May
22
Las galaxias, y…¡La Vida!
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza.
Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.
En el comentario de ayer, ya nos referimos a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON).
Lee Smolin, de la Universidad de Waterloo, Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas.
Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.
May
10
Rayos cósmicos, antimateria…El “universo” de las...
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (3)
Para la XIX Edición del
El Universo de las partículas es fascinante. Y, como todo lo grande está hecho de cosas pequeñas, no podremos explicar lo que el Universo es sin hablar de estos objetos infinitesimales.
Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundaria. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior han registrado la radiación primaria.
El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con la longitud de onda más corta.
Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto. Si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cerca del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.
Las partículas cósmicas primarias, cuando entran en nuestra atmósfera llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez, en 1.968, otros núcleos tan complejos como los del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.
May
2
Las transformaciones del Universo
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (2)
En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.
Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.
Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.
Abr
20
Año Internacional de la Astronomía 2009. En España (AIA-IYA2009)
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (1)
Los seres humanos, si miramos hacia atrás en el tiempo, han tenido que realizar un enorme recorrido, pasar un sin fin de calamidades, luchar con sus manos vacías contra los elementos y los demás peligros a los que, su desnudez tecnológica les tenía sometidos, y, se dejaron por el camino grandes pérdidas en vidas que por uno u otro motivo, se perdían al estar desvalídos ante tan insuperables obtáculos. Pero, a pesar de todo eso, hasta aquí hemos podido llegar logrando un nivel de conocimiento que era impensable hace sólo un par de siglos: Grandes telescopios que vigilan el Universo y nos traen imágenes de estrellas y galaxias situadas a miles de millones de años-luz de la Tierra y las poemos contemplar como eran hace mucho, muchisimo tiempo, y, de la misma manera, nuestros ingenios espaciales (naves y sondas) parten desde nuestro planeta con misiones hacia otros mundos lejanos y, tras un largo y peligroso viaje, llegan a su destino, realizan el trabajo encomendado y nos envían los datos físicos del planeta, de la luna o del cometa y el informe es completado con múltiples imágenes que los científicos pueden estudiar para su valoración. No hablemos de adelantos en el campo de la Ingenieria, de la Medicina, de la Biología, de la Genética, de los Materiales…También en Matemáticas y Física han sido grandes los avances que hemos podido lograr.
Huygens en Titán
La Sonda Génesis hacia el Sol
La Cassini hacia Saturno
Y tantas otras hacia Mercurio, la Luna, Venus, Marte, Júpiter, Saturno, Urano o Neptuno y otros objetivos más lejanos de nuestro Sistema Solar que, poco a poco podemos ir conociminedo.
El conocimiento que actualmente tenemos en las distintas ramas del saber (el conocimiento es un árbol enorme, las raíces que lo sustenta son las matemáticas, el tronco es la física, y a partir de ahí, salen las ramas que corresponden a los distintos disciplinas del saber, tales como química, biología, astronomía, etc), tiene su origen muy lejos en el pasado, en civilizaciones olvidadas que dejaron las huellas de su saber a otras que, como los sumerios, egipcios, chinos, hindúes y los griegos antiguos, hace ahora de ello algunos miles de años a. de C., aprovecharon esos conocimientos y se dieron cuenta de que el mundo que les rodeaba y los acontecimientos naturales que ocurrían eran totalmente ajenos a los Dioses del Olimpo y a la mitología.
Thales de Mileto, uno de los siete sabios de Grecia, así lo entendió; dejó a un lado a los Dioses y expresó sus ideas empleando la lógica observando la Naturaleza. Él fue el primero que se dio cuenta de la importancia que tenía el agua para la vida. Empédodes, otro pensador, dijo que todo estaba formado por cuatro elementos: aire, agua, tierra y fuego que, combinados en la debida proporción se convertirían en los distintos materiales de los que estaban formados todas las cosas. Demócrito de Abdera nos habló de algo invisible e indivisible como el componente más pequeño de la materia, le llamó a-tomo o átomo. Sócrates, Aristóteles o Platón (y otros) nos introdujeron en el campo de la filosofía, y Anaximandro, Anaxímedes, Pitágoras, Euclides y muchos más, nos enseñaron astronomía, matemáticas-geometría, medicina, etc.
Abr
11
En verdad, ¿conocemos el Universo?
por Emilio Silvera ~ Clasificado en AIA-IYA2009, Física Cuántica, Rumores del Saber ~ Comments (2)
Para la XIX Edición del
Es sorprendente ver como “doctos” licenciados dicen que ellos conocen lo que es el Universo, por ejemplo, o lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este modelo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones.
No siempre este modelo científico es una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.
Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.