Sep
12
¡Dichosa “materia oscura”!
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Si en realidad existe… ¿Dónde está esa materia esquiva e invisible que llaman oscura?
Uno de los mayores misterios a los que se enfrenta la Física es el hecho de que la mayor parte de la materia que existe es oscura. Es decir, un tipo de materia que no interactúa en modo alguno con los fotones, y que, por lo tanto, es totalmente invisible para nuestros ojos y para los telescopios de los astrónomos.
La masa del Universo esta compuesta por un 5% de materia ordinaria, un 23% de materia oscura y un 72% de la energía oscura (eso es lo que nos dicen, sin que dicha afirmación haya sido demostrada, y, tal manera de actuar de la Ciencia, me recuerda a la religión que, es cosa de fe.)
De hecho, los del LHC dicen que están buscando el fotón oscuro y, se podría dar el caso de que dicho “fotón” no aparezca nunca y que lo que creen que es “materia oscura”, finalmente sea otra cosa muy distinta… ¡Sabemos tan poco!
En el CERN disponen el LHC para tratar de encontrar la dichosa materia oscura
Algunas teorías sugieren que, además de a través de la gravedad, las partículas de materia oscura podrían interaccionar con la materia visible por medio de una fuerza desconocida, la fuerza oscura, que podría transmitirse a través de fotones oscuros.
Localizar los fotones oscuros es la misión del experimento NA64 del CERN.
Fuente: Revista mensual electrónica de la Real Sociedad Española de Física.
Sep
12
Conocer mejor a la estrella que nos da la Vida
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
La NASA lanza con éxito la sonda Parker con el objetivo de ‘tocar’ el Sol
Agencias | Redacción
12/08/2018
La misión, que pretende ayudar a esclarecer los misterios que esconde el Sol y que está previsto que llegue en el mes de noviembre, ha dado comienzo con su cuarto intento de lanzamien.
La sonda solar Parker, la primera astronave que transitará por la corona del Sol, fue lanzada hoy con éxito 24 horas después del aplazamiento del despegue desde la base de Cabo Cañaveral (Florida). La misión, que pretende ayudar a esclarecer los misterios que esconde el Sol y que está previsto que llegue en el mes de noviembre.
El cohete Delta IV Heavy de la compañía United Launch Alliance ha despegado a las 03:31 hora local (07:31 GMT) desde la base aérea de Cabo Cañaveral de la NASA con la sonda a bordo.
Pocos minutos después del lanzamiento el cohete se ha desprendido de sus tres propulsores, como estaba programado.
Con unas predicciones meteorológicas favorables del 95 % y tras haber resuelto los problemas que habían hecho cambiar las fechas de lanzamiento dos veces, la NASA reprogramó ayer para este domingo el inicio de esta misión, que considera “histórica”.
La sonda pretende recoger información más cerca del Sol que ninguna otra astronave ha hecho hasta ahora.
Y así puede contribuir a resolver cuestiones como la diferencia de la temperatura de la atmósfera del Sol que está a más de un millón de grados mientras que la propia superficie solar está a 6.000 grados.
Años de investigación
Tras años de investigación, el equipo dio con la manera de que la sonda resista a un calor equivalente a 500 veces lo que experimentamos en la Tierra y realizar, así, observaciones “in situ”.
Se trata de un escudo térmico que soportará temperaturas de 1.400 grados centígrados y mantendrá los instrumentos del interior de la aeronave a temperatura ambiente (30 grados centígrados).
Toda esta parafernalia para un objeto tan pequeño (1)
La sonda, de dimensiones pequeñas (65 kilos y 3 metros de altura), llegará a una distancia de 6 millones de kilómetros del Sol.
Además, la sonda alcanzará los 700.000 kilómetros por hora, la mayor velocidad que hasta ahora ha desarrollado cualquier otra nave construida por el hombre.
Una velocidad que equivale a viajar entre Nueva York y Tokio en un minuto y que permitirá a la sonda alcanzar el Sol en noviembre.
Fuera de la noticia:
Instalar esta pequeña base en Marte… ¡Nos costará media vida!
Por cada kilo que sacamos al Espacio, se necesitan mil kilos de combustible. Estamos muy atrasados en este campo y hay que encontrar otra forma de energía para que sea más fácil enciar material al Espacio. Es un gran problema para el día que comencemos a poblar lunas y planetas exteriores.
Sep
9
Las Galaxias y…¡La Vida!
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…”
Esas palabras de arriba reflejaban los pensamientos de Darwin
Que, dicho sea de paso, en lo que a la vida se refiere, ésta se abre paso en los lugares más estremos e inesperados por muy malas condiciones que allí puedan estar presentes. Así ocurre con los llamaodos extremófilos que, pueden estar, casi en cualquier sitio.
Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.
En otros comentarios, ya nos referimos a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON). Lee Smolin, de la Universidad de Waterloo, Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas.
Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.
El Sol, en realidad, sólo es importante para nosotros al ser el cuerpo central de nuestro Sistema Solar, y con mucho, la estrella más cercana al planeta Tierra y la única que se puede estudiar con todo lujo de detalles. Se clasifica como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K (tipo espectral G2) y una enana de la secuencia principal (clase de luminosidad V). Los detalles de su composición son sobradamente sabidos por todos y cabe destacar su abundancia de hidrógeno – 71% en masa- y de helio el 27% y elementos más pesados hasta completarlo. Por lo tanto, nuestro Sol no destaca por nada entre esa multitud de de cientos de miles de millones de estrellas.
Recorre su órbita a una distancia del centro que viene a ser más o menos dos tercios del diámetro. En el centro de la Galaxia las estrellas forman una protuberancia, de tal modo que desde el exterior daría la sensación de estar viendo un enorme huevo frito, en el que la protuberancia sería la yema. Sin embargo, el modo en que este disco gira revela que todo el material brillante (materia bariónica) que compone la parte visible de la Vía Láctea queda sujeto por el tirón gravitatorio de una materia invisible que no brilla ni emite radiación y que viene a ser más o menos diez veces mayor que la materia visible de la Galaxia y que muchos suponen que está diseminada en un halo situado alrededor de ella, extendiéndose mucho más allá del borde del disco de estrellas brillantes.
Recreación artística del WHIM en la Pared del Escultor
Descubrir qué es realmente esta materia oscura (yo prefiero llamarla -hasta que sepamos que es…si es algo- no luminosa o materia escondida) constituye un tema de crucial interés para los astrónomos, pero no entraremos ahora en eso, ya que, para lo que estamos tratando, no tiene importancia. Muchas galaxias en forma de disco se caracterizan por una especie de serpentinas que se alejan en espiral desde su centro, lo que hace que se les aplique el nombre de galaxias espirales. Es fácil estudiar las pautas que siguen los llamados “brazos espirales”, porque las galaxias se encuentran relativamente cerca unas de otras, si comparamos estas distancias con sus tamaños.
Andrómeda, la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista desde la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz.
NGC 5584 es una bonita galaxia que exhibe orgullosa sus inmensos criaderos de estrellas en los brazos espirales que azulean el contorno y que, con mas de 50 mil años-luz de diámetro. Se encuentra a 72 millones de años-luz de distancia, en dirección de la constelación de Virgo.
Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.
No hay misterio alguno en cuanto al modo en que mantienen esa forma espiral. Se debe exclusivamente a un fenómeno de retroalimentación. c Las nubes gigantescas a partir de las cuales se forman las estrellas pueden contener hasta un millón de veces la masa del Sol cuando empieza a contraerse gravitatoriamente para formar estrellas. Cada nube que se contrae produce, no una sola estrella de gran tamaño, sino todo un conglomerado de estrellas, así como muchas estrellas menores. Cuando las estrellas brillantes emiten luz, la energía de esta luz estelar (especialmente en la parte ultravioleta del espectro) forma una burbuja dentro de la nube, y tiende a frenar la formación de más estrellas. Sin embargo, una vez que las estrellas de gran masa han recorrido sus ciclos vitales y han explotado, sembrando además el material interestelar con elementos de distintos tipos, la onda expansiva ejerce presión sobre las nubes interestelares cercanas y hace que éstas comiencen a contraerse.
Las ondas procedentes de distintas supernovas, al entrecruzarse unas con otras, actúan mutuamente para barrer el material interestelar y formar nuevas nubes de gas y polvo que se contraen produciendo más estrellas y supernovas, en un ejemplo clásico de interacción que se mantiene por sí sola en la que intervienen una absorción de energía (procedentes de las supernovas) y una retroalimentación.
Si la nube es demasiado densa, su parte interna se contraerá gravitatoriamente de manera rápida, formando unas pocas estrellas grandes que recorren sus ciclos vitales rápidamente y revientan la nube en pedazos antes de que puedan formarse muchas estrellas. Esto significa que la generación siguiente de estrellas nace de una nube más delgada, porque ha habido pocas supernovas que barrieran material formando pedazos densos. Si la nube es tan delgada que su densidad queda por debajo de la densidad óptima, nacerán muchas estrellas, y habrá gran cantidad de explosiones supernovas, lo cual producirá gran número de ondas de choque que barrerán el material interestelar, acumulándolo en nubes más densas.
De esta manera, por ambas partes, las retroalimentaciones operan para mantener un equilibrio aproximadamente constante entre la densidad de las nubes y el número de supernovas (y estrellas de tipo Sol) que se producen en cada generación. La propia pauta espiral resulta del hecho de que la galaxia realiza movimiento de rotación y está sometida al tirón gravitatorio que crea la fuerza de marea proveniente de esa materia no luminosa.
Con la gentil autorización de NASA and The Hubble Heritage Team (STScI/AURA)
¿Existen los espíritus? Esta toma del telescopio Hubble casi lo sugiere. Muestra una nube de materia interestelar con el nombre de IC 349, que es inundado con radiación, por la joven estrella Merope, en las Pléyades, y es incitada a brillar. La enorme radiación de la estrella, prontamente dispersará a esta nube y la destruirá. Las Pléyades son conocidas como incubadoras de muchas nuevas estrellas masivas, que en su estado “juvenil” emiten enormes cantidades de irradiación.
Claro que, la materia interestelar es variada. Existen nubes de gas y polvo fríos, que son ricas en interesantes moléculas y se llaman nubes moleculares gigantes; a partir de estas nubes se forman nuevas estrellas (y planetas). Hay nubes de lo que consideraríamos gas “normal”, formadas por átomos y moléculas de sustancias tales como el hidrógeno, y quizá tan caliente como una habitación cerrada durante toda la noche y con la temperatura de dos cuerpos dormidos y emitiendo calor. Además, hay regiones que se han calentado hasta temperaturas extremas mediante la energía procedente de explosiones estelares, de tal modo que los electrones han sido arrancados de sus átomos para formar un plasma cargado de electricidad.
También existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces en densidad sigue siendo un contraste espectacular.
La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos –composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.
Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.
Creo que llevan toda la razón.
emilio silvera
Ago
31
Maravillas del Universo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
“En el centro hay una de las estrellas más importantes del firmamento. Esto es en parte porque, por coincidencia, está rodeada por una nebulosa de reflexión deslumbrante. La pulsante RS Puppis, la estrella más brillante del centro de imagen, es diez veces más masiva que el Sol y, de media, 15.000 veces más luminosa. RS Pup es una estrella variable de tipo cefeida, una clase de estrellas con una brillantez que se utiliza para estimar las distancias a las galaxias cercanas, uno de los primeros pasos para establecer la escala de distancias cósmicas. Como RS Pup pulsa durante un periodo de unos 40 días, los cambios regulares del brillo también se observan a lo largo de la nebulosa retrasados en el tiempo, es decir, en un eco de luz. Mediante las mediciones de este retraso y del tamaño angular de la nebulosa, la conocida velocidad de la luz permite a los astrónomos determinar geométricamente la distancia de RS Pup en 6.500 años luz, con un error notablemente pequeño de unos 90 años luz. La distancia medida por eco, una impresionante hito de la astronomía estelar, también permite establecer con más precisión el verdadero brillo de RS Pup y, por extensión, de otras estrellas cefeidas, mejorando así el conocimiento de las distancias en que se encuentran las galaxias más allá de la Vía Láctea.
La fotografía fue tomada por el Telescopio Espacial Hubble.”
“RS Puppis es una variable cefeida de tipo espectral medio F8Iab. Su brillo oscila entre magnitud aparente +6,52 y +7,67 con un período de 41,39 días.2 Es la única cefeida que se encuentra rodeada por una gran nebulosa, formada por gas y polvo muy fino que refleja parte de la luz emitida por la estrella.
Tiene una temperatura efectiva de 4820 K y una masa 10,3 veces mayor que la masa solar.3 Su radio es entre 174 y 198 veces más grande que el del Sol, lo que equivale a unas 0,9 UA. Presenta un contenido metálico superior al solar, siendo su índice de metalicidad [Fe/H] = +0,17.4 También muestra enriquecimiento en europio, azufre y lantano, siendo la abundancia relativa de este último elemento más del doble que en el Sol. Cabe destacar el elevado nivel de nitrógeno en su superficie ([N/H] = +0,73)”
Ago
29
Investigando el Cosmos
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Microcuasar GRS 1758-258
Investigadores del grupo Fuentes de Alta Energía de la Galaxia de la UJA han utilizado el GTC, para estudiar el microcuásar GRS 1758-258. Se cree que en su interior hay un agujero negro, relativamente pequeño en escalas astronómicas, que está engullendo la materia de una estrella que gira a su alrededor, poniendo en juego energías enormes y emitiendo grandes cantidades de radiación en distintas frecuencias.
También se han descubiertos agujeros negros supermasivos en el centro de las galaxias-
Se trata de una estrella más o menos el doble de grande y pesada que nuestro Sol, y más caliente, que gira alrededor del agujero negro muy rápido: danzan uno alrededor del otro dando una vuelta en solo un día, explica el catedrático de Astrofísica de la UJA Josep Martí. Los datos se publicarán en Astronomy and Astrophysics
Fuente: Revista mensual electrónica de la Real Sociedad Española de Física.