Dic
17
Está claro… ¡Si no sabemos… Conjeturamos!
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (5)
Recreación de un agujero blanco – Archivo
¿Hemos detectado ya agujeros blancos y no los hemos reconocido?
Según el físico Carlo Rovelli, la materia oscura podría estar hecha de esos fenómenos cósmicos (hasta ahora teóricos) que expulsan materia
A principios de la pasada década de los setenta, casi nadie creía en la existencia de los agujeros negros. Ni siquiera las numerosas detecciones indirectas (materia cayendo dentro de ellos) lograba convencer a los científicos de su existencia. Físicos de la talla de Steven Weinberg se negaban en rotundo a admitir que esas “aberraciones teóricas” pudieran ser reales, incluso después del descubrimiento, en 1964, de Cisne X1, objeto de encendidas polémicas y también de la famosa apuesta entre Stephen Hawking, que a pesar de sus creencias optó por sostener que no se trataba de un agujero negro, y su colega Kip Thorne, que apostó lo contrario. Tuvieron que pasar varias décadas hasta que se pudo probar con total certeza que, efectivamente, en el sistema binario Cisne X1 había un agujero negro, que se convirtió así en el primero descubierto por el hombre. Hoy en día, existen numerosas evidencias de que el Universo está repleto de ellos.
En su libro el Orden del Tiempo llega a preguntarse ¿Y si el Tiempo no existiera?
Y ahora, según explica en un magistral artículo divulgativo en New Scientist el físico teórico Carlo Rovelli, de la Universidad francesa de Aix-Marseille, podría estar sucediendo lo mismo con unos objetos, si cabe, aún más extraños que los agujeros negros: los agujeros blancos. Algo que, en esencia, sería casi idéntico a sus “hermanos negros”, pero a la inversa.
Lo cierto es que en la actualidad, igual que sucedía en los setenta con los agujeros negros, nadie o casi nadie cree en la existencia de agujeros blancos, que se consideran poco más que un simple ejercicio matemático sin contrapartida alguna en el mundo real. A diferencia de los negros, los agujeros blancos no absorben materia, sino que la expulsan. De este modo, igual que nada de lo que entra en un agujero negro puede volver a salir, tampoco nada de lo que sale de un agujero blanco puede volver a entrar.
Se supone que los agujeros blancos (si existen), en lugar de engullir materia la expulsan
A pesar del rechazo general, sin embargo, algunos grupos de físicos, entre ellos el de Rovelli, han empezado a investigar una posibilidad de la Mecánica Cuántica que permite una vía para que los agujeros blancos se formen realmente y de que el cielo, por lo tanto, pueda estar repleto de ellos, a pesar de no haber detectado todavía ninguno.
“La razón para sospechar que existen agujeros blancos -escribe Rovelli en New Scientist– es que podrían resolver un misterio abierto: lo que sucede en el centro de un agujero negro. Vemos grandes cantidades de materia en espiral alrededor de los agujeros negros, y luego cayendo dentro.Toda esa materia atraviesa la superficie del agujero, el horizonte de sucesos o punto de no retorno, cae en picado hacia el centro y… luego? Nadie lo sabe”.
No parece razonable pensar que podamos entrar, algún día, en un agujero negro
Según la teoría general de la Relatividad de Einstein, la mejor descripción que existe hasta ahora de la gravedad, la materia que entra en un agujero negro se concentra en un único punto central de densidad infinita, algo que los físicos han llamado “singularidad”. En ese punto, la realidad misma dejaría de ser lo que es, el tiempo se detendría y todo lo que existe se desvanecería en la nada. Sin embargo, y debido precisamente a esas condiciones tan extremas, la singularidad se sitúa fuera del ámbito de las teorías de Einstein, por lo que Rovelli considera que no son fiables. De hecho, en la singularidad la gravedad sería tan fuerte que estaría dominada por los efectos cuánticos. “Para entender lo que sucede -explica el científico- necesitamos una teoría cuántica de la gravedad”.
Para el investigador, los efectos cuánticos podrían evitar que se forme una densidad infinita en el centro del agujero negro. Y, al final, en lugar de concentrarse en una singularidad, “la materia podría hacer lo que comunmente hace después de una caída: rebotar”. Aunque no podría rebotar dentro del agujero negro, donde las cosas solo pueden caer y moverse hacia abajo.
La inmensa conjetura que hace aquí Rovelli nos habla de la gran imaginación que tiene
“Pero aquí está la magia -escribe Rovelli-: la gravedad cuántica permite que rebote no solo la materia, sino toda la geometría espacio-tiempo del agujero negro, es decir, que continúe a través del punto central del agujero negro en una región separada y nueva del espacio-tiempo, donde no solo la materia, sino también todo el espacio-tiempo está rebotando. Esto es lo que llamamos un agujero blanco. Una pelota que rebota sigue una trayectoria que parece una película de su caída proyectada hacia atrás. Un agujero blanco es como una película de un agujero negro proyectado hacia atrás. Desde el exterior, no sería muy diferente: tiene una masa como un agujero negro, por lo que las cosas se atraen y pueden orbitar a su alrededor. Pero mientras que un agujero negro está rodeado por un horizonte a través del cual es posible entrar pero no salir, un agujero blanco está rodeado por un horizonte a través del cual es posible salir pero no entrar”.
Según el investigador, la posibilidad teórica de que tales objetos existan está prevista por la relatividad general, y para ellos existen “soluciones exactas de las ecuaciones de la teoría”. Soluciones que, sin embargo, siempre se han visto como puros artificios matemáticos sin conexión alguna con el mundo real. Precisamente, ironiza Rovelli, lo mismo que sucedía con los agujeron negros hace no tanto tiempo.
Hay veces que cuando leemos declaraciones como esta del físico Rovelli, nos transportan a un plano de fantasía en el que pueden aparecer… ¡Hasta los unicornios! (Las imágenes y el comentario que va debajo no son del reportaje).
Algunas ideas alrededor de los agujeros blancos sugieren que estarían conectados a los agujeros negros a través de un túnel espaciotemporal, un agujero de gusano. De forma que la materia entraría por el agujero negro y saldría después, en otro lugar del Universo o incluso en otro Universo, a través de un agujero blanco.
Pero Rovelli opina que no se necesitan “especulaciones tan extravagantes”, y que el agujero blanco se encontraría exactamente en el mismo lugar en el que estaba el agujero negro, solo que en su futuro. En otras palabras, el “otro lado del centro” de un agujero negro puede estar, sencillamente, “en el futuro del agujero. Esto es difícil de visualizar, pero el resultado es simple: en la primera parte de su vida, el agujero es negro y la materia cae; pero durante la segunda, después de la transición cuántica, es blanco y la materia rebota”.
La transición: de negro a blanco
“Diagrama de Kruskal, en que se muestra la región de agujero negro (zona blanca adyacente a la zona gris superior), la región de agujero blanco (zona blanca adyacente a la zona gris inferior), y las dos regiones asintóticamente planas en blanco, a izquierda y derecha, las cuales describen el campo gravitatorio en los alrededores de un cuerpo esférico.”
En este punto, es importante fijarse en el momento de transición en el que un agujero negro pasa a ser un agujero blanco. “Aquí, nuevamente, es la teoría cuántica la que permite que esto suceda, gracias a un fenómeno conocido como tunelización cuántica”. Hoy en día, el “efecto tunel” está bien estudiado e incluso se aplica a la construcción de microscopios y otros instrumentos científicos. “Una partícula atrapada dentro del núcleo atómico -explica Rovelli- no podría escapar según la mecánica clásica, pero la teoría cuántica le permite ‘hacer un túnel debajo’ de la pared potencial que la atrapa, y por lo tanto irradiar fuera del núcleo”.
Ahora bien, la vida de los agujeros negros puede ser extremadamente larga. ¿En qué momento un agujero negro pasa a ser un agujero blanco? Hace ya varias décadas, en 1974, Stephen Hawking aventuró la idea de que, después de todo, los agujeros negros no lo eran tanto, ya que emitían una cierta cantidad de radiación, hoy conocida como radiación Hawking en honor al genial físico británico. Es decir, que con el paso del tiempo y a través de esa emisión lenta pero continua de radiación, los agujeros negros van reduciendo su tamaño y finalmente se evaporan.
Cuesta creer que esto se convierta en… esto otro
Y a medida que reducen su tamaño, según Rovelli, “aumenta la probabilidad de que se conviertan en agujeros blancos. Cosa que en algún momento, sucede”. Este escenario, sin embargo, contiene un aspecto desconcertante: la evaporación de un agujero negro es un proceso que se produce con extrema lentitud y que puede durar muchos millones de años, mientras que la materia que cae en el agujero negro llega a su centro en pocos segundos, por lo que su “rebote” debería ser casi inmediato. Por lo tanto, ¿cómo podría la materia salir tan pronto a través de un agujero blanco cuando ese mismo agujero blanco tarda tanto tiempo en formarse?
La respuesta, para Rovelli, radica en “la increíble flexibilidad del tiempo”. Sabemos, por ejemplo, que el tiempo transcurre más lentamente al nivel del mar, más cerca del centro de la Tierra, que en lo alto de una montaña. Y a medida que nos acercáramos a un agujero negro, el tiempo se ralentizaría aún mucho más. Por lo tanto, “un tiempo muy corto dentro del agujero negro sería equivalente a un tiempo muy largo fuera de él. Si pudiéramos ver el “rebote” de la materia desde fuera, parecería estar sucediendo a cámara super lenta. Por lo tanto, escribe Rovelli “los agujeros que vemos en el cielo podrían ser sencillamente objetos que colapsan y rebotan hacia fuera”, pero percibidos por nosotros en una cámara exageradamente lenta.
Lo que entra no sale
Una ventaja añadida de tal escenario es que resuelve la famosa paradoja de la pérdida de información en el interior del agujero negro, algo que la naturaleza prohíbe. En efecto, si dentro de un agujero negro el tiempo llegara a su fin, la información de la materia que entrara en la singularidad se perdería para siempre. Pero si esa materia termina rebotando y saliendo de nuevo al exterior a través de un agujero blanco, la información no se perdería.
Un escenario teórico que, en su artículo, Rovelli califica de hermoso. Ahora bien, Significa esto que “el cielo está realmente lleno de agujeros blancos? Y si es así ¿Podemos verlos?
¿Dónde están los agujeros blancos?
Hipótesis de cómo se forman los agujeros blancos… ¡Las hay!
El investigador opina que la respuesta “depende de cosas que aún no comprendemos totalmente”. Entre ellas, el tiempo que puede llegar a durar un agujero negro. Se cree que los agujeros negros que se han formado tras el colapso de una estrella son aún demasiado jóvenes y grandes como para convertirse en agujeros blancos. No así la miriada de agujeros negros microscópicos que podrían haberse formado durante el Big Bang, y que podrían haberse trasformado ya, o estar transformándose ahora, en pequeños agujeros blancos que estarían virtualmente por todas partes.
“Sin embargo -escribe Rovelli en New Scientist- tenemos un límite bastante firme entre una vida ¨larga¨, limitada por el tiempo de evaporación de Hawking, y una vida ¨corta¨ mínima requerida por el inicio de los fenómenos cuánticos. Lo cual nos permite sacar algunas conclusiones preliminares”.
Me viene a la memoria la puesta en marcha del LHC y recuerdo a los muchos agoreros que predecían que el funcionamiento del ingenio y la utilización de esas energías y los grandes imanes, harían aparecer a los microagujeros negros que se tragarían la Tierra. Claro que nada de eso sucedió u ahora se piensa en llegar a los 100 TeV de potencia para encontrar las cuerdas vibrantes.
“Si la vida útil resulta ser larga -razona el investigador-, entonces solo los pequeños agujeros negros primordiales se habrían vuelto blancos. Lo cual implicaría que todos los agujeros blancos que hay actualmente en el cielo deben tener un tamaño muy pequeño”. El peso de cada uno de estos agujeros blancos diminutos sería del órden de un microgramo, que es el peso de un fragmento de cabello humano de apenas 1,2 cm.
Lo cual, según el investigador, abre la interesante posibilidad de que esos diminutos agujeros blancos sean un componente fundamental de la misteriosa materia oscura que los astrónomos han detectado, aunque solo de forma indirecta, en el cielo. Las diversas teorías sobre la composición de la materia oscura no han podido demostrarse hasta ahora, y las partículas que deberían formarla según esas teorías se resisten a ser descubiertas en laboratorio.
LO QUE NOS FALTABA POR ESCUCHAR (En la declaración siguiente)
Pero “la posibilidad de que la materia oscura esté compuesta de pequeños agujeros blancos no requiere nada más que la física establecida, es decir, la relatividad general y la teoría cuántica, y no está descartada por ninguna observación. Si esto es correcto, ya hemos observado agujeros blancos: ¡son la materia oscura!”.
Por otro lado, “si la vida útil de los agujeros negros resultara ser corta, los agujeros negros primordiales que ya se han transformado en blancos deberían tener ahora la masa de un pequeño planeta y podrían explotar violentamente, transformando la mayor parte de su masa en radiación emitida. Este evento debería enviarnos rayos cósmicos extremadamente energéticos y señales cortas y violentas en la banda de microondas o radio. Los últimos son particularmente intrigantes porque ya se han detectado señales similares: las misteriosas y rápidas explosiones de radio observadas recientemente por los radiotelescopios. Una vez más, podríamos haber visto ya agujeros blancos”.
Para Rovelli, “encontrar evidencia de agujeros blancos en el cielo sería un hermoso paso adelante en nuestra comprensión del Universo. Podrían representar la primera observación directa de la gravedad cuántica en acción, y así abrir una ventana al mayor problema de la física fundamental, el problema de comprender los aspectos cuánticos del espacio-tiempo”.
Universo rebotado
El artículo de Rovelli termina con “una última idea muy especulativa. Es posible que nuestro Universo no haya nacido en el Big Bang, sino que puede haber ¨rebotado¨de una fase de colapso anterior. Esta posibilidad está permitida por la gravedad cuántica y otros marcos teóricos. El mecanismo cuántico del rebote cósmico sería similar al rebote del agujero negro al blanco. Y los gujeros blancos microscópicos de hoy podrían haberse formado antes de ese rebote. Si fuera así, la geometría del espacio-tiempo en el rebote no habria sido homoigénea, tal y como sugiere la cosmología convencional, sino llena de ¨arrugas¨, ya que cada agujero blanco sería como un gran pico en la geometria espaciotemporal”.
Para el investigador, ese hecho “podría ser relevante” a la hora de resolver el misterio de la flecha del tiempo, que es la pregunta de por qué el tiempo avanza en una sola dirección. Y es que la flecha del tiempo podría no haber sido causada por un estado ¨especial¨ del Universo (es decir, con muy baja entropía) como se cree comunmente. En su lugar, podría ser una simple cuestión de perspectiva relacionada con la ¨especial¨ ubicación de los observadores: estamos fuera de todos los agujeros”.
“Los agujeros blancos -concluye Rovelli- son una posibilidad plausible, aunque casi inexplorada. Aún tenemos que identificar uno, pero también tardamos mucho tiempo en reconocer los agujeros negros”.
Artículo de Prensa de José M. Nieves
Dic
16
¿El origen del Universo? ¡Cómo puedo saberlo yo!
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el universo se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar las positivas de los protones y, de esa manera, se pudieron unir para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de toda esa vorágine, miles de millones de años más tarde, llegaron a surgir en los mundos ¡la vida! Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.
¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a pregunta, lo único que podríamos hacer es contestar, con otra pregunta: ¿Quién lo sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí siempre. Y, si llegó como algo , tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.
Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no trataran de saber su comienzo (si es que lo hubo) y, hurgar en su dinámica poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de millones de mundos habitados que, como la Tierra, tienen otras criaturas que también, ellas se preguntan por el principio y el final poder conocer sus destinos.
Viatcheslav Mukhanov, en la Fundación BBVA en Madrid
«El Universo surgió de la nada y puede volver a suceder»
Eso nos dice este personaje, que el Universo surgió de la “Nada” y, está claro que la Nada no existe y, si surgió, es porque había, con lo cual, la Nada queda invalidada. Pero, si hubo un suceso de creación, ¿que duda nos caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.
¡¡Lo de la singularidad es difícil de digerir!!
No obstante tales reservas, unos pocos científicos trataron de investigar la cuestión de cómo pudo haberse originado el universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, dijo Weinberg con suavidad. En el mejor de los casos, contemplado con una mirada alentadora, el realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubir algo familiar en las mismas fuentes de la creación.
Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos, dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.
Nube molecular, anomalía gravitatoria, se forma un grumo, el grumo atrae más material, el disco de gas y polvo gira más y más, el núcleo se va condensando y la temperatura sube, se produce la fusión nuclear….. Ha nacido una estrella. Los vientos estelares y la radiación expulsan el material sobrante que se alejan para formar planetas.
Una estrella que se forma en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años dutante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha evolucionando para que , nosotros, podamos preguntas, por el origen del universo.
Seguimos tratando de saber… ¡sobre el origen del Universo! Otra cosa son las teorías
Los científicos han imaginado y han puesto sobre la mesa su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.
La Génesis de vacío: El problema central de la cosmología es explicar algo msurge de la nada. Por “algo” entendemos la totalidad de la materia y la energía, el espacio y el tiempo: el universo que habitamos. Pero la cuestión de lo que significa NADA es más sitíl. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero concepsión siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estana lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.
El vacío cuántico nunca es realmente vacío, sino que resoba de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado. Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.
Las ondas fluctúan de aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.
Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a moviéndose aleatoriamente, de impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutronesmantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.
Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía.
En un estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas específicas razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.
Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, entonces, funciona de manera autónoma como un universo de los muchos que son en el más complejo Metaverso.
Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación(*)).Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud convertirse en fluctuaciones significativas a nivel cosmológico.
En el Modelo corriente del big bang que actualmente prevalece y que, de , todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:
Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.
Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado por una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.
El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de esa inmensidad y, precisamente, nos ha desempeñar el papel de la parte que piensa, ¿tendrá eso algún significado?
Yo, no lo sé… Pero… ¿¡Quién sabe realmente!?
emilio silvera
Dic
11
¿Masa negativa? ¿Qué es eso?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (1)
Teóricamente, al empujar una masa negativa esta se acercaría a nosotros. Según una teoría, esto podría explicar la expansión del Universo y la cohesión de las galaxias
¿Y si el Universo está flotando en un extraño océano de masa negativa?
Científicos de la Universidad de Oxford plantean un modelo en el que la energía y la materia oscuras se unifican en una exótica forma de materia que tendría una masa de signo contrario al habitual
¿Alguna vez se ha planteado que mantiene sus pies pegados al suelo? ¿Qué fuerza invisible le vincula con la Tierra, a pesar de que el planeta se mueve por el espacio a 107.000 kilómetros por hora? ¿O qué mantiene algo tan pesado como la Luna suspendido en el cielo? Responderá que la responsable es la gravedad y quizás recuerde la famosa manzana cayendo –¡Ploc!– en la cabeza de Newton. Pero, ¿qué es la gravedad? ¿Como actúa a distancia, de dónde obtiene la energía para tirar al suelo una simple fruta? ¿Por qué unas cosas pesan más que otras?
Partículas que toman su masa del Campo de Higgs
La respuesta aceptada es que existe un campo, el llamado campo de Higgs, que permea el espacio-tiempo y que, al interaccionar con la materia, le proporciona a las partículas su masa. Es decir, algo totalmente cotidiano y evidente, la propia existencia de la gravedad, depende de algo invisible, difícil de comprender y muy lejos de ser evidente. Tan es así que la existencia del bosón de Higgs, la partícula que genera el campo del mismo nombre, solo se pudo constatar hace seis años.
Hablamos de materia oscura y no sabemos lo que es, cómo está formada, qué origen tiene… o, si los fenómenos observados son provocados por la fuerza de gravedad que genera esa hipotética materia.
Y esto es solo una ínfima parte del enorme desafío que es comprender el funcionamiento de lo que nos rodea. De hecho, en la actualidad se desconoce la naturaleza del 95 por ciento del Universo. La materia visible, que forma estrellas, planetas y nubes de polvo y gas, no explica cómo las galaxias giran tan rápido como lo hacen sin deshacerse. Debe existir algo invisible que las mantiene unidas, gracias a la gravedad: quizás la llamada materia oscura. Por otro lado, la materia visible tampoco explica por qué existe una misteriosa fuerza repulsiva que separa el espacio-tiempo y expande el Universo, con más aceleración cuanto más disperso está. Debe existir algo que lo separa todo: podría ser la llamada energía oscura. Pero, ¿de dónde surgen estos fenómenos? Si algo tan natural como la gravedad que sentimos tiene una base tan extraña, ¿qué podemos esperar de estos fenómenos oscuros que no tenemos ni idea de cómo son?
Si lo podemos ver no es la materia oscura. Toda la que emita radiación, es bariónica
Hasta el momento, no ha habido forma de detectar ni una traza de la fracción oscura del Universo, y no es de extrañar que haya cientos de investigadores devanándose los sesos por ello. Ahora, un grupo de científicos de la universidad de Oxford (Reino Unido) acaba de publicar un artículo en la revista Astronomy and Astrophysics donde propone una explicación, basada en modelos matemáticos que son capaces de reproducir parcialmente nuestro Universo, y que unifican tanto la materia como la energía oscuras. Su propuesta consiste en sugerir la existencia de la masa negativa, una exótica forma de materia que se caracteriza por alejar a la masa de su alrededor. Si las masas se atraen entre sí gracias a la gravedad, ¿por qué no puede ocurrir lo contrario? ¿Podría ser que el Universo fuera simétrico y hubiera masas positiva y negativa?
Hablan de extrañas fuentes de Gravedad negativa pero… ¡Simples conjeturas!
«Parece que un simple signo negativo podría solucionar dos de los mayores problemas de la Física», ha explicado a ABC Jamie Farnes, primer autor del estudio. «Nuestra teoría parece no solo explicar la materia oscura, sino que también obtenemos una posible solución para la energía oscura».
En primer lugar, ¿cómo sería esta masa negativa? Según el autor, sería «extraña y peculiar para nosotros, porque vivimos en una región del espacio dominada por la materia positiva». De hecho, aventura que tendría una exótica propiedad: «Si empujaras una masa negativa, ¡esta iría hacia ti!».
La repulsión que une galaxias…
Para significar la energía negativa nos hemos inventado mil y un modelo pero…
El investigador ha recordado que el callejón sin salida de la materia y la energía oscuras, que es resultado de no poder explicar lo que vemos en el Universo con nuestras teorías, ha llevado a algunos científicos ha coger el camino de en medio. Algunos trabajan en una «gravedad modificada» que se comporta de una forma distinta en las grandes escalas y otros han creado el concepto del «fluido oscuro», una exótica forma de materia que combinan algunas de las propiedades de la energía y la materia oscuras. ¿Es por esto por lo que el Universo se expande tan rápido? ¿O el motivo por el que se mantienen unidas las galaxias? ¿Que no lo veamos indica que no existe?
“Existe en el universo una curiosa relación conocida como la ley de Hubble que nos dice que cuanto más lejos está una galaxia, más rápido se aleja de nosotros. Esto fue la primera demostración empírica de que el Universo se expande y dejó impresionados a los físicos de los años 20. Desde entonces se han hecho muchas investigaciones al respecto hasta que en 2005 un grupo de investigadores recibieron el premio Nobel por descubrir que el universo se expande cada vez más rápido.”
Responder a estas preguntas puede ser una tarea demasiado ambiciosa, o no. De momento, Jamie Farnes ha elaborado un modelo matemático basado en la masa negativa que es capaz de explicar la formación de halos de materia oscura alrededor de galaxias de masa positiva.
«Mi modelo muestra que la fuerza repulsiva de los alrededores, proveniente de la masa negativa, puede mantener unida a una galaxia», ha explicado Farnes. «La gravedad de la masa positiva de la galaxia atrae la masa negativa en todas las direcciones y, a medida que esta masa negativa se acerca, ejerce una fuerza repulsiva cada vez con más fuerza que permite a la galaxia girar a gran velocidad sin salir disparada».
Y que expande el espacio-tiempo
Si la masa negativa puede explicar la materia oscura, ¿puede explicar también la energía oscura y la expansión del Universo? Hasta ahora, siempre se ha rechazado esta posibilidad, porque no parece compatible con lo observado.
«Sabemos que la materia, incluyendo las partículas de masa negativa, se dispersarían más a medida que el Universo se expande. Sin embargo, las observaciones de energía oscura muestran que esta sustancia no se hace más fina con el tiempo, de hecho permanece constante durante la expansión del Universo», ha resumido Jamie Farnes.
“Científicos de la Universidad de Oxford, han sugerido que la mayor parte del universo puede estar formado por un «fluido oscuro» con una masa negativa. La naturaleza precisa de la materia oscura y la energía oscura, que se cree que representan hasta el 95% del universo observable, sigue siendo uno de los misterios sin resolver más importantes de la física moderna.”
Sin embargo, este científico ha ideado una posibilidad que acabaría con esta incompatibilidad. ¿Y si la masa negativa se genera espontáneamente? «En nuestra teoría, las partículas de masa negativa son creadas continuamente por un “tensor de creación“, de modo que se regeneran a medida que el Universo se expande. Con esta propuesta, estas masas negativas creadas continuamente parecen ser idénticas a la energía oscura». Por tanto, serían compatibles con lo observado.
El «tensor de creación»
Este científico ha detallado que este «tensor de creación» no es más que una construcción matemática, «que permite a la materia aparecer espontáneamente en la existencia, como una especie de palomita microscópica».
En su opinión, sería interesante observar si esta idea puede ser compatible con la Mecánica Cuántica, para estudiar si podría haber partículas que aparecieran espontáneamente en el vacío, o incluso para ayudar a la unificación de las incompatibles Relatividad y Mecánica Cuántica. Puede parecer inverosímil, pero no lo es también la base de una realidad tan cotidiana como la gravedad? ¿O la de los fenómenos que permiten el funcionamiento de satélites o televisiones?
Aceptando este marco, resultaría que la energía y la materia oscuras pueden ser unificadas en una sola sustancia, cuya naturaleza se explica sencillamente como resultado de que «la masa positiva –del Universo– surfea en un mar de masas negativas», según Farnes.
Los pasos para confirmarlo
¿Qué harán a continuación para tratar de validar esta hipótesis? El investigador ha explicado que este modelo predice que la distribución de las galaxias debería variar de una forma muy concreta en función el tiempo. Pues bien, están desarrollando herramientas para procesar los datos que obtendrá el Square Kilometre Array (SKA), un inmenso radiotelescopio con un área colectora de un millón de kilómetros cuadrados y capaz de generar 5 millones de petabytes de información cada año, para estudiar la distribución de las galaxias, según ha dicho Farnes, «más atrás en el tiempo que ninguna otra máquina ha podido mirar».
Esto les permitirá comparar la teoría propuesta con el modelo cosmológico convencional, que no puede explicar la energía o la materia oscuras, y quizás incluso contraponerlo con otras teorías cosmológicas.
Todo esto no ocurrirá hasta al menos 2030, según Jamie Farnes. También ha comentado que los experimentos Alpha-G y ATLAS, del CERN, ya están buscando unos indicios de la antimateria de masa negativa, que serían un importante impulso en la búsqueda de partículas de masa negativa.
Dic
8
Espacio-tiempo curvo y los secretos del Universo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.
Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.
“Donde m es la masa invariante de la partícula, v es la velocidad relativa de la partícula, vorb es la respectiva velocidad orbital del observador de la partícula, Ges la constante gravitacional, M la masa que crea el campo gravitatorio, r es el radio del campo gravitatorio donde se encuentra el observadory c es la velocidad de la luz en el vacío.”
“Los conceptos del espacio y el tiempo, su interdependencia y la forma en la que son usados para mantenernos en la ilusión de que vivimos en un mundo puramente sólido y material son, a veces, temas de muy difícil comprensión para todos nosotros.”
La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski). Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.
La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.
En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.
“A través de grandes distancias en el espacio, el universo probablemente opera en las dimensiones que experimentamos en la Tierra, según resulta del examen de una onda gravitacional. El Universo es tridimensional, al menos hasta 80 millones de años luz. En octubre de 2017, los científicos utilizaron el interferómetro láser de onda gravitatoria Observatorio (LIGO) para detectar una onda gravitacional producida en la colisión de dos estrellas de neutrones. Apodado GW170817, el evento también se vio con los telescopios tradicionales, lo que permite a los científicos estudiar simultáneamente la ocurrencia a través de ondas gravitacionales y ondas de luz.”
Hay una serie de teorías dimensionales superiores, como la teoría de cuerdas, que visualizan el universo como si tuvieran nueve o diez dimensiones … ¡Pero nosotros sólo visualizamos tres y agregamos la cuarta del espacio así considerada!
En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).
Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un . (“¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) – La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.
“Pintura de Jean François Duval que muestra una escena típicamente pastoril, con el agua fresca, la naturaleza fuera de la ciudad y encuentros amorosos.”
“La poesía pastoril es un tipo de poesía que describe la vida en el campo de una forma idealizada. Incluye descripciones de la belleza de la naturaleza, alabanzas a la vida sin complicaciones ni estrés en contraste con la gran ciudad y presencia de las tareas agrícolas. Puede contener también escenas de amor que se benefician del entorno sensual. A partir de la poesía pastoril surgieron composiciones musicales que intentaban recrear este sentimiento de armonía con el campo y cuadros donde se pintaban las escenas descritas en los versos en un lugar paradisíaco.”
También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.
Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.
Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividadespecial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividadgeneral nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.
La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividadgeneral que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.
En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.
El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.
Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.
La constante cosmológica \Lambda \ aparece en las ecuaciones de Einstein como:
}
Cuando \Lambda } es cero, estas se reducen a la ecuación tradicional de la relatividad general. Las observaciones astronómicas implican que su valor satisface:
Tenemos que reconocer que el valor de la ecuaciones en física es “un tesoro” y un “milagro” a la vez, ya que, con pocos signos nos dicen tanto…
Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…
Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.
Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.
Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.
Esta pretende ser la imagen de un extraño objeto masivo, un quásar que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).
Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.
Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.
Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.
Supernova 1987 A
El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.
Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.
Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.
Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.
Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividadgeneral deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.
Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negroencontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.
Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta la extenuación:
“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado” Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.“
El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.
Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.
¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!
En el Universo todo es fruto de dos fuerzas contrapuestas:
Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrella masiva.
En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la establidad.
Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.
El agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria
El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.
Así, nos encontramos con el hecho cierto de que, en el Universo, todo es equilibrio y estabilidad: el resultado de dos fuerzas contrapuestas.
Veamos otro ejemplo:
Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.
Los puntos de Lagrange, también denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño, sólo afectado por la gravedad, puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna. Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria para rotar sincrónicamente con la menor de ellas. Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición «fija» en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente. Una definición más precisa pero técnica es que los puntos de Lagrange son las soluciones estacionarias del problema de los tres cuerpos.
Diagrama del sistema Sol-Tierra, que muestra el punto L2, más alejado que la órbita lunar.
Tendrá otras prestaciones y será más sofisticado que el Hubble, y, si éste nos ha dado un rendimiento maravilloso, ¿Qué nos dará el James West?
El telescopio que vendrá a suplir al viejo Hubble. Un dato curioso sobre este telescopio es que no estará situado en la órbita terrestre, se situará en el punto de Lagranje L2. Los puntos de Lagrange son las posiciones donde la gravedad del Sol y la Tierra se equilibran, de manera que un objeto puede permanecer estable, sin salir despedido hacia el espacio profundo. El James Webb se ha situado en esta posición es para aislarlo de la contaminación que existe en la órbita terrestre.
El James Webb Space Telescope o JWST durante mucho tiempo ha sido promocionado como el reemplazo para el telescopio espacial Hubble. El telescopio está considerado como uno de los proyectos más ambiciosos de la ciencia espacial emprendido. A pesar del enorme desafío, el telescopio se está acercando a la terminación. El telescopio ha servido como un aula técnico sobre las complejidades involucrada con un proyecto tan complejo. También ha servido para desarrollar nuevas tecnologías que son utilizadas por los ciudadanos promedio en sus vidas cotidianas.
En nuestro Universo todo resulta ser el equilibrio de dos fuerzas contrapuestas que se igualan y se equilibran para alcanzar la estabilidad que es requerida para que todo exista en ese nivel de normalidad que hace de nuestro universo el que podemos observar y, los fenómenos que se producen, los cambios, siempre van encaminados a eso, a conseguir ese equilibrio que observamos.
Fuerzas positivas y negaticas hacen que el núcleo de los átomos sea estable y las galaxias están sujetas por la Gravedad que mantiene las estrellas juntas y que no dejan que la expansión las pueda deshacer. El el níucleo de los átomos están los protones cargados con fuerzas positivas que atraen el mismo número de electrones que orbitan a su alrededor, y, al estar cargados con fuerzas negativas que se equilibran con las de los protones, el átomo es muy estable.
Cuando hablamos de equilibrio lo estamos haciendo del estado en el que un sistema tiene su energía distribuida de la manera estadísticamente más probable, un estado del sistema en el que las fuerzas, influencia, reacciones, etc., se compensan las unas a las otras de manera que no se permiten cambios y prevalece la estabilidad.
Equilibrio estático en tres dimensiones
Un cuerpo se encuentra en equilibrio estático si las resultantes de todas las fuerzas y todos los pares que actúan en él son ambas cero; se si halla en reposo, estará ciertamente no acelerado. Un cuerpo de ese tipo en el reposo se encuentra en equilibrio estable si después de un ligero desplazamiento vuelve a su posición original. Existen diversas variantes que no merece la pena mencionar aquí para no hacer aburrido el trabajo.
También existe el equilibrio térmico y se dice que un cuerpo está en equilibrio térmico si no hay ningún intercambio de calor dentro de él o entre e´y sus alrededores. Un sistema se encuentra en equilibrio térmico cuando cuando una reacción y su inversa está teniendo lugar a la misma velocidad. Estos son ejemplos de equilibrios dinámicos, en los que la actividad en un sentido está compensada por la actividad en el sentido inverso. De nuevo el equilibrio o estabilidad creado por fuerzas contrapuestas.
La energía se equipara segín una teoría de propuesta por Ludwig Boltzmann y fundamentada teóricamente por James Clerk Maxwell, en virtud de la cual la energía de las moléculas de un gas en una muestra grande en equilibrio tçermico está dividida por igual entre todos los grados de libertad disponibles, siendo la energía media de cada grado de libertad kT/2, donde k es la constante de Boltzmann y T es la temperatura termodinámica. La proposición no es en general cierta si los efectos cuánticos son importantes, pero frecuentemente es una buena aproximación.
El cuadro nos muestra una Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).
Claro que si hablamos de simetrías, nos podríamos perder un un laberinto de clases y formas: esférica, cilíndrica, reflectiva, traslacional, helicoidal, de rotación, de ampliación, bilateral, radial… (muchas otras). Pero si nos referimos de manera simple a lo que es o entendemos por una simetria, nos estaremos refiriendo al conjunto de invariancias de un sistema.
Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado. La simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y rotaciones de las moléculas y las transformaciones de las redes cristalinas.
Las dos fuerzas contrapuestas en los seres vivos inteligentes de nuestro mundo, está precisamente en nosotros mismos: El hombre y la Mujer, juntos, forman un sólo ente de equilibrio perfecto que nos lleva al más alto nivel de simetría y belleza, y, tal equilibrio y conjunción, hace posible el milagro de la replicación.
“La Trampa de Antihidrógeno (ATRAP) es un pequeño experimento en el CERN cuyo objetivo es comparar la antimateria con la materia, en concreto, átomos de antihidrógeno (formados por un antiprotón y un positrón, o antielectrón) con átomos de hidrógeno (formados por un protón y un electrón). Acaban de publicar la medida más precisa del momento magnético del antiprotón, 2,792847356(23) veces el magnetón nuclear, que coincide con el del protón en al mentos cinco partes por millón (0,0005%), una nueva medida (directa) de la invarianza CPT” (Francis (th)E mule Science’s News).
Existen simetrías más generales y abstractas como la invariancia CPT y las simetrías asociadas a las teorías gauge (tendríamos que mirar en simetrías rotas y supersimetría para ampliar el concepto en su más amplio espectro y concepción de lo que la simetría es. En el Universo, las simetrías están por todas partes: Estrellas, mundos, galaxias…
emilio silvera
Dic
2
La luz del Universo y… ¡Su grandeza!
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Panorámica captada por el Hubble
Noticia de prensa
Miden, por primera vez, la luz de todas las estrellas que han existido en el Universo.
Cada galaxia existente en el cosmos lleva emitiendo luz desde el principio de los tiempos. Tras años de búsqueda, los astrónomos han comenzado a detectar esa luz de fondo extragaláctica.
EL trabajo aclara cómo la tasa de producción estelar del Universo ha ido decreciendo con el tiempo
Un equipo internacional de investigadores, dirigido por la Universidad norteamericana de Clemson ha conseguido, por primera vez, medir la totalidad de la luz estelar producida por el Universo observable a lo largo de su historia. El impresionante logro se acaba de publicar en la revista Science.
Los astrofísicos creen que nuestro Universo, que tiene aproximadamente 13.700 millones de años de edad, comenzó a formar las primeras estrellas apenas unos cientos de millones de años después del Big Bang. Y desde entonces no ha dejado de hacerlo. Se calcula que en la actualidad existen alrededor de dos billones de galaxias y cerca de un billón de billones de estrellas.
Ahora, utilizando nuevos métodos de medición de luz estelar, el astrofísico de la universidad de Clemson Marco Ajello y su equipo han analizado datos del Telescopio Espacial de Rayos Gamma Fermi, de la NASA, para determinar cómo fue la historia de la formación de estrellas durante la mayor parte de la vida del Universo.
«A partir de los datos recopilados por el telescopio Fermi -explica Ajello- conseguimos medir la cantidad total de luz estelar emitida, algo que nunca se había hecho antes. La mayor parte de esa luz fue emitida por estrellas que viven en galaxias y de esta forma, pudimos comprender mejor el proceso de evolución estelar y obtener una visión cautivadora de cómo el Universo fabricó su contenido luminoso».
Expresar en números la cantidad de luz emitida por todas las estrellas que existen y han existido en el Universo no resulta fácil, ya que hay diversas variables que no permiten cuantificar toda esa luz en términos sencillos. Pero de acuerdo con la mueva medición llevada a cabo por Ajello y sus colegas, el número total de fotones (partículas de luz) que han escapado alguna vez al espacio tras ser emitidos por estrellas es, ni más ni menos, de 4×10 ^84, o lo que es lo mismo,
4.000.000.000.000.000.000.000.000.000.000.000. 000.000.000.000.000.000.000.000.000.000.000.000 de fotones.
Un Universo «incomprensiblemente enorme»
A pesar de lo extraordinariamente grande que resulta la cifra, los investigadores consideran el interesante el hecho de que, si dejamos a un lado la luz que procede de nuestro propio Sol y de nuestra propia galaxia, la Vía Láctea, el resto de luz estelar que recibimos en la Tierra es realmente escaso. Apenas equivale a la luz que emitiría una bombilla de 60 vatios vista en medio de una oscuridad total a 2,5 kilómetros de distancia.
La razón para que esto sea así hay que buscarla en el tamaño del Universo, que los autores del trabajo califican de «incomprensiblemente enorme». Se trata de la misma razón por la que el cielo se ve oscuro por las noches, aparte de la luz de la Luna, las estrellas visibles y el tenue brillo de la Vía Láctea.
El Telescopio Espacial de rayos Gamma Fermi, que acaba de cumplir 10 años en el espacio (fue lanzado el 11 de Junio de 2008) ha proporcionado ya una ingente cantidad de datos sobre los rayos gamma, la forma más energética de luz que existe, y cómo éstos interaccionan con la llamada Luz de Fondo Extragaláctica (EBL por sus siglas en inglés), que podríamos describir como una especie de «niebla cósmica» compuesta por toda la luz ultravioleta, visible e infrarroja emitida por estrellas o por nubes de polvo y gas cercanas a ellas. Para llevar a cabo su investigación, Ajello y su equipo analizaron nueve años de datos del telescopio relativos a emisiones de rayos gamma de 739 blazares diferentes.
Faros en la oscuridad: los blazares
“Radiogalaxias, magnetares, blazares y cuásares destacan entre los objetos más extravagantes del cosmos y cuyo estudio ha llevado al surgimiento de redes de trabajo que buscan la oscuridad permanente.”
Los blazares son galaxias que contienen en sus centros agujeros negros supermasivos capaces de emitir chorros de partículas muy energéticas que «saltan» desde sus galaxias de origen al espacio a la velocidad de la luz. Cuando uno de estos chorros es emitido directamente hacia la Tierra, resulta fácilmente detectable incluso si se encuentra muy lejos, a miles de millones de años luz de distancia. Eventualmente, los fotones de rayos gamma surgidos dentro de esos chorros interaccionan con partículas de la neblina cósmica, dejando una huella observable. Fue así como el equipo de Ajello consiguió medir la densidad de la niebla no solo en un punto dado del espacio, sino también en un momento dado en la historia del Universo.
«Los fotones de rayos gamma que viajan a través de la niebla de luz estelar tienen una gran probabilidad de ser absorbidos -explica Ajello-. Y al medir el número de fotones que son absorbidos, pudimos medir cómo de densa era esa niebla y, cuánta luz había en cada momento de la historia del Universo en todo el rango de longitudes de onda».
A través de numerosos estudios de galaxias, la historia de la formación de estrellas en el Universo se ha estudiado durante décadas. Sin embargo, las investigaciones anteriores se enfrentaban a un obstáculo insalvable: muchas galaxias estaban demasiado lejos o eran demasiado débiles como para que su luz pudiera ser recogida por los telescopios. Lo cual obligaba a los científicos a hacer estimaciones de la luz de las estrellas de estas galaxias, en vez de medirla directamente.
Pero Ajello y su equipo consiguieron obviar ese problema. Y lo hicieron usando los datos del Telescopio Fermi para analizar la luz de fondo extragaláctico. De hecho, la luz estelar que escapa de las galaxias, incluidas las más distantes, en ocasiones pasa a formar parte de esa luz de fondo. Por lo tanto, medir con precisión esa neblina cósmica, algo que hoy resulta posible, eliminó de un solo golpe la necesidad de estimar las emisiones de luz de las galaxias que nos resultan difíciles de ver.
Según explica Vaidehi Paliya, coautor de la investigación, «al utilizar blazares a diferentes distancias de nosotros, conseguimos medir cuánta luz estelar había en diferentes periodos de tiempo. Medimos la luz estelar total de cada época: hace mil millones de años, hace dos mil millones de años, hace seis mil millones de años… y así hasta el momento en que se formaron las primeras estrellas. Eso nos permitió reconstruir la luz de fondo extragaláctica y determinar la historia de la formación estelar del Universo de una forma mucho más efectiva a como se había hecho antes».
La «capacidad productiva del Universo»
Cuando los rayos gamma de alta energía chocan con los fotones de luz visible, de baja energía, se transforman en pares de electrones y positrones. Según la NASA, la capacidad del Telescopio Espacial Fermi para detectar rayos gamma en un amplio rango de energías lo hace especialmente adecuado para mapear la neblina cósmica. Esas interacciones entre partículas a menudo ocurren a distancias inmensas, lo que permitió al equipo de Ajello explorar con mucho más detalle la «capacidad productiva» del Universo a la hora de fabricar estrellas.
«Los científicos han intentado medir la luz de fondo extragaláctica durante mucho tiempo -afirma por su parte Abhishek Desai, otro de los autores del estudio-. Sin embargo, los primeros planos muy brillantes, como la luz zodiacal (la luz dispersada por el polvo dentro del Sistema Solar) hicieron que conseguir esas mediciones fuera un enorme desafío. Nuestra técnica, sin embargo, no se ve afectada por lo que sucede en primer plano, y por lo tanto superó todas estas dificultades de una sola vez».
La formación de estrellas, que tiene lugar cuando las regiones más densas de enormes nubes moleculares colapsan, alcanzaron su punto máximo hace unos 11.000 millones de años. Y aunque el nacimiento de nuevas estrellas se ha ralentizado mucho desde entonces, nunca se ha detenido. En nuestra Vía Láctea, por ejemplo, nacen unas siete estrellas nuevas cada año.
La formación de estrellas, pues, forma parte de un gran ciclo cósmico de reciclaje de energía, materia y metales. En cierto modo, es el auténtico motor del Universo, ya que sin la destrucción y creación de estrellas nunca se habrían formado los materiales fundamentales necesarios para la vida.
Por eso, comprender mejor la formación de estrellas es algo que tiene, también, ramificaciones en otras áreas muy diferentes de la Astronomía, como el estudio del polvo cósmico, la evolución de las galaxias o la materia oscura. El análisis de Ajello y su equipo proporcionará a futuros investigadores una guía con la que explorar los primeros días de la evolución estelar y permitirá a los científicos buscar los momentos en que se formaron las primeras galaxias.
«Los primeros mil millones de años de la historia de nuestro Universo -concluye Ajello- son una época muy interesante que aún no ha sido explorada por los satélites actuales. Pero nuestros datos nos permiten echar un buen vistazo a ese periodo. Tal vez algún día encontremos una forma de estudiar, al completo, todo el camino de regreso al Big Bang. Ese es nuestro objetivo final».