un programa informático muy potente, llamado Blender, para determinar las dimensiones y la colocación exacta de todos los planetas candidatos a ser clones del nuestro. El principal, Kepler-438b, se encuentra a 470 años de la Tierra, mientras que Kepler-442b está a 1.100 años luz de distancia. Y un aviso a los viajeros del futuro: un año en el primer planeta es aproximadamente de 35,23 días (365 en la Tierra), y de 112 días en el segundo. ¿Le sorprende?
Llegan más
Científicamente, sin embargo, “el resultado importante no es sólo que estemos recibiendo señales de planetas gemelos de la Tierra, sino que estamos encontrando una serie de planetas ahí fuera llegados de un barrio del universo en el que quizás la Tierra podría haberse desarrollado”, ha señalado Douglas Caldwell, del Instituto SETI, en EEUU, dedicado a la búsqueda de vida extraterrestre. “Estamos empezando a entender más acerca de la población de planetas que podrían ser habitables”.
Mientras el astrofísico Torres nos describía este miércoles algunos de los secretos de la otra tierra, la NASA insistía en que ya tiene preparada otra batería de 500 planetas “candidatos” a albergar vida.
Hasta el momento, 1.000 planetas alienígenas han sido identificados como mundos posibles por el telescopio Kepler. Y de ellos, sólo ocho -incluidos Kepler-438b- han sido añadido a la lista conocida como Salón de la fama de Kepler, una pequeña colección de planetas que son similares en tamaño a la Tierra y se asientan en la zona habitable de sus estrellas.
A partir de ahora lo que toca es mirar al cielo y ponerse a preparar las vacaciones… Sí, al otro lado de la galaxia.
Ene
8
La Física sigue su camino hacia el futuro
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)
Acelerando, que es gerundio
Los aceleradores de partículas están poniendo de nuevo patas arriba lo que sabemos de física y, por tanto, del origen del Universo
Este primer tercio del siglo XXI se está pareciendo en Física al primer tercio del siglo XX. Las numerosas figuras de la época, con Einstein como icono principal a la cabeza, estaban en plena ebullición intelectual y publicando teorías que, literalmente, lo pusieron todo patas arriba. Hoy estamos ante un panorama parecido en el que las grandes máquinas, los aceleradores de partículas, están poniendo de nuevo patas arriba lo que sabemos de física y, por tanto, del origen del Universo. Y, como entonces, las noticias sobre Física ocupan portadas de periódicos y, esto es nuevo, se extienden por las redes a la velocidad de la luz.
Tras el impacto que supuso el anuncio del descubrimiento del bosón de Higgs, el 4 de julio del 2012 (el viernres hizo dos años), la atención mundial se volvió hacia la Física y, en concreto a los físicos de partículas. Provistos de un lápiz y un papel, y de su cabeza prodigiosa Robert Brout, François Englert y Peter Higgs describieron en 1964 un mecanismo que incluía una partícula, que acabó llamándose con el nombre del último de ellos, que debía cumplir determinadas condiciones. Y que era fundamental para sostener el edificio de lo que se llama el Modelo Estándar, es decir, la física que explica el origen del universo y que se deriva de la explosión inicial, el Big Bang que tuvo lugar hace 13.800 millones de años.
Cincuenta años y muchos millones de inversión después, esa partícula apareció en el experimento que se anunció hace dos años. Y, parece, estaba justo donde la teoría había predicho que iba a estar, es decir, supone un respaldo muy notable al Modelo, puesto que la capacidad de predicción, y la comprobación de esas predicciones es, precisamente, lo que dota de solidez a las teorías. Y, además del bosón, los neutrinos superlumínicos (aunque luego se demostró que era un error, y la propia confirmación del error fue noticia relevante) y muy recientemente, y sin honores de portada, la presunta y aún controvertida detección de ondas gravitatorias procedentes del Big Bang, siguen colocando a la física de partículas en la lista de intereses de la sociedad.
La participación española en estos avances ha ido incrementándose a los largo del siglo pasado y en los primeros años de este. De la casi testimonial presencia de algunos físicos notables en los años 20, hemos pasado a tener el peso que nos corresponde, tanto en la financiación del CERN como en la presencia de investigadores españoles en ese laboratorio, la máquina que nos está permitiendo comprobar la veracidad de las teorías. Ese presencia ha pasado por altos y bajos, en función del interés de los políticos del momento y de los problemas de financiación, pero hoy está bastante consolidada y de ninguna manera debería volverse atrás.
Precisamente, y como espaldarazo a esa comunidad española de físicos de partículas, este año, en Valencia, se han dado cita un millar de físicos de partículas, quizá los más relevantes del mundo, para poner en común sus últimas investigaciones en estos apasionantes campos. Se trata de la 37ª Conferencia Internacional de Física de Altas Energías, ICHEP 2014, que se celebra del 2 al 9 de julio en esta capital.
Sabemos que nos estamos adentrando en un territorio nuevo, que estamos viendo lo que nunca nadie vio, que estamos dando pasos, más grandes o más pequeños, para conocer con precisión de qué materia esta hecho todo, incluso el sueño del conocimiento. Y aquí, en Valencia, esos investigadores intentan poner todo ello en común. Y, también, sentarán las bases de hacia donde se dirigirán las miradas en los próximos años, porque aquí, en esta reunión, se va a debatir cómo serán las máquinas del futuro, los grandes aceleradores por venir, de hasta 100 kilómetros de longitud. Es decir, aquí se diseñarán las ventanas que determinarán el conocimiento en las próximas décadas.
Y, como es natural, hay quien se preguntará que para qué sirve todo esto. Hay muchas maneras de argumentar a favor de la inversión en ciencia –ojo, inversión, no gasto- pero voy a citar aquí sólo una, la que, en la inauguración de este congreso trajo a colación Adolfo de Azcárraga, presidente de la Real Sociedad Española de Física. Según un reciente estudio de la European Physical Society “por cada euro invertido en la industria más relacionada con la física se generan 2,4 euros en actividad económica y por cada puesto de trabajo en el sector de la física se crean 2,8 empleos en los demás sectores de la economía”. Podríamos recordar también la vieja anécdota de Faraday y el primer ministro Gladstone, en los albores de la electricidad: “¿para qué sirve esto?” preguntó el político; “ya verá cuando su señoría pueda gravarlo con impuestos” respondió el físico.
Pero, como también recordó Azcárraga, “más allá de la importancia que la física tiene por sí misma, realiza una importante contribución al bienestar de la sociedad”. El mundo tal y como funciona hoy, cimentado sobre la electricidad de Faraday, basa buena parte de su comodidad en los hallazgos de la física, desde los teléfonos móviles a los GPS, desde las neveras a los aviones. Y es preciso, además, poner ese conocimiento en común, en primer lugar porque la ciencia hoy es comunicación o no existe, pero también porque debe serlo no sólo entre los científicos sino entre los científicos y la sociedad. Tal y como dijo Bertrand Russell: “la ignorancia total del mundo científico no es compatible con la supervivencia de la humanidad”.