Dic
4
AIA-IYA 2009 Año Internacional de la Astronomía
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Hemos podido saber que ese universo está en expansión y que las galaxias se alejan las unas de las otras. Se ha podido deducir que el universo surgió de una explosión a la que llamamos el Big Bang hace ahora 13.500 millones de años. A partir de una singularidad, un punto de energía y densidad infinitas, surgió el universo que, desde entonces, junto con el espacio y el tiempo continúa expandiéndose.
Surgieron los primeros quarks libres que se juntaron para formar protones y neutrones que, a su vez, se unieron y formaron núcleos que, al tener energía positiva, atrajeron a los electrones, de energía negativa, formándose así lo átomos estables.
Los átomos se juntaron para formar moléculas y células y éstas, a su vez, juntas formaron materia. Al principio era todo simetría y existía una sola fuerza que lo regía todo. El universo era totalmente opaco, la temperatura reinante muy alta y todo estaba invadido por una especie de plasma.
Pero la expansión del joven universo continuó imparable. La temperatura fue descendiendo y la simetría se rompió, lo que dio lugar a que donde sólo había una sola fuerza aparecieran cuatro. Las fuerzas nucleares, fuerte y débil, el electromagnetismo y la gravedad surgieron de aquella simetría rota y como hemos dicho antes, surgieron los primeros quarks para, con los electrones, fabricar la materia que está hecha de quarks y leptones. Más tarde, la luz apareció al quedar libres los fotones y donde antes todo era opacidad, surgió la transparencia. Pasaron unos doscientos mil años antes de que nacieran las primeras estrellas y se formaran las galaxias.
Nov
22
Un viaje por las Estrellas de la mano del AIA-IYA2009
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Estrella enana:
Estrella de la secuencia principal del diagrama de Hertzsprung-Russell. Las estrellas enanas tienen una clase de luminosidad V. La mayoría de las estrellas son de este tipo, como el Sol. Varían de masa entre 0,1 y 100 masas solares. El nombre proviene que las estrellas de la secuencia principal son más pequeñas que aquellas con la misma masa que han evolucionado a gigantes. Las enanas blancas, enanas negras y enanas marrones no son enanas en este sentido de pertenecer a la secuencia principal.
Estrella estándar.
Estrella utilizada para calibrar las observaciones de las estrellas que no han sido estudiadas previamente, particularmente en fotometría. En espectrofotometría, las estrellas estándar son comparadas con una fuente de cuerpo negro localizada cerca del telescopio de manera que la cantidad de radiación emitida en cada longitud de onda sea conocida. En fotometría convencional, las estrellas estándar tienen magnitudes y colores conocidos con precisión, con las que se pueden comparar las estrellas bajo estudio. Cada sistema de fotometría (por ejemplo, la fotometría de Johnson, la de Kron-Cousins Rl o la de Stromgren) tiene su propio conjunto de estándares que han sido comparados entre sí cuidadosamente. Las estrellas estándar deben ser lo suficientemente brillantes como para ser fácilmente observables con pequeños telescopios, pero no tan brillantes como para que saturen los fotómetros de los grandes telescopios.
Estrella evolucionada:
Estrella que ha agotado el combustible de hidrógeno en su núcleo y ha evolucionado hacia fuera de la secuencia principal. Dependiendo de su masa, una estrella evolucionada puede estar quemando otros combustibles nucleares en su núcleo e hidrógeno en una fina capa alrededor de éste (como las gigantes), o puede estar constituida por combustible nuclear gastado (como las estrellas de neutrones y las enanas blancas).
Nov
18
AIA-IYA 2009. Año Internacional de la Astronomía
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
Me hace gracia ver y escuchar como “doctos” licenciados dicen que ellos conocen lo que es el Universo, por ejemplo, o lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este modelo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones.
No siempre este modelo científico es una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.
Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.
De hecho, todos los modelos científicos tienen aplicabilidad limitada. Ninguno de ellos es “la verdad “. Cuando un científico afirma, por ejemplo, que el núcleo de un átomo está compuesto por partículas denominadas protones y neutrones, lo que en realidad debería decir es que el núcleo de un átomo se comporta, bajo determinadas circunstancias, como si estuviera formado de protones y neutrones. Los mejores científicos toman el “como sí “, pero entienden que sus modelos son, efectivamente, sólo modelos; científicos menores a menudo olvidan esta diferencia crucial.
Nov
18
AIA-IYA2009. Año Internacional de la Astronomía
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
La NASA y la ESA están trabajando en una nueva generación de proyectos que podrían usar esa tecnología de nuevo cuño. Sin embargo, lo más seguro es que, finalmente, dado el alto coste de estas misiones, se fusionen en un Proyecto verdaderamente global.
Sería una colaboración entre todos los expertos de renombre que hay en la Tierra para buscar la prueba de que no estamos solos en el Universo -Gaia en su conjunto buscando otras Gaias- El Proyecto de la Agencia Espacial Europea se conoce como el proyecto Darwin, pero también se denomina de una manera más prosaica, Interferómetro Espacial de Infrarrojos (IRSI = Infrared Space Interferometer); equivalente al de la NASA denominado Terrestrial Planet Zinder (TPF). Los dos proyectos funcionarán según los mismos principios.
Sin embargo, por sorprendente que pueda parecer, especialmente después de ver las imágenes de la Tierra tomadas desde el espacio, en las cuales ésta aparece como una brillante bola azul y blanca sobre un fondo oscuro, la luz visible no ofrece las mejores perspectivas para detectar directamente otros planetas similares a la Tierra. Esto es así por dos razones:
En primer lugar, la luz visible que se recibe desde un planeta como la Tierra es en esencia el reflejo de la luz procedente de su estrella progenitora, por lo que no sólo es relativamente débil, sino que resulta muy difícil de captar a distancias astronómicas sobre el fondo iluminado por el resplandor de dicha estrella.
En segundo lugar, del tipo de la Tierra alcanzan en realidad su brillo máximo en la parte de rayos infrarrojos del espectro electromagnético, por el modo en que la energía absorbida procedente del Sol vuelve a irradiarse en la zona de infrarrojos de dicho espectro, con longitudes de onda más largas que las de la luz visible.
Nov
11
AIA-IYA 2009. Año Internacional de la Astronomía II
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (2)
Nuestro universo es igual en todas partes. Las leyes que rigen en todo el Universo son las mismas. La materia que puebla el Universo, Gases estelares, polvo cósmico, Galaxias con cientos de miles de millones de estrellas y sistemas planetarios, también es iguales en cualquier confín del Universo. Todo el Universo, por lo tanto, está plagado de Agujeros Negros y de estrella de neutrones. En realidad, con el transcurso del tiempo, el número de estos objetos masivos estelares irá en aumento, ya que, cada vez que explota una estrella supermasiva, nace un nuevo agujero negro o una estrella de neutrones, transformándose así en un objeto distinto del que fue en su origen. De gas y polvo pasó a ser estrella y después se transformó en un Agujero negro o en una estrella de neutrones.
GALAXÍA
La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles a simple vista durante la noche; es escrita con G mayúscula para distinguirla de las demás galaxias. Su disco es visible a simple vista como una débil banda alrededor del cielo, la Vía Láctea; de ahí que a la propia Galaxia se la denomine con frecuencia Vía Láctea.
Nuestra Galaxia tiene tres componentes principales. Uno es el disco de rotación de unas 6×1010 MO (masas solares) consistentes en estrellas relativamente jóvenes (Población II), cúmulos cubiertos de gas y polvo, estando estrellas jóvenes y material interestelar concentrados en brazos espirales. El disco es muy delgado, de unos 1.000 a. l., comparado con su diámetro de más de 100.000 años-luz. Aún continúa una activa formación de estrellas en el disco, particularmente en las nubes moleculares gigantes.