Astronomía: Reportaje en El Español
IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (10)
“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.
Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)
Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazón (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se están formando. IC 1805 (la nebulosa Corazón) es a menudo llamada también como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Seguimos en la Nebulosa del Corazón (otra región)
Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.
La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.
* La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol
Eta Carinae (NGC 3372) tiene 400 veces el diámetro del Sol, se encuentra inmersa en esa Nebulosa que la esconde dentro de grandes “montañas” de gas y el polvo.Eta Carinae es una estrella del tipo variable luminosa azul hipermasiva, situada en la constelación de la Quilla. Su masa está en el límite y oscila entre 100 y 150 veces la masa del Sol. lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol. debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99% de su luminosidad en la parte infrarroja del espectro. lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de ondas entre 10 y 20 μm (la millonésima parte de un metro).
* Betelgeuse tiene 1.000 veces el díámetro de nuestro Sol
Pero la estrella más grande conocida es:
VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.
El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacío” estelar.
Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.
Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol.
El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.
Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.
Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.
La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).
La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.
La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.
En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.
Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.
La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.
La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.
Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.
Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.
Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.
Las fuerzas fundamentales
Tipo de Fuerza |
Alcance en m |
Fuerza relativa |
Función |
Nuclear fuerte |
<3×10-15 |
1041 |
Une Protones y Neutrones en el núcleo atómico por medio de Gluones. |
Nuclear débil |
< 10-15 |
1028 |
Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z– |
Electromagnetismo |
Infinito |
1039 |
Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones. |
Gravitación |
Infinito |
1 |
Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La Gravedad está mediada por el Bosón (hipotético) llamado gravitón. |
Las constantes fundamentales
Constante |
Símbolo |
Valor en unidades del SI |
Aceleración en caída libre |
g |
9,80665 m s-2 |
Carga del electrón |
e |
1,60217733(49) × 10-19 C |
Constante de Avogadro |
NA |
6,0221367 (36) × 1023 mol-1 |
Constante de Boltzmann |
K=R/NA |
1,380658 (12) × 10-23 J K-1 |
Constante de Faraday |
F |
9,6485309 (29) × 104 C mol-1 |
Constante de los gases |
R |
8,314510 (70) × J K-1 mol-1 |
Constante de Loschmidt |
NL |
2,686763 (23) × 1025 mol-3 |
Constante de Planck |
h |
6,6260755 (40) × 10-34 J s |
Constante de Stefan-Boltzmann |
σ |
5,67051 (19) × 10-8 Wm-2 K-4 |
Constante eléctrica |
ε0 |
8,854187817 × 10-12 F m-1 |
Constante gravitacional |
G |
6,67259 (85) × 10-11 m3 Kg-1 s-2 |
Constante magnética |
μ0 |
4π × 10-7 Hm-1 |
Masa en reposo del electrón |
me |
9,1093897 (54) × 10-31 Kg |
Masa en reposo del neutrón |
mn |
1,6749286 (10) × 10-27 Kg |
Masa en reposo del protón |
mp |
1,6726231 (10) × 10-27 Kg |
Velocidad de la luz |
c |
2,99792458× 108 m s-1 |
Constante de estructura fina |
α |
2 π e2/h c |
Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.
La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de e, c y h(el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si e, h y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.
Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de sucesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.
Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.
Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.
Cuando publiqué este trabajo decía:
Claro que estamos en el Año Internacional de Luz, y, no debemos perder de vista que la luz tiene tanto importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con una sola noche eterna, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, incide en una montaña, en el bosque, en el horizonte del Océano, o, simplemente se refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.
La luz Natural es un don que nos dio la Naturaleza y hace posible que esa luz y ese calor que el Sol nos envía, haga posible la vida en el planeta, se produzca la tan necesario fotosíntesis, y muchos más beneficiosos fenómenos que, no siempre sabemos valorar en su justa medida.
emilio silvera
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
Inauguración del telescopio LST
El día del pasado 10 de Ocrtubre, en el Observatorio del Roque de los Muchachos en la La Palma (Islas Canarias). tuvo lugar la inauguración del Telescopio LST-1 cuyo objetivo es esrtudiar el Universo en el rango de los rayos Gamma de muy alta energía.
El LST-1 es el prototipo de los cuatro telescopios de gran tamaño que formarán parte de la red CTA Norte. El proyecto CTA (Cherenkov Telescope Array) alnbergará un emplazamiento en La Palma y otro en Chile (CTA Sur).
Formará parte de una gran estructura científica que será implantada en los dos hwemisferios para detectar, con una precisión y sensibilidad sin precedentes, rayos gamma en un amplio rango de energías, lo que proporcionará una visión completamente nueva del cielo.
El Gran Telescopio de Canarias a partir de ahora no se sentirá tan sólo y tendrá a su compañero, El LST 1 que hará por él aquellos trabajos que le están vedados.
Estas son las cuatro LST propuestos para CTA Norte
La Palma será sede durante esta primera semana de octubre de una nueva sesión del programa europeo “Interreg Night Light”, dedicado al control de la contaminación lumínica y del astroturismo.
La Isla Bonita acogerá una “peer review” (revisión por pares) en la que la comisión técnica hará una primera revisión de los programas implementados en la isla, tal y como se ha realizado en las otras regiones europeas de Holanda, Luxemburgo, Italia, Dinamarca, Eslovenia, Hungría y España que toman parte en “Night Light”.
“Desde el comienzo de este programa, La Palma ha sido un referente para el resto de regiones europeas participantes como emplazamiento ejemplar en el control de la contaminación lumínica y el desarrollo del astroturismo”
Poco a poco, en las últimas tres décadas, Canarias se ha convertido en uno de los referentes mundiales en el campo de la Astronomía con sus modernos Telescopios que, cada día, superan sus prestaciones para que nos puedan decir como es el Universo.
emilio silvera
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
La supervivencia del universo depende de las reservas de gas. Los astrónomos han podido descubrir el mecanismo que está acabando con ellas.
Nuestro universo se apaga. Por supuesto, su sombrío y gélido final no llegará hasta dentro de muchos miles de millones de años, sin embargo el camino hacia la oscuridad ya está en marcha y se puede constatar en la luz, cada vez más roja y antigua, que nos llega de las galaxias.
“Las galaxias son sistemas que van reciclando gas”, explica Miguel Santander, investigador en el Grupo de Astrofísica molecular del ICMM, “ese gas se acumula, se va condensando y finalmente forma estrellas. Pasa el tiempo y cuando esos soles mueren, devuelven gran parte del gas al medio, que una vez más se utiliza para formar nuevas estrellas, y así sucesivamente… mientras haya reservas de gas, las galaxias seguirán formando estrellas pero cuando se agoten esas reservas de gas, dejarán de formar estrellas y entonces podemos decir que son galaxias muertas”
Entonces, ¿se puede decir que las galaxias también mueren?
“No es un término científico, pero sí. Los astrofísicos decimos coloquialmente que una galaxia ha muerto cuando ha perdido la capacidad de formar nuevas estrellas”, aclara el investigador. “La galaxia pasa entonces a tener colores más apagados, al no surgir nuevos repuestos, las estrellas que tiene cada vez serán más viejas y su luz irá pasando del azul, al amarillo, al rojo… galaxias dominadas por antiguas estrellas rojas, que paulatinamente se irán apagando y que ya no serán reemplazadas por otras más jóvenes”.
Los astrofísicos saben desde hace años que la formación estelar en el universo primitivo, (hace 10.000 millones de años o más), era mucho mayor que hoy en día. Las galaxias que vemos cercanas, que son más jóvenes y actuales, presentan mucha menos formación estelar que las galaxias lejanas. Esto nos lleva a la triste conclusión de que el universo se está apagando progresivamente y hasta ahora no sabíamos exactamente por qué las galaxias actuales tenían menos capacidad para generar nuevas estrellas.
“Conocemos varios mecanismos que impiden formar nuevas estrellas”, explica Miguel Santander. “Por ejemplo, un gas cuanto más frío está, más se condensa. Así, una posibilidad para impedir que una galaxia forme nuevas estrellas sería calentar el gas… Lo calientas, aumenta la presión y entonces se opone a la acción de la gravedad que hace que ese gas se condense y forme nuevas estrellas”. Sin embargo, en un universo cada vez más frío esta posibilidad no parece una buena pista.
También existen colisiones de galaxias en las que una de ellas se queda con el gas de la otra. Aquí tenemos otro posible fenómeno que puede apagar una galaxia. Pero tampoco parece ser el caso que nos ocupa puesto que nuestras galaxias víctimas no presentan “signos de colisión”.
Así pues, si planteamos el asunto como un caso de detectives, debemos concluir que ha de existir algún otro mecanismo que esté robando el gas frío de las galaxias, impidiendo que formen nuevas estrellas, y haciendo por tanto que, tarde o temprano, terminen como galaxias muertas.
La imagen superior corresponde a una de las víctimas. Se trata de la galaxia ESO 137-001 y se está desplazando hacia el centro de un gigantesco cúmulo galáctico conocido como Norma Cluster o Abell 3627.
En su viaje interestelar hacia el centro del cúmulo está pasando de un medio con pocas partículas a otro medio mucho más denso. Esa diferencia de densidad hace que las partículas más ligeras, como el gas frío, se escapen de la galaxia y formen largas colas, igual que lo haría un cometa.
“Se les conoce como galaxias medusa (Jellyfish galaxies) y para ver más claramente a qué nos referimos, en la imagen se ha coloreado artificialmente de azul el gas que van perdiendo en su viaje hacia el centro del cúmulo”. Casi podríamos decir que la galaxia se desangra lenta y sigilosamente, dejando atrás el gas frío que necesita para formar estrellas.
Bajo el sugerente título de Galaxy murder mistery investigadores del International Centre for Radio Astronomy Research (ICRAR) en Australia han publicado esta semana una posible solución al enigma que está apagando estas galaxias. Y precisamente en Australia se encuentra el investigador español, Ángel R. López-Sánchez, astrofísico multifrecuencia en el Australian Astronomical Observatory y la Universidad de Macquarie (Sídney), quien finalmente nos desvela el misterio: “El gran sospechoso es un mecanismo conocido como Ram-pressure stripping... que traducido sería algo así como expulsión de gas por la presión de arrastre”.
Cada galaxia se mueve por el espacio y se siente atraída gravitatoriamente por los objetos masivos que encuentra a su paso, tales como grandes cúmulos u otras galaxias. Cuando esa galaxia, que originariamente se estaba moviendo en un medio que casi era vacío, se aproxima a estos cúmulos muy masivos, empieza a desplazarse en un medio que es más denso.
“Es entonces, cuando la galaxia se adentra en un medio más denso, pierde sus componentes más livianos, en este caso el gas frío, mediante este mecanismo de Ram-pressure stripping, y al decir adiós a esas reservas de gas, pierde también la capacidad de formar nuevas estrellas”, señala López-Sánchez.
“Este fenómeno de Ram-pressure stripping se había comprobado en numerosos cúmulos de galaxias”, indica el astrofísico, “teníamos constancia de que ocurría en estas gigantescas agrupaciones en donde las galaxias que estaban más próximas al centro suelen tener mucho menos gas que las galaxias que están en las regiones más exteriores. Al desplazarse dentro del cúmulo, las galaxias que se adentran en un medio más denso ven como el gas frío se queda atrás”.
Hasta ahora sabíamos que este mecanismo afectaba a galaxias que se desplazaban en grandes cúmulos con más de 100 galaxias, en los que además existen grandes cantidades de materia oscura que también influían gravitatoriamente en su desplazamiento.
Sin embargo, el artículo publicado por los investigadores de ICRAR amplía el modus operandi de nuestro asesino, no solo a grandes cúmulos galácticos sino también a pequeñas galaxias fuera de esas regiones. El estudio ha utilizado métodos estadísticos con miles de galaxias y han encontrado que la pérdida de gas frío es mayoritaria.
El estudio ha utilizado datos en óptico del cartografiado SLOAN (que tiene datos de millones de galaxias) y con el que han analizado el color y magnitud de las galaxias. En paralelo, y es lo que tiene un valor extra, han usado también datos en radio del cartografiado ALFALFA, realizado por el gran telescopio de Arecibo. “Con estos dos tipos de datos (óptico y radio) han analizado más de 10.000 galaxias diferentes y han podido correlacionar estadísticamente dónde se encuentra la galaxia, qué ritmo de formación estelar tiene, qué color tiene (lo que además nos indica la edad de la galaxia) y qué cantidad de gas posee” aclara López-Sánchez. “De esta manera a cada galaxia de SLOAN le dan un valor de hidrógeno (el gas frío más común para formar estrellas) extraído del cartografiado ALFALFA”.
¿Qué han encontrado? La solución es que un alto porcentaje de las galaxias analizadas están perdiendo gas. Son galaxias que aún están formando estrellas, sí, pero que apenas tienen gas frío para continuar renovándose. El mecanismo de Ram-pressure stripping las está “asfixiando“, haciendo que el combustible necesario para renovar sus estrellas se escape fuera de ellas y consiguiendo que, lenta y sigilosamente, se conviertan en galaxias muertas.
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (3)
La nave espacial New Horizons de la NASA, que navega por el cinturón de Kuiper, ha detectado un misterioso resplandor ultravioleta que parece emanar cerca del borde del sistema solar.
Ese resplandor puede venir de una pared de hidrógeno largamente buscada que representa donde la influencia del sol disminuye, según informa el equipo de New Horizons en Geophysical Research Letters.
Los protagonistas de este descubrimiento explican en un artículo publicado en la revista Geophysical Research Letters que lo primero que observaron fue una fuente de luz ultravioleta en los límites del sistema solar de la se tenía conocimiento desde hace 30 años.
Consideran que esa luz ultravioleta es la consecuencia de la dispersión de la luz solar por los átomos de hidrógeno a lo largo del sistema solar, y que esos átomos son los que forman la pared de hidrógeno.
La luz ultravioleta en los límites del sistema solar fue observada por misiones espaciales anteriores hace 30 años. Lo que ha aportado de nuevo New Horizons no sólo es una observación más precisa, sino también que procede de una pared de hidrógeno.
Los astrónomos lo saben porque hay más luz ultravioleta de la que debería. Sin el muro, esa luz ultravioleta no tiene otra explicación. Pero no descartan que pueda proceder de una fuente todavía desconocida.
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
CIENCIA– SONDA CASSINI (su último mensaje)
Nadie que lea estas líneas presenciará lo que vio la sonda Cassini antes de arder. Encélado ocultándose tras la atmósfera dorada de Saturno. Las ondas que Dafne —una de sus más de 60 lunas— deja en los anillos del planeta. La turbia atmósfera en la que se desintegró la nave el 17 de septiembre de 2017 para no contaminar los satélites helados, donde puede haber vida.
También en éste satélite de Saturno, como en algunos lugares de la Tierra, se han descubierto geíseres
El artefacto de la NASA pasó sus últimas horas enviando información a la Tierra de forma constante. Fruto de esas transmisiones, ahora se publican en Science seis estudios que explican, entre otras cosas, qué está pasando entre las nubes más altas del gigante gaseoso y el interior de sus anillos, una zona que no se había explorado hasta ahora.
Los datos muestran que esa región está azotada por la lluvia que cae desde el anillo D —el más próximo al planeta— como un “aguacero”, en palabras de Hunter Waite, autor principal de uno de los estudios y líder del espectrómetro INMS que iba a bordo de la nave. “Si estuvieras allí apenas sentirías el impacto de las pequeñas partículas, pero podrías oler los gases ”, explica el físico del Instituto de Investigación del Suroeste (EE UU).
Los investigadores están sorprendidos por la cantidad de material que cae sobre la atmósfera saturnina, unos 10.000 kilos por segundo. Pero el impacto de estas “lluvias” es relativo. “Saturno tiene 63 veces la superficie de la Tierra. El material queda repartido por una superficie tan amplia que si hubiese estado lloviendo durante toda la historia del Sistema Solar [unos 4.500 millones de años], la acumulación sería de apenas 2,5 milímetros”, detalla Waite.
Está presente el cloruro amónico
No obstante, la lluvia del anillo D modifica la composición química de las capas altas de la atmósfera del planeta y es posible que con el tiempo cambie también la proporción de carbono y oxígeno en las capas interiores que están en contacto con la superficie. El espectacular sistema de anillos, que abarca 300.000 kilómetros pero tiene apenas 10 metros de espesor, se retroalimenta. El anillo C descarga sobre el D y este sobre el planeta, según muestra uno de los estudios.
Cassini ha profundizado en otra rareza de Saturno: su campo magnético es algo nunca visto. En la Tierra, los polos geográficos y los magnéticos están separados 11 grados, pero en Saturno están alineados con una diferencia de menos de una centésima de grado. “Hasta ahora creíamos que debía haber una cierta desalineación [entre polos] para que exista un campo magnético, pero su ausencia en Saturno parece indicar que tenemos que repensar todo lo que sabíamos sobre cómo algunos planetas forman campos magnéticos”, explica Gregory Hunt, investigador del Imperial College de Londres y coautor de otro de los trabajos publicados hoy. Estudiar el campo magnético del planeta es clave, porque puede desvelar si Saturno esconde un núcleo sólido en su interior, una de las mayores preguntas que quedan por responder.
La nave fue lanzada en 1997 como parte de una misión conjunta entre la NASA y la Agencia Espacial Europea, que se encargó del módulo de aterrizaje Huygens. Desde que este tocó el suelo de Titán, sus datos han permitido confirmar la presencia en esta luna de una atmósfera, así como lagos y ríos de metano que se evapora y forma nubes que después vuelven a descargar sobre la superficie.
Cassini fue la primera nave que orbitó Saturno. Desde su llegada al planeta en 2004 hizo cosas increíbles, como atravesar las fumarolas de los géiseres de Encélado que brotan de un desconocido océano sepultado bajo el hielo, uno de los lugares más propicios para la vida en el Sistema Solar. Poco antes de desaparecer, la misión también confirmó que en las zonas ecuatoriales de Titán se producen tormentas de polvo como las que suceden en los desiertos de la Tierra y de Marte. Con más de 13 años de datos recogidos por Cassini, vamos a estar analizando y haciendo descubrimientos durante años, si no décadas”, asegura Hunt.