jueves, 23 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Que pasa en las estrellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La región de formación estelar S106

 

 

Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Arriba teneis una estrella supermasiva que ha expulsado gases formando una nebulosa para evitar su muerte, Eta Carinae ha hecho lo mismo. Estas son estrellas que estám congestionadas y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.

Se calcula que la masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.

De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orion) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.

El diagrama de Hertzsprung-Russell (arriba) proporcionó a los astrónomos un registro congelado de la evolución de las estrerllas, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucinan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aún de estrellas de vida corta, se mide en millones de años. Hallar la respuesta exigirá conocer la física del funcionamiento estelar.

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la Barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas.

http://traslaeradeplanck.files.wordpress.com/2011/01/mosaiccintorio_martinez.jpg

La barrera de Coulomb, denominado a partir de la ley de Coulomb, nombrada así del físico Charles-Augustin de Coulomb (1736–1806), es la barrera de energía debida a la interacción electrostática que el núcleo atómico debe superar para experimentar una reacción nuclear. Esta barrera de energía es proporcionada por la energía potencial electrostática:

U_{coul} = k {{q_1\,q_2} \over r}={1 \over {4 \pi \epsilon_0}}{{q_1 \, q_2} \over r}

donde:

k es la constante de Coulomb = 8.9876×109 N m² C−2;
ε0 es la permeabilidad en el vacío;
q1, q2 son las cargas de las partículas que interactúan;
r es el radio de interacción.

Un valor positivo de U es debido a una fuerza de repulsión, así que las partículas que interactúan están a mayores niveles de energía cuando se acercan. Un valor negativo de la energía potencial U indica un estado de ligadura, debido a una fuerza atractiva. La linea de razonamiento que conducía a esta barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de hidrógeno consiste en un sóoo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford explicados aquí en otra ocasión). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno.

(Recordemos que la masa es igual a la Energía: E = mc2. (En el calor de una estrella los protones son esparcidos a altas velocidades -el calor significa que las partículas involucradas se mueven rápidamente- y, como hay muchos protones que se apiñam en el núcleo denso de una estrella, deben de tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. esta era la base de conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra cosa que energía subatómica, la cual, como se sabe, existe en abundancia en toda la materia”.

A ese punto, todo iba bienM la ciencia estaba cerca de identificar la fusión termonuclear como el secreto de la energía solar. Pero aquí era donde intervenía la Barrera de Coulomb. Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande  para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del centro de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromágnéticos y fundirse en un sólo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con su rostro radiante y sonriente al ver el esfuerzo y las ecuaciones que decían que no podía brillar.

Dejemos aquí este proceso y digamos que, realmente, la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando la atravesará. Este es el “Efecto Túnel Cuántico”; que permite brillar a las estrellas. George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb, o casi. El efecto túnel cuántico se hizo cargo de los cálculos de la desalentadora predicción clásica, que establecia la fusión de los protones a sólo una milésima de la tasa necesaria para explicar la energía liberada por el Sol, y la elevó a una décima de la tasa necesaria. Luego se tardó menos de un año para dar cuenta del deficit restante: la solución fue completada en 1929, cuando Robert Atkinson y Fritz Houterman combinaron los hallazgos de Gamow con lo que se ha llamado teoría maxwelliana de la distribución de velocidades. En la distribución maxwelliana hay siempre unas pocas partículas que se mueven mucho más rápidamente que la media y, Robert Atkinson y Fritz Houterman hallaron que estas pocas partículas veloces bastqaban para compensar la diferencia. Finalmente se hizo claro como podía romperse la Barrera de Coulomb suficientemente a menudo para que la fusión nuclear se produjese en las estrellas.

Physicist Hans Bethe

Pero la figura clave en todos estos desarrollos fue Hans Bhete, un refugiado de la Alemania nazi que había estudiado con Fermi en Roma y fue a enseñar en Cornell en EE. UU. Como su amigo Gamow, el joven Bhete era un pensador efervescente y vivaz, con tanto talento que parecía hacer su trabajo como si de un juego se tratara. Aunque no preparado en Astronomía, Bhete era un estudioso de legendaria rapidez. En 1938 ayudó al discipulo de Gamow y Edward Teller, C.L. Critchfield, a calcular una reacción que empezase con la colisión de dos protones podía generar aproximadamente la energía irradiada por el Sol, 3,86 x 1033 ergios por segundo. Así, en un lapso de menos de cuarenta años, la humanidad había progresado de la ignorancia de la existencia misma de los átomos a la comprensión del proceso de fusión termonuclear primaria que suministra energía al Sol.

Pero la reacción protón. protón no era bastante energética para explicar la luminosidad muy superior de estrellas mucho más grandes que el Sol, estrellas como las supergigantes azules de las Pléyades, que ocupan las regiones más altas del diagrama de Herptzsprung-Russell. Bhete puso remedio a esto antes de que terminase aquel el año 1938.

En abril de 1938, Bhete asistió a una conferencia organizada por  Gamow y Teller que tenía el objeto de que físicos y astrónomos trabajaran juntos en la cuestión de la generación de energía en las estrellas. “Allí, los astrofísicos nos dijeron a los físicos todo que sabían sobre la constitución interna de las estrellas -recordoba Bhete-. esto era mucho (aunque) habían obtenido todos los resultados sin conocimiento de la fuente específica de energía.” De vuelta a Cornell, Bhete abordó el problema con celeridad y, en cuestión de semanas logró identificar el ciclo del Carbono, la reacción de fusión crítica que da energía a las estrellas que tiene más de una vez y media la masa del Sol.

Bhete que estaba falto de dinero, retiró el artículo que escribió sobre sus hallazgos y que ya tenía entragado en la Revista Physical Review, para entregarlo en un Concurso postulado por la Academía de Ciencias de Nueva York  sobre la producción de energía en las estrellas. Por supuesto, Bhete ganó el primer Premio uy se llevó los 500 dolares que le sirvieron para que su madre pudiera emigrar a EE UU. Después lo volvió a llevar a la Revista que lo publicó y, finalmente, se lo publicaron y tal publicación le hizo ganar el Nobel. Por un tiempo, Bhete había sido el único humano que sabía por qué brillan las estrellas.

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Cuando miramos al cielo y podemos contemplar extasiados esas maravillas que ahí arriba, en el espacio interestelar están brillando, y, nos da la sensación de que están hacièndonos guiños, como si quisieran mandarnos un mensaje, decirnos algo y nosotros, no pensamos en todo lo que ahí, en esos “puntitos brillantes” se está fraguando. De lo que allí ocurre, depende que los mundos tengan los materiales que en ellos están presentes y, de entre esos materiales, se destacan aquellos que por su química biológica, permiten que se pueda formar la vida a partir de unos elementos que se hiceron en los hornos nucleares de las estrellas.

Y sí, es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están confomadas las estrellas y qué materiales se están forjando allí, al inmenso calor de sus núcleos. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

http://img.seti.cl/sol02.jpg

A nuestro planeta sólo llega una ínfima fracción del calor que se genera en el Sol y, sin embargo, es más que suficiente para mantener aquí la vida. El Sol tiene materia que supone la misma que tendrían 300.000 Tierras. Nuestra estrella madre está situada a una UA (150 millones de kilómetros de nosotros) y, todas esas circunstancias y otras muchas, hacen que todo sea tal como lo vemos a nuestro alrededor. Si cualquiera de esos parámetros fuera diferente o variara tan sólo unas fracciones, seguramente la Tierra sería un planeta muerto y, nosotros, no estaríamos aquí. Sin embargo… ¡Estamos! y, gracias a ello, se pueden producir descubrimientos como los que más arriba hemos relatado y han podido y pueden existir personajes de cuyas mentes surgen ideas creadoras que nos llevan a saber cómo son las cosas.

Lo cierto es que, cada día sabemos mejor como funciona ma Naturaleza que, al fin y al cabo, es la que tiene todas las respuestas que necesitamos conocer.

emilio silvera

El Tiempo inexorable y cosas que en él suceden

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cada uno de nosotros, a lo largo de nuestras vidas, podemos nombrar el tiempo una ingente cantidad de veces, es uno de los conceptos más familiares que con nosotros convive y, sin embargo, es, a su vez, uno de los más desconocidos con que se ha encontrado la Humanidad: ¡El Tiempo vuela! ¡El Tiempo es oro! ¡Aprovecha el Tiempo! ¡No tenemos Tiempo! ¡Me falta Tiempo! ¡El Tiempo que pasó, ya no regresará! ¡El Tiempo futuro! Y, a todo esto, no dejamos de preguntarnos lo que es el Tiempo. Nadie lo sabe.

¿De dónde proce el Tiempo? ¿Habrá algún universo sin tiempo? ¿Hay más de una dimensión temporal que, como nos pasa con las de espacio, no podemos observar? ¿Es, en verdad, relativo el Tiempo, o, por el contrario fluye de la misma manera para todos? ¿Cómo puede ser que, mediante la velocidad podamos “frenar” el transcurso del Tiempo? ¿Será posible algún día viajar en el Tiempo? ¿Cómo será -si lo hay- el cuanto de tiempo? ¿Es el Tiempo, en realidad, un ingrediente fundamental en la construcción del Cosmos? ¿Es la presencia del Tiempo -si es que está- ineludible en un universo como el nuestro? ¿El Tiempo y el Espacio, son gemelos nacidos en el mismo instante y que, desde entonces, caminan juntos y se llaman espaciotiempo?

Claro que, tal como lo concebimos notros, el Tiempo no deja de fluir y, eso llevó a decir a un buen amigo nuestro lo siguiente:

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.” Así se expresaba Carl Sagan al pensar en el futuro de nuestra Tierra cuando el Sol, agotado su combustible nuclear, llegara a su final

Marte (planeta)

Se quedaría la Tierra, entonces, como ahora podemos ver a nuestro planeta hermano, Marte, sin atmósfera y estéril, en ausencia de acéanos

Es bueno para el ser humano que sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En cada uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aquú (que no es probable).

Para evitar eso se está trabajando desde hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.

El Sol, cuando llegue su final, será una gigante roja y se tragará la Tierra.Mucho antes de que eso llegue, los océanos y mares se evaporarán y, la vida, desaparecerá de este hermoso planeta que habrá cumplido con creces su función de mantener y permitir evolucionar a una serie de seres de distintas especies. Lo que pase después, si es que seguimos aquí, será cosa de nosotros.

                        Estamos irremisiblemente llamamos a evolucionar, ese es, nuestro destino y, creer que estamos solos…Es un enorme error. de todo eso hablamos un día unos amigos alrededor de una hoguera pero, no se llegó a ningún acuerdo y, cada cual, tenía su propia versión. ¡Así somos!

El saber nos dará soluciones para conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy impensables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día, que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, viajar a otras galaxias, viajar a otro tiempo y, finalmente, viajar para escapar del destino final del universo…  a otros universos.

Sí, lo sé, algunos de los que esto puedan leer pensarán que estoy fantaseando, pero la verdad es que no he hablado con más seriedad en mi vida, ya que, si no fuera como estoy diciendo, entonces, ¿para qué tantas calamidades, desvelos y sufrimientos? ¿qué sentido tendría nuestra presencia aquí? Creo que la Humanidad tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿quién sabe?

Claro que, a todo esto, debemos contar con eso que denominamos TIEMPO.

Nos referimos al tiempo en múltiples ocasiones y para distintas situaciones y motivos, como al referirnos a la duración de las cosas sujetas a cambios, época durante la cual ocurrieron unos hechos, edad de los objetos, estación del año, el período de vida de alguien desde que crece hasta que deja de existir, ocasión o coyuntura de hacer algo, cada uno de los actos sucesivos en que dividimos la ejecución de un trabajo, y otros mil temas que requieren la referencia temporal.

gravedad

Como se puede ver, el objeto pesado o masivo colocado en el centro de la superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste. De la misma manera, nuestras mentes se agrandan a medida que van recibiendo más y más información, y, de esa manera, podremos llegar a comprender, lo que el Universo es.

Hipernova

 

Esta Hipernova es también la consecuencia del paso del Tiempo

 

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el estado del clima (hace mal tiempo; qué tiempo más bueno hace hoy, etc). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la forma de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿qué haríamos sin horario de trenes, de comercio, bancos, oficinas, etc?).

Ahora dedicamos nuestro tiempo a bucear en… ¡Los Oceanos de Higgs!

 

http://3.bp.blogspot.com/-6TPKlbgZZG4/TlVHFGFNFRI/AAAAAAAABVk/lLa0blh-7zI/s1600/boson-de-higgs-particula-de-dios.jpg

 

 

El tiempo pasa y en el LHC no aparece el Bosón de Higgs. Ahora comenzarán a utilizar 8 TeV con la esperanza de que, antes de final de este año, puedan aparecer, no ya el Bosón de Higgs, sino algunos objetos más como partículas simétricas y exóticas, la sombre de la materia oscura, o, incluso, indicios de fluctuaciones de vacío que nos hablen de esas energías “invisibles” que están más allá de nuestros dominios.

Mucho es lo que se habla de los océanos de Higgs que dicen permear todo el espacio, pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

 

 

 

¿Qué hace?   ¿estará buscando el Bosón de Higgs?

 

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.  La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por P. Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

 

 

 

 

 

 

Las masas van de la del electrón 0’0005 GeV, a la del top, mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electro débil (Weinberg-Salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa  los W+, W, Zº y fotón que llevan la fuerza electro-débil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electro débil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard  ´t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

 

 

 

foto

Hasta hace algunas decenas de años, se consideraba que el espacio entre las estrellas estaba completamente vacío. Las observaciones ópticas y radioastronómicas han demostrado, en cambio, que éste está lleno de materia interestelar formada predominantemente por hidrógeno mezclado con minúsculas partículas sólidas, llamadas genéricamente polvo interestelar.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “! Higgs ¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

 

 

 

 

 

 

Siempre nos hemos preguntado de dónde vino la materia. Hemos llegado a comprender que toda la materia está hecha y es energía concentrada. Con el paso del tiempo pudimos desmenuzar sus componentes y llegamos a ser conscientes de que toda la masa del Universo está conformada a partir de minúsculos objetos que llamamos partículas. Todo lo grande está hecho de cosas pequeñas.

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno, y, según mi amigo Ramón Márquez, las partículas toman su masa debido al efecto frenado.

 

 

 

     Lo cierto es que, el Tiempo, se nos escapa de entre los dedos de las manos, no podemos retenerlo
Estaría bien que alguna vez, alguien nos pudiera explicar lo que el tiempo es, o, si por el contrario no es otra cosa que, un copcepto, una abstracción humana inventada para poder manejar nuestras vidas cotidianas y medir, de esa manera, el transcurrir…¿del tiempo?

El tiempo es tan importante en nuestras vidas que está presente siempre, de mil formas diferentes, desde que nacemos (cuando comienza “nuestro tiempo”), hasta que morimos (cuando “nuestro tiempo ha terminado”). El tiempo siempre está. Es algo que, simplemente, está ahí.

San Agustín decía saber lo que era el Tiempo pero, explicarlo…n0

Sin embargo, a pesar de lo importante que es el TIEMPO, no he podido leer nunca una explicación satisfactoria sobre el mismo; una explicación que lo defina con sencillez y claridad sin restarle la importancia que tiene para todos y lo que en realidad es dentro del contexto – no ya de nuestras vidas, simples e insignificantes puntos en la inmensidad del universo – de la naturaleza cósmica de la que formamos parte.

Como nos ocurre con tantas otras cosas y conceptos, debemos saber, de una vez por todas qué es, en realidad el Tiempo. Creo que cuando sepamos comprender lo que el Tiempo es, la Humanidad habrá dado un paso tan importante en su caminar por el Mundo que, a partir de ese momento, lo podremos “ver” todo de otra manera, con otra perspectiva más amplia y que nos permitirá “ver” más lejos en la comprensión del Universo Universo mismo.

¡El Tiempo! Qué dolor de cabeza.

emilio silvera

Sí, ¡tenemos que saber y sabremos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando hablamos de “Estrellas de Quarks”,  “Materia Oscura”, “Bosón de Higgs”, “Singularidad”, “vacío”, Supercuerdas”, o,  Teoría de Todo” entre  otros muchos conceptos de física, astrofísica o astronomía no podemos dejar de plantearnos una pregunta: ¿Estará la teoría realmente confirmada o, por el contrario será que los experimentadores han sucumbido bajo la pressión de los teóricos?

En una prestigiosa página de ciencia, en relación al Bosón de Higgs, el pasado día 13 de Julio, se planteaba ésta pregunta: ¿El bosón de Higgs descubierto en el LHC es el predicho por el modelo estándar?

La combinación de todos los resultados experimentales disponibles, tanto en el Tevatrón (CDF+DZero) como en el LHC (Atlas+CMS), indica que el bosón escalar con una masa de 125,5 GeV descubierto el 4 de julio es el bosón de Higgs del modelo estándar. Si no lo es y se trata de un “impostor” (yo suelo llamarle un “primo”), la diferencia entre ambos es muy pequeña. La figura que abre esta entrada muestra que el descubrimiento de la nueva partícula tiene 6,9 sigmas de confianza estadística (la banda gris marca ±1 σ). Además, el cociente entre la tasa de producción de  la nueva partícula y la tasa de producción predicha por el modelo estándar es de solo μ = 1,02 ± 0,15, lo que implica un gran acuerdo con el valor predicho μ = 1. El mejor ajuste combinado para la masa del Higgs es m = 125,5 ± 0,54 GeV, como muestra la figura de abajo.

En resumen, el ajuste entre la nueva partícula y el bosón de Higgs es muy bueno, luego mientras nadie demuestre lo contrario, se ha descubierto el bosón de Higgs del modelo estándar. Este análisis y las figuras anteriores aparecen en Pier Paolo Giardino, Kristjan Kannike, Martti Raidal, Alessandro Strumia, “Is the resonance at 125 GeV the Higgs boson?,” arXiv:1207.1347, Submitted on 5 Jul 2012. (la fuente en Francis (th)E mule Science’s News).

Hablamos de aproximación y nada es aún seguro, queda mucho trabajo por delante para poder confirmar, asegurando que se trata de hecho, del famoso Bosón de Higgs.  Pero, tal y como están las cosas, la inmensa cantidad de dinero que se ha empleado en el Proyecto, las personas que están implicadas en el mismo… nos llevan a plantearnos otra pregunta: ¿Son esos resultados reales o son simplemente el producto de los buenos deseos? Esto último es lo que aveces sospechan los críticos y los historiadores de la Ciencia. Parece que si la teoría no lo necesita, no existe, mientras que si la teoría lo requiere, todos los experimentadores lo verán rápidamente.

Claro que, este comentario está hecho con el mayor respeto hacia los experimentadores a los que, de partida, no considero sospechosos, pero esas ganas de encontrar algo…te puede llevar a “ver” lo que no hay. Un buen científico debe subestimar más que sobreestimar los resultados y la precisión de los mismos y de manera muy especial si esos resultados resultan ser de tanta importancia. Hasta tal punto lo es en este caso que, el mismísimo Modelo Estándar de la Física de Partículas e interaacciones, está pendiente de dicha confirmación para saber, de dónde procede la masa de las partículas.

Claro que, en este caso, otros experimentos posteriores nos darán las respuestas definitivas que vendrán, a confirmar aquella primera impresión positiva o, por el contrario (como pasó otras veces) delatará un error cometido. En ambos casos, tendremos la verdad y eso, ya es bastante para saber que caminos debemos o no debemos seguir.

En el tema de la materia oscura, nos encontramos también algo confusos y, tenemos experimentos para todos los gustos. Unos dicen que han  detectado materia oscura alrededor de las galaxias y, más tarde, vienen a decir que no, que no era materia oscura y que la observación se había desviado hacia derroteros engañosos. Muchos son los que confiorman la materia oscura y muchos también, los que la niegan.

Claro que todos  sabemos que “Materia oscura” es la materia hipotética de composición desconocida que no emite o refleja suficiente radiación electromagnética para ser observada directamente con los medios técnicos actuales pero cuya existencia puede inferirse a partir de los efectos gravitacionales que causa en la materia visible, tales como las estrellas o las galaxias, así como en las anisotropías del fondo cósmico de microondas. No se debe confundir la materia oscura con la energía oscura. De acuerdo con las observaciones actuales de estructuras mayores que una galaxia,  así como la cosmología del Big Bang,  la materia oscura constituye la gran mayoría de la masa en el Universo observable. Frits Zwicky la utilizó por primera vez para declarar el fenómeno observado consistente con las observaciones de materia oscura como la velocidad rotacional de las galaxias y las velocidades orbitales de las galaxias en los cúmulos, las lentes gravitacionales de objetos de fondo por los cúmulos de galáxias así como el Cúmulo Bala (1E 0657-56) y la distribución de temperatura de gas caliente en galaxias y cúmulos de galaxias. La materia oscura también juega un papel central en la formación de estructuras y la evolución de galaxias y tiene efectos medibles en la anisotropía de la radiación de fondo de microondas. Todas estas líneas de pruebas sugieren que las galaxias, los cúmulos de galaxias y el Universo como un todo contienen mucha más materia que la que interactúa con la radiación electromagnética: lo restante es llamado “el componente de materia oscura”. Claro que, también todo esas anomalías observadas pudieran ser debidas a una fuerza que no hemos podido observar o descubrir, y, también, a cualquier otro factor desconocido de los que tántos esconde el Universo.

Los físicos proponen un mecanismo que explica el origen tanto de la materia oscura como de la materia ordinaria. Este mapa en 3D muestra la distribución a gran escala de la materia oscura, reconstruida a partir de las mediciones realizadas por el método de las lentes gravitatorias débiles con el Telescopio Espacial Hubble. El campo de visión abarca cerca de nueve veces el tamaño de la Luna llena.

A través de precisas mediciones cosmológicas, los científicos saben que cerca del 4,6% del Universo está compuesto por materia bariónica (átomos normales), aproximadamente el 23% lo forma la materia oscura, y el 72% restante o menos, corresponde a la energía oscura. Los científicos también saben que casi toda la materia bariónica del Universo observable es materia con una carga positiva de bariones, en vez de antimateria, con una carga negativa de bariones. Pero exactamente por qué se llegaron a estas proporciones de materia y energía sigue siendo un misterio.
En un estudio reciente, los físicos han propuesto un nuevo mecanismo que puede generar la asimetría bariónica y la densidad de materia oscura del Universo simultáneamente. La composición de la materia oscura se desconoce, pero puede incluir neutrinos ordinarios y pesados, partículas elementales recientemente postuladas como los WIMPs y los axiones, cuerpos astronómicos como las estrellas enanas y marrones y los  planetas (colectivamente llamados MACHO) y las nubes de gases no luminosos. Las pruebas actuales favorecen los modelos en que el componente primario de la materia oscura son las nuevas partículas elementales llamadas colectivamente materia oscura no bariónica.

De la lecturta del último párrafo, uno sale convencido totalmente de que, nadie sabe lo que la “materia oscura” puesa ser. Es como aquel criste que contaban en el que, un cazador que tenía tenblores era el que más pájaros mataba. Uno del grupo, algo mosca, decía: “Claro es que apunta a todos los lados”. De la misma manera, los “expertos, se curan en salud y dicen que la hipotética “matria oscura” pueden ser: ” los WIMPs y los axiones, cuerpos astronómicos como las estrellas enanas y marrones y los  planetas (colectivamente llamados MACHO) y las nubes de gases no luminosos.” y, seguro que me dejo algunop por detrás, ya ue me fantan los neutrinos y los agujeros negros que también, fueron candidatos a “materia oscura”.

Detectado un inmenso vacío en el Universo lejano

En lo que al vacío se refiere, son muchos los conceptos que como vacío está en nuestras bocas y, podemos decir: “Se ha detectado un inmenso vacío en el Universo lejano”. En la página de Astronomía Of The Day de la Nasa, con esa imagen de arriba, nos decían:

“¿Qué ha creado este gigantesco volumen vacío en el Universo? Nadie está aún seguro. Es más: se sigue investigando incluso el tamaño del hueco, estimado en unos millones de años-luz.  El vacío no es un “agujero en el espacio” como podría serlo un agujero negro, sino más bien una inmensa región del Universo en la que al parecer no hay materia normal, o, siquiera, materia oscura. Se cree que el vacío puede contener energía oscura,  sin embargo, y es claramente transparente a la luz.

La existencia de esta zona vacía se postula como posible explicación para la inusuales zonas frías cartografiadas en elmapa de la misión WMAP del fondo cósmico de microondas  (CMB). Una posibilidad es que esta región del fondo cósmico de microondas no esté realmente tan fría,  sino que la luz proveniente de ella haya sufrido, de alguna manera, un desplazamiento cosmolñógico al rojo mayor que el esperado. Se conocen otros vacíos de estas características en el Universo, pero éste parece tener efectos gravitatorios inusualmente grandes, por lo que podría ser el mayor vacío del Universo conocido. En una investigación sobre el tema, un reciente estudio encontró un número extrañamente reducido de fuentes císmicas de radio entre la Tierra y esta zona fría del fondo cósmico de microondas, dato que llevó a inferir la existencia de esta inmensa zona vacía.” Es decir, continuamos dando palos de ciego y, cuando no sabemos, teorizados y emitimos conjeturas e hipótesis que, no siempre, reflejan la realidad.

Es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término “Energía del punto cero” es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico.  De acuerdo a lo que se entiende actualmente por vacío cuántico o “estado de vacío”, este “no es desde ningún punto de vista un simple espacio vacío”. , y otra vez: “es un error pensar en cualquier vacío físico como un absoluto espacio vacío.” De acuerdo con la mecánica cuántica, el vacío cuántico no está verdaderamente vacío sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan adentro y fuera de la existencia.

La existencia del cuanto de acción supone, realmente, la desaparición del vacío como tal. La mínima energía posible en el espacio (fluctuaciones cuánticas) deja de ser cero para pasar a depender del inverso de la distancia considerada. A la menor distancia posible (longitud de Planck = 10-35 metros) , se le asocia una energía considerable, equivalente a una masa de 0,00002 gramos, y si mantuviéramos la misma relación, la masa correspondiente a un metro sería del orden de 1,2 x1024 toneladas. Pero la propia existencia del mínimo cuanto de acción – principio de incertidumbre – determina que las fluctuaciones de energía del vacío queden acotadas, y sean cada vez menores conforme aumenta la distancia. Para las distancias macroscópicas, cotidianas para nosotros, son prácticamente nulas.

Después de leer todo lo anterior, tenemos que pensar y hacernos preguntas sobre lo que es y lo que realmente puede ser. Cierto que, no estamos en disposición de discernir entre la verdad y la mentira de todo lo que se dice y, para no estar seguros, no sabemos, con certeza, ni siquiera si el Big Bang existió y fue el origen del Universo, o, por el contrario, el Universo ya estaba aquí, o, se formó de otra manera.

Muchas de las cosas que se nos presentan como ciertas…No lo son, y, sin embargo, ahí perduran en nuestras mentes como si de algo real se tratara y, pasado el tiempo, se descubre que aquello, no era tal como nos lo contaron sino que, se trataba de algo distinto y totalmente opuesto a lo que fue nuestro credo.

Así hemos venido caminando los componentes de este grupo que forma una especie que llamamos humanidad. Somos curiosos y queremos saber sobre todo lo que a nuestro alrededor pasa, saber cómo pasaron las cosas y llegar a comprender el por qué sucedió así y no de otra manera. Pero la ciencia, la única que nos podía dar una respuesta, no es fácil y exige de ciertas reglas que debemos cumplir y, desde luego, no siempre hemos estado preparados para cumplirlas y, la mejor herramienta que hemos tenido ha sido nuestra Mente. Imaginación y pensamientos que nos llevaron a dibujhar en nuestras mentes un “mundo” que no siempre coincide con el mundo pero, de esa manera, hemos avanzado y lo seguimos haciendo.

Bueno, es cierto, y debemos reconocer que aún no sabemos “todo” y, sin embargo, hemos podido llegar a comprender muchas cosas que sí podríamos explicar, todas esas imñágenes de arriba y muchas más pueden ser explicadas de manera muy detallada y con abundancia de datos. La Humanidad no está pasara, nunca dejó de moverse y la imaginación que genera sus mentes…evoluciona sin cesar, es una fuente de creación y, aunque sea lentamente (el ritmo lo impone el Universo), vamos sabiendo y, algún día sabremos lo que realmente pueda ser eso que llamamos “materia oscura”, sabremos si el Higgs es el dador de las masas, y podremos comprender sobre el vacío y sus verdaderas propiedades y, además, sabremos sobre otros muchos secretos que el Universo guarda y que, nosotros, humildes humanos, vamos a desvelar.

emilio silvera

Las estrellas nos trajeron aqui II

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro. El resultado es que la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl. Las fuerzas electromagnéticas entre esos iones determinan su ordenación en un cristal, el Cl Na. Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals. Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.

Hablemos de cuerpos.

Me referiré en primer lugar a los que constituyen nuestro entorno ordinario, que sería todo el entorno que abarca nuestro planeta. En segundo lugar considerare los demás cuerpos y objetos del universo. El análisis de muestras de esos diversos cuerpos ha puesto de manifiesto que, en función de la composición, los cuerpos pueden ser simples y compuestos. Los primeros son, precisamente, los llamados elementos químicos, a las que el insigne Lavoisier (conocido como padre de la química), consideró como el último término a que se llega mediante la aplicación del análisis químico.

Hoy sabemos que son colectividades de átomos isotópicos.

La mayoría de ellos son sólidos y se encuentran en la naturaleza (nuestro entorno terráqueo) en estado libre o en combinación química con otros elementos, formando los diversos minerales.

La ordenación de los iones en las redes se manifiesta externamente en multitud de formas y colores. No obstante debo señalar que, aun siendo abundante esta variedad, no es tan rica como la que corresponde a los cuerpos vivos, tanto animales como vegetales. La explicación se basa en que el número de especímenes moleculares y su complejidad son mucho mayores que en el reino inorgánico.

Leer más

Enanas Blancas, estrellas misteriosas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejmplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, midelos de simulación, etc., estas estrellas se forman cuando, al funal de la vida de las estrellas medianas, al final de sus vidas, cuando agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas cuando las partes exteriores de la estrella son expulsadas al espacio interestelar para formar una Nebulosa Planetaria.

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 108 Kg/m3) que sólo evista su propio colapso  por la preseión de degeneración de los electrones (como sabeis los electrones son fermiones que estando sometidos al Principio de exclusión de pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se cjuntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, puede, incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

Este tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades  de 10-3 – 10-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener muha masa, en un agujero negro

http://www.elcielodelmes.com/imagenes%20articulos/enana%20blanca%20sirio%20B.jpg

Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

Las enanas blancas son estrellas calientes y pequeñas, generalmente como del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las condiciones necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su disminuye. A partir de esto es que se encuentra que hay un límite superior para la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente para detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.

Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias.

A supernova remnant about 7,000 light years from Earth.

                                       A esto puede dar lugar la unión de dos enanas blancas

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en esta etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como para alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.

Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). Esta enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandraskhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó  Ramanujan), y, estando en la aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que ahora se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.

Subrahmanyan Chandrasekhar 1 300x204 Subramanyan Chandrasekhar

                     Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecanocuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo (para este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la decualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de e4sta alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la seéptima estrellas en orden de proxomidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Serio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decirm 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya desde hace algunos añis -nos decía Eddintong-” Sin embargo, la mayoría de los astróniomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la vrdad que ahora conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

Arriba la famosa Nebuliosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio hasta que, dentro de unos 100 millones de añosm vieja y fria, será más rojiza y se habrá convertido en eun cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso para estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de esta manera, quedaba convertida, finalmente, en una Estrella de Neutrones.

Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 1012 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de esta corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del tipo II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 1017 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo nombre. Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosos compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación.  Las binarias de rayos X masivas tambioén se piensan que contienen estrellas de neutrones.

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resulta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dcihas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enenas blancas como debida no al calor sino a un fenómeno mecanocuántico nuevo: los movimientos degenerados de los electrones, también llamado degeneración electrónica.

La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede deternerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Primncipio de esclusión de Pauli que impide que dos fermiones estén juntos, así que, esta fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constiruida estable como una enana blanca.

emilio silvera