lunes, 13 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Año Internacional de la Astronomía

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LAS ESTRELLAS

Que por cierto, son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminosa que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

La masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.

La luminosidad de las estrellas varían desde alrededor de medio millón la luminosidad del Sol para las más calientes hasta menos de una milésima de la del Sol para enanas más débiles.

Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

Las estrellas brillan como resultado de la conversión de masa en energía por medio de reacciones nucleares, siendo las más importantes las que involucran al hidrógeno.

Por cada kilogramo de hidrógeno quemado de esta forma, se convierte en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein E=mc2, los siete gramos equivalen a una energía de 6,3×1014 Julios.

Leer más

AIA-IYA 2009

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿QUÉ SON LOS PÚLSARES?

Un púlsar es una fuente de radio desde la que se recibe un tren de pulsos altamente regular. Han sido catalogados cerca de un millar de púlsares desde que se descubriera el primero en 1967. Los Púlsares son Estrellas de Neutrones en rápida rotación, con un diámetro de 20-30 Km. Las estrellas se hallan altamente magnetizadas (alrededor de 10 exp.8 tesla), con el eje magnético inclinado con respecto al eje de rotación.

La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a la luz de un faro. Los períodos de los pulsos son típicamente de 1 s pero varían desde los 1,56 ms (púlsares de milisegundo) hasta los 4,3 s

Los períodos de los pulsos se alargan gradualmente a medida que las estrellas de neutrones pierden energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas. Las medidas precisas de tiempos en los púlsares han revelado la presencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado por objetos de masa planetaria. Han sido detectados destellos ópticos procedentes de unos pocos púlsares, notablemente los Púlsares del Cangrejo y Vela.

La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutrones después de una acreción de masa de una estrella compañera. (Púlsar reciclado).

Leer más

AIA-IYA 2009. Año Internacional de la Astronomía

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ahora tenemos el Hubble y el Chandra y otros aparatos espaciales como la Casini que nos envian datosd e imágenes del espacio y de los objetos cosmológicos que lo ocupan. Esta nueva manera de mirar el universo nos da nuevas ideas, no todo el espacio son agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son condiciones necesarias para que existan observadores inteligentes como nosotros.

No debería sorprendernos la vida extraterrestre; si existe, pudiera ser tan rara y lejana para nosotros como en realidad nos ocurre aquí mismo en la Tierra, donde compartimos hábitat con otros seres vivos con los que hemos sido incapaces de comunicarnos, a pesar de que esas formas de vida, como la nuestra, están basadas también en el carbono. No se puede descartar formas de vida inteligente basadas en otros elementos, como por ejemplo, el silicio. Los datos de lunas como Encalado, nos hablan de océanos subterráneos y geisers que lanzan al espacio gases de materiales como el Nitrógeno, Oxído de Carbono y otros que nos hablan de los componentes biológicos que hay en la Tierra. Tampoco debemos perder de Vista a Europa y otros satélites de nuestro Sistema Solar que, en realidad, son lunas misteriosas que nos piueden  traer muchas sorpresas.

Leer más

AIA-IYA 2009. Año Internacional de la Astronomía

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el espacio exterior, el cosmos, lo que conocemos por universo, las distancias son tan enormes que se tienen que medir con unidades espaciales como el año luz (distancia que recorre la luz en un año a razón de 299.792.458 metros por segundo). Otra unidad ya mayor es el pársec (pc), unidad básica de distancia estelar correspondiente a una paralaje trigonométrica de un segundo de arco (1”). En otras palabras, es la distancia a la que una Unidad Astronómica (UA = 150.000.000 Km) subtiende un ángulo de un segundo de arco. Un pársec es igual a 3’2616 años luz, o 206.265 Unidades Astronómicas, o 30’857×1012 Km. Para las distancias a escalas galácticas o intergalácticas se emplea una unidad de medida superior al pársec, el kilopársec (Kpc) y el megapársec (Mpc).

Para tener una idea aproximada de estas distancias, pongamos el ejemplo de nuestra galaxia hermana, Andrómeda, situada (según el cuadro anterior a 725 kilopársec de nosotros) en el Grupo local a 2’3 millones de años luz de la Vía Láctea.

¿Nos mareamos un poco?

1 segundo luz

299.792’458 Km

1 minuto luz

18.000.000 Km

1 hora luz

1.080.000.000 Km

1 día luz.

25.920.000.000 Km

1 año luz

9.460.800.000.000 Km

2’3 millones de años luz

21.759.840.000.000.000.000 Km

¡Una barbaridad!

Leer más

AIA-IYA2009. Año Internacional de la Astronomía

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

FABRICANDO ELEMENTOS COMPLEJOS

En 1956, el tema de la producción estelar de elementos recibió un nuevo ímpetu cuando el Astrónomo norteamericano Paul Cerril identificó las reveladoras líneas del tecnecio 99 en los espectros de las estrellas S. El tecnecio 99 es más pesado que el Hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de tecnecio que Merrill detectó se hubiesen originado hace miles de de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían cómo construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

Estimulado por el descubrimiento de Merrill, Fred Hoyle reanudo sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. Desde pequeño él miraba las estrellas y se prometía así mismo averiguar que eran. Cuando visitó el California Institute of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residente de la Facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran escépticos ingleses en lo relativo al big bang.

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón de Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, seguramente, los elementos situados entre el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla periódica- también podían formarse allí. Pero, ¿cómo?

Leer más