domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Imaginación sin límite pero… ¿sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos. Como decía Einstein el Universo es igual en todas partes, ya que, en caso contrario, estaríamos en otro universo.
Resultado de imagen de Otro universo diferente al nuesstro

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

 

         

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentale son

 

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métricoEinstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

 

matriz

Gracias al Tensor de Rieman, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado. 

 

Cerebro Digital - Las ecuaciones de campo de Einstein son la representación  matemática de la curvatura del espacio tiempo ocasionada por materia y  energía. Están formadas por una serie de 10 ecuaciones

 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendimos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aparecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

 

 

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estelas y de objetos que, como los agujeros negros y los mundos, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

 

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

 

Algún día dejará de existir la Vía Láctea? - Quora

 

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿Dónde estará la Humanidad dentro de cinco mil millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera

Encuentran un Sol 4.000 M de años más viejo que el nuestro

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (16)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                             

                                         El ciclo de vida de una estrella similar al Sol | ESO

 

ELMUNDO.es/ Europa Press | Madrid

Un grupo de investigadores ha encontrado una estrella “en esencia” idéntica al Sol pero 4.000 millones de años más vieja. Según los científicos, el hallazgo ayudará a estudiar la historia y futura evolución del Sol, así como a esclarecer la relación entre la edad de una estrella y su contenido de litio.

 

Very Large Telescope | ESO España

 

El grupo de investigadores, liderado por astrónomos brasileños, ha utilizado el ‘Very Large Telescope’ del Observatorio Europeo del Sur para observar el astro, HIP 102152, situado a 250 años luz de la Tierra, y creen además que podría albergar planetas rocosos en su órbita.

El líder del equipo de científicos, Jorge Meléndez, ha destacado la “calidad excepcional” de los espectros que se han logrado captar de la estrella y ha explicado que, desde que se encontró el primer “gemelo solar”, se han hallado muy pocos.

Así, según el astrónomo, el descubrimiento permitirá comparar las investigaciones con otros “gemelos solares” para tratar de “responder a pregunta de qué tan especial es el Sol”.

El misterio del litio

 

Un gemelo del Sol aporta datos sobre la evolución de nuestro astro |  Sociedad | EL PAÍS

Imagen del gemelo solar HIP 102152 | ESO

El primer descubrimiento que ha aportado la observación de HIP 102152, la estrella más parecida al Sol a la fecha, podría ayudar a comprender por qué el contenido de litio en nuestro astro, material del que está formado, es “tan sorprendentemente bajo”.

El litio, tercer elemento de la tabla periódica, se creó en el Big Bang junto con el hidrógeno y el helio. Durante años, los astrónomos se han preguntado por qué algunas estrellas parecen tener menos litio que otras.

Según el equipo de investigadores, la observación de gemelos menores que el Sol había mostrado que la cantidad de litio de estos astros era mayor que la de la estrella más cercana a la Tierra. Ahora, gracias al nuevo descubrimiento, se ha podido advertir que la cantidad de litio de HIP 102152 es menor que el sol.

 

Hallan abundancia de litio en la atmósfera de una estrella ...

      Sí, existen estrellas con mucho más Litio que otras. En esta estrella hallaron abundancias de Litio

 

ESO
La pareja de estrellas más frías

“Hemos descubierto que HIP 102152 posee muy bajos niveles de litio. Esto demuestra claramente, por primera vez, que los gemelos solares más antiguos efectivamente tienen menos litio que nuestro propio Sol o gemelos solares más jóvenes”, ha explicado la autora principal de la investigación, TalaWanda Monroe.

“Ahora podemos estar seguros de que las estrellas destruyen de alguna forma el litio que las compone a medida que envejecen“, ha concluido.

Publica: emilio silvera

Imaginación sin límite pero… ¿sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                            cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

 

El lado oscuro del Universo | ctxt.es¿Qué es una estrella Wolf-Rayet? - Astrofísica y FísicaInteracciones fundamentales : Blog de Emilio Silvera V.Simetrías y fuerzas fundamentales - NUSGREM - Asociacion Nacional ...

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentales son:

 

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

 

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

 

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métricoEinstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

 

                                                                                matriz

 

Gracias al Tensor de Riemann, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado. 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendimos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aparecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

 

                                               

 

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estelas y de objetos que, como los agujeros negros y los mundos, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

 

                                           

 

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

 

Qué galaxia pesa más: la Vía Láctea o Andrómeda?Nuestra Vía Láctea chocará con la galaxia de Andrómeda | Noticias ...El choque entre la Vía Láctea y Andrómeda — Astrobitácora                                                                                                             La Vía Láctea y Adrómeda colisionarán dentro de 4.500 millones de años

 

Finalmente, en unos pocos miles de millones de años, ambas galaxias se fundirán en un abrazo para formar una sóla gran galaxia y nadie sabe que mundos podrán sobrevivir a tan inmenso suceso, y, los miles de millones de seres vivos (algunas e4species inteligentes) si podrán sobrevivir al desastre

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿Dónde estará la Humanidad dentro de cinco mil millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera

¡Las estrellas! Que transforman la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Imagen de miniatura de un resultado de LensTelescopio Espacial Spitzer. Telescopio Espacial Spitzer Los telescopios  infrarrojos funcionan mejor en el espacio. ¿Por qué? Los objetos que son  aun un poquito calientes emiten energía infrarroja. De modo que tiene  sentido colocar un telescopio ...

La NASA recupera el telescopio Kepler gracias a una red de antenas de hace  50 años

 

Aquí podemos contemplar una imagen compuesta de la Supernova Kepler del Telescopio Espacial Spitzer y el Hubble con la ayuda del Observatorio de rayos X  Chandra. El remanente de supernova que muestra los filamentos de plasma en que se ha convertido una estrella masiva que ha dejado por el camino algún agujero negro y muchos elementos complejos creados en las inmensas temperaturas que allí estuvieron presentes.

                                             La nebulosa Cabeza de Caballo en el cielo de San Juan

“La nebulosa Cabeza de Caballo es una de las nebulosas más famosas del cielo; es la entalladura oscura que se ve en la nebulosa de emisión roja del centro de la fotografía. La cabeza de caballo es oscura porque en realidad es una nube de polvo opaca que se encuentra en frente de la brillante nebulosa de emisión roja. Al igual que las nubes de la atmósfera de la Tierra, esta nube cósmica ha adoptado una forma reconocible por casualidad. Cuando pasen muchos miles de años, los movimientos internos de la nube cambiarán su aspecto. El color rojo de la nebulosa de emisión es causado por electrones que se recombinan con protones para formar átomos de hidrógeno. A la izquierda de la imagen está la nebulosa de la Llama, una nebulosa anaranjada que también contiene filamentos de polvo oscura. En la parte inferior izquierda de la nebulosa Cabeza de Caballo hay una nebulosa de reflexión azulada que refleja preferentemente la luz azul de las estrellas cercanas.”

Astronomía Picture Of The Day

Qué es una supernova? | Las científicas responden | Ciencia | EL PAÍSLa amenaza de las supernovas

En las supernovas se produce la nucleosíntesis de la materia. Es decir, allí se crean nuevos elementos químicos. Ocurre principalmente debido a la nucleosnteis explosiva durante la combustión de oxígeno explosivo y la combustión del silicio. Estas reacciones de fusión crean los elementos silicio, azufre, cloro, argón, potasio, calcio, escandio, titanio, vanadio, cromo, manganeso, hierro, cobalto y níquel. Como resultado de su expulsión desde supernovas individuales, sus abundancias crecen exponencialmente en el medio interestelar.

proceso rp CondicionesyPosibles sitiosNucleosíntesis por R-Process

Los elementos pesados (más pesados que el níquel) son creados principalmente por un proceso de captura de neutrones conocido como proceso-R. Sin embargo, hay otros procesos que se piensa que son responsables de algunas nucleosíntesis de elementos, principalmente un proceso de captura de protones conocido como el proceso rp  y un proceso de foto-disgregación conocido como el Proceso P. Al final se sintetizan los isótopos más ligeros (pobres en neutrones) de los elementos pesados.

                                                         

                                                                                  Diagrama del Ciclo CNO

El ciclo CNO (carbono-nitrógeno-oxígeno) es una de las 2 reacciones nucleares de fusión por las que las estrellas convierten el hidrógeno en Helio, siendo la otra la cadena protón-protón. Aunque la cadena protón-protón es más importante en las estrellas de la masa del Sol o menor, los modelos teóricos muestran que el ciclo CNO es la fuente de energía dominante en las estrellas más masivas. El proceso CNO fue propuesto en 1938 por Hans Bethe.

Modelo: 126C donde 12 es peso atómico y 6 es número de protones.

Las reacciones del ciclo CNO son:

126C + ¹1H 137N + γ +1,95 MeV
137N 136C + e+ + νe +1,37 MeV
136C + ¹1H 147N + γ +7,54 MeV
147N + ¹1H 158O + γ +7,35 MeV
158O 157N + e+ + νe +1,86 MeV

Rama 1 (99,96% de todos las reacciones):

157N + 11H 126C + 42He +4,96 MeV

El resultado neto del ciclo es la fusión de cuatro protones  en una partícukla alfa  y dos positrones y dos neutrinos,  liberando energía en forma de rayos gamma.  Los núcleos de carbono, oxígeno y nitrógeno sirven como catalizadores  y se regeneran en el proceso.

Imagen de miniatura de un resultado de LensFusión nuclear - Wikipedia, la enciclopedia libre

                                                                               Fusión de elementos

Debido a las grandes cantidades de energía liberadas en una explosión de supernovas se alcanzan temperaturas mucho mayores que en las estrellas. Las temperaturas más altas para un entorno donde se forman los elementos de masa atómica mayor de 254, el californio siendo el más pesado conocido, aunque sólo se ve como elemento sintético en la Tierra. En los procesos de fusión nuclear en la nucleosíntesis estelar,  el peso máximo para un elemento fusionado en que el níquel, alcanzando un isótopo con una masa atómica de 56. La fusión de elementos entre el silicio y el níquel ocurre sólo en las estrellas más grandes, que termina como explosiones de supernovas -proceso de combustión del silicio-. Un proceso de captura de neutrones conocido como el proceso-s que también ocurre durante la nucleosíntesis estelar puede crear elementos por encima del bismuto con una masa atómica de aproximadamente 209. Sin embargo, el proceso-s ocurre principalmente en estrellas de masa pequeña que evolucionan más lentamente.

Tipos de estrellas

No podemos completar la Tabla periódica de elementos sin acudir a las estrellas. En las estrellas pequeñas y medianas como el Sol se transmutan una serie de elementos hasta llegar al hierro donde la fusión se frena por falta de potencia energética y, el resto de elementos más pesados y complejos, están en el ámbito de las estrellas masivas que, al final de sus vidas explotan como Supernovas y riegan el espacio interestelar de otros materiales como el oro y el platino, o, el Uranio.

http://farm3.static.flickr.com/2734/4076849383_1a19aa7aa0.jpg

“Una imagen del Observatorio Chandra de Rayos-X del remanente de supernova Cassiopeia A, con una impresión artística de la estrella de neutrones en el centro del remanente. El descubrimiento de una atmósfera de carbono en esta estrella de neutrones resuelve un misterio de hace una década alrededor de este objeto. Crédito: NASA/CXC/Southampton/W.Ho;NASA/CXC/M.Weiss”

Durante la nucleosíntesis de supernovas, el Proceso-R (R de Rápido) crea isótopos pesados muy ricos en neutrones, que se descomponen después del evento a la primera isobara estable, creando de este modo los isótopos estables ricos en neutrones de todos los elementos pesados. Este proceso de captura de neutrones ocurre a altas densidades de neutrones con condiciones de grandes temperaturas. En el Proceso-R, los núcleos pesados son bombardeados con un gran flujo de neutrones para formar núcleos ricos en neutrones altamente inestables que rápidamente experimentan la desintegración Beta  para formar núcleos más estables con un número atómico mayor y la misma masa atómica. El flujo de neutrones es increíblemente alto, unos 1022 neutrones por centímetro cuadrado por segundo.

Qué son los isótopos? - Foro NuclearDesintegración beta - Wikipedia, la enciclopedia libre

Los primeros cálculos de un Proceso-R, muestran la evolución de los resultados calculados con respecto al tiempo, también sugieren que en el Proceso-R las abundancias son una superposición de diferentes flujos de neutrones. Las pequeñas afluencias producen el primer pico de abundancias del Proceso-R cerca del peso atómico A = 130 pero no actínidos, mientras que las grandes afluencias producen los actínidos Uranio y Torio, pero no contiene el pico de abundancia de A = 130. Estos procesos ocurren en una fracción entre un segundo y unos cuantos segundos, dependiendo de detalles. Cientos de artículos relacionados publicados han utilizado esta aproximación dependiente del tiempo. De modo interesante, la única supernova moderna cercana, la Supernova 1987A, no ha revelado enriquecimientos del Proceso-R. La idea moderna es que el Proceso-R puede ser lanzado desde algunas supernovas, pero se agota en otros como parte de los neutrones residuales de la estrella o de un agujero negro.

 

 

Las estrellas! Que transforman la materia : Blog de Emilio Silvera V.Los Misteriosos Anillos de la Supernova 1987A – astronomia-iniciacion.com

Onda que al expandirse hacia el espacio interestelar  creó inmensos anillos  brillantes de material caliente, que fueron captados por el Hubble en todo su esplendor. No hace tanto tiempo que se observó la supernova más notable de los tiempos modernos. En febrero de 1987, la luz llegó a la Tierra procedente de una estrella que explotó en la cercana galaxia grande Nube de Magallanes. 1987a Supernova sigue siendo la supernova más cercana desde la invención del telescopio. La explosión catapultó una enorme cantidad de gas, la luz y los neutrinos en el espacio interestelar. Cuando se observó por el telescopio espacial Hubble (HST) en 1994, se descubrieron grandes anillos extraños cuyo origen sigue siendo misterioso, aunque se cree que han sido expulsados​​, incluso antes de la explosión principal. Observaciones más recientes del HST muestran en la inserción, sin embargo, han descubierto algo realmente predicho: la bola de fuego en expansión de la estrella en explosión.

                 Imagen de miniatura de un resultado de LensEvidencia de estrecha conexión entre supernovas y vida en la Tierra

Con el paso de los siglos, las supernovas se difuminan y van cediendo material que pierden por distintos motivos de la gravedad, vientos estelares y otros sucesos que se llevan material del remanente. Arriba podemos contemplar lo que ha quedado de la Supernova SN 1572, más conocida como la Supernova de Tycho.

TRANSURÁNIDOS, TRANSACTÍNIDOS Y MÁS ALLÁ

Elementos transuránicos - Wikipedia, la enciclopedia libre

Más allá del Uranio encontramos elementos muy radiactivos, casi todos artificiales.

Algunos son:

Los elementos químicos en el Universo

 

Elemento Fracción de masa en partes por millón
1 Hidrógeno 739.000
2 Helio 240.000
8 Oxígeno 10.400
6 Carbono 4.600

Y seis filas más.

 

Los científicos recorren el cosmos para encontrar los orígenes de los 118  elementos de la tabla periódica - Los Angeles TimesEl Big Bang y el origen de los elementos químicos en la Tierra -  31.10.2019, Sputnik Mundo

 

En el Universo se han detectado alrededor de 90 elementos químicos distintos. La abundancia de cada uno de ellos es muy diferente,  el hidrógeno constituye casi el 75% de la materia atómica del Universo, de un elemento como el francio apenas si existen 30 g en toda la Tierra, de otros elementos no se conoce su existencia y se han sintetizado en el laboratorio, en algunos casos, apenas unos pocos átomos. Este capítulo lo vamos a dedicar a conocer como el hombre ha ampliado, sintetizándolos de manera artificial, el de elementos químicos conocido hasta llegar en la actualidad al 118, de ellos 112 reconocidos y con nombre admitido por la IUPAC.

 

Lo cierto es que hemos podido llegar a saber cómo se forman los elementos en el Universo donde la Naturaleza se sirve de las estrellas para “fabricarlos” y en sus distintas categorías de más o menos masas, cada tipo de estrella desempeña una función esencial para que en el Universo puedan existir toda la gama de elementos que podemos conocer y que conforman la Tabla Periódica. Los más sencillos se transmutan en las estrellas pequeñas y los más complejos en las masivas y en las supernovas que se producen al final de sus vidas. Como se dice más arriba, los artificiales, los que están más allá del Uranio, son formados por el hombre en el laboratorio.

El Alquimista descubriendo el fósforo (1771) de Joseph Wright

Existió realmente la piedra filosofal? - Química en casa.comElixir de eterna juventud

Lejos quedan ya aquellos tiempos en el que los Alquimistas, perseguían transmutar el plomo en oro, encontrar la piedra filosofal y el elixir de la eterna juventud. Siempre hemos tenido una imaginación desbordante y, cuando no teníamos los conocimientos necesarios para explicar o conseguir aquello que queríamos y pensábamos que podíamos conseguir… ¡La Imaginación se desataba y volaba por los ilusorios campos de la Ignorancia!

Algunos piensan y se ha podido leer por ahí que:

 

“Un modelo propone que el origen de los elementos más pesados que el hierro no se da en las explosiones de supernova, sino en procesos en los que están involucradas las estrellas de neutrones.

Foto

Somos cenizas de estrellas. Muchos de los átomos que componen nuestros cuerpos estuvieron alguna vez en el interior de alguna estrella en donde las reacciones de fusión nucleares los sintetizaron. Una vez esos cuerpos estelares murieron los elementos que los componían fueron diseminados por el espacio. Parte de esa materia fue a parar a otros discos de acreción que formaron nuevas estrellas, planetas e incluso seres vivos.
El Big Bang sólo produjo hidrógeno, helio y pequeñas trazas de elementos ligeros, como el litio de nuestras baterías. Son los elementos primordiales. Las reacciones de fusión de las estrellas pueden sintetizar el resto de los elementos de la tabla periódica, pero no los de atómico más elevado. El elemento de corte se suele colocar en el hierro, aunque esta frontera es un tanto difusa. La razón es que las reacciones de fusión para producir esos elementos más pesados no producen energía, sino que la consumen. De hecho, la mejor manera de crear esos elementos pesados es por captura de neutrones.

Minerals Mining - MINERAL DE METALES PRECIOSOSPor qué el Uranio es un elemento tan importante para la tierra? -  Erenovable.comEl Platino. Historia, origen y yacimientos – Blog Joyería Plaor

El caso es que, hasta , se decía que esos elementos pesados, como el oro cuyo brillo tanto nos ciega, el uranio de nuestros reactores o el platino que cataliza tanta química moderna, procedían de las propias explosiones de supernovas. Todos hemos repetido esta popular hipótesis una y otra vez, pero no hay pruebas que la avalen. De hecho, las simulaciones de modelos de explosiones de supernova no confirman dicha síntesis.

Representación colisión de estrellas de neutrones que origina ondas  gravitacionales. Fuente: NASA - YouTubeLas consecuencias del choque de dos estrellas de neutrones

, una nueva teoría, coloca el origen de estos elementos en las estrellas de neutrones. Una estrella de neutrones es el residuo que dejan algunas estrellas de gran masa una vez explotan en forma de supernova. Unas simulaciones numéricas realizadas por científicos del Max Planck han verificado que la materia eyectada en procesos en los que están involucrados estos cuerpos producen las colisiones nucleares violentas necesarias como para producir núcleos pesados y generar los elementos más pesados que el hierro.” (NeoFronteras).

        Imagen de miniatura de un resultado de LensImagen de miniatura de un resultado de Lens

                 Sabemos como se forman las estrellas de todo tipo pero… ¿Qué pasa con la biología?

Todos sabemos por haberlo explicado aquí repetidas veces, como se forman las estrellas de neutrones que tiene una densidad de 1017 Kk/m3. ¡Una barbaridad! Pues bien, cuando dos de estas estrellas colisionan, se produce una inmensa explosión en la que se pueden crear materiales como el oro y el platino entre otros. Así ha resumido, un grupo de astrofísicos una investigación realizado para comprobar qué pasaba en este tipo de sucesos. De ello podemos deducir que se pueden formar nuevos materiales por procesos distintos al de la fusión nuclear en las estrellas. Sin embargo, la mayoría de los elementos están “fabricados en los hornos nucleares” y, gracias a ello, podemos nosotros estar aquí para contarlo.

emilio silvera

Los Pilares de la Creación, Revelados en 3D

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Utilizando el instrumento MUSE, instalado en el VLT (Very Large Telescope) de ESO, los astrónomos han producido la primera imagen tridimensional completa de los famosos Pilares de la Creación, en la nebulosa del Águila (Messier 16). Las nuevas observaciones demuestran cómo se distribuyen en el espacio los diferentes pilares polvorientos de este objeto icónico y revelan muchos detalles nuevos, incluyendo un inédito chorro procedente de una estrella joven que hasta ahora no se había visto. Con el tiempo, la intensa radiación y los vientos estelares de las brillantes estrellas del cúmulo han esculpido los polvorientos Pilares de la Creación, que acabarán evaporándose completamente en unos tres millones de años.

La imagen original de los famosos Pilares de la Creación, obtenida por el Telescopio Espacial de la NASA/ESA, fue tomada hace dos décadas y se convirtió inmediatamente en una de sus imágenes más famosas y evocadoras. Desde entonces, estas nubes vaporosas, que se extienden unos cuantos años luz , han asombrado por igual a científicos y público en general.

Tanto las estructuras salientes como el cúmulo de estrellas cercano, NGC 6611, forman parte de una región de formación estelar llamada la nebulosa del Águila, también conocida como Messier 16 o M16. La nebulosa y sus objetos asociados se encuentran a unos 7.000 años luz, en la constelación de Serpens (la serpiente).

Los Pilares de la Creación son un clásico ejemplo de las típicas formas de columna que se desarrollan en las nubes gigantes de gas y polvo, los lugares donde nacen nuevas estrellas. Las columnas surgen cuando las inmensas estrellas blancoazuladas de tipo O y B recién formadas emiten una intensa radiación ultravioleta y vientos estelares que empujan el material menos denso, expulsándolo de su vecindad.

Visualización de los datos 3D de los Pilares de la Creación
Visualización de los datos 3D de los Pilares de la Creación. Image Credit: ESO

Sin embargo, los grumos más densos de gas y polvo pueden resistir esta erosión durante más tiempo. Detrás de estos grumos más gruesos de polvo, el material está protegido del duro y fulminante fulgor de las estrellas O y B. Este blindaje crea oscuras “colas” o “trompas de elefante”, y es lo que vemos como el cuerpo oscuro de un pilar que apunta hacia las brillantes estrellas.

El instrumento MUSE, instalado en el VLT (Very Large Telescope) de ESO, ha ayudado a ilustrar, con un detalle sin precedentes, la evaporación constante de los Pilares de la Creación, revelando su orientación.

MUSE ha mostrado que la punta de la columna izquierda está de frente, en la cima de un pilar que se encuentra en realidad detrás de NGC 6611, a diferencia de los otros pilares. Esta punta se lleva la peor parte de la radiación de las estrellas de NGC 6611 y, como resultado, la vemos más brillante que los pilares de las partes inferior izquierda, centro y derecha, cuyos extremos apuntan fuera de nuestro campo de visión.

Asociación OB2. Los grupos y asociaciones contienen enormes cantidades de jóvenes estrellas calientes y masivas, conocidas como estrellas O y B. El cúmulo estelar Cygnus OB2 en la constelación Cygnus, contiene más de 60 estrellas de tipo O y cerca de mil estrellas de tipo B. Cygnus OB2 es el cúmulo masivo más cercano a nuestro sistema.

Los astrónomos esperan comprender mejor cómo las estrellas jóvenes de tipo O y B, como las de NGC 6611, influyen en la formación de estrellas de generaciones posteriores. Numerosos estudios han identificado proto-estrellas formándose en estas nubes, por lo que sí son pilares de creación. El nuevo estudio también aporta nuevas pruebas de la existencia de dos estrellas en gestación en los pilares de la izquierda y el centro, así como de un chorro generado por una joven estrella en la que no nos habíamos fijado hasta ahora.

Para el proceso de formación de estrellas en ambientes como el que se da en los Pilares de la Creación, se trata de una carrera contra el tiempo, ya que la intensa radiación procedente de las potentes estrellas ya existentes sigue haciendo estragos en el entorno.

Al medir la velocidad de evaporación en los Pilares de la Creación, MUSE ha dado a los astrónomos un plazo de tiempo para calcular su final: pierden unas setenta veces la masa del Sol cada millón de años, más o menos. Basándonos en su masa actual (cerca de 200 veces la del Sol), se espera que los Pilares de la Creación tengan una vida útil de quizás tres millones de años más — un pestañeo en tiempo cósmico. Parece que un nombre igualmente apto para estas icónicas columnas cósmicas podría ser “los pilares de la destrucción”.

Fuente: NASA en Español