Ago
30
¿La masa perdida? ¿O no entendemos nada?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.
Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).
La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano.
Universo cerrado
Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.
En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.
Universo abierto
Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.
Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”, dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.
Universo plano
Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría ecuclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.
Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamentre a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón, proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein y la quasipartícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.
La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..
Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:
la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.
Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.
Ago
24
¿La masa perdida? ¿O no entendemos nada?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.El Universo contiene miles de millones de galaxias, pero se sabe que sólo una pequeña cantidad de la materia que lo conforma se encuentra en ella, y es claramente visible. El resto, creado durante y justo después del Big Bang, es gas ionizado difícil de observar directamente.
Cuando pasen algunos miles de millones de años más, no sabemos que será del Universo ni que rumbo habrán tomado las cosas, toda vez que, el Universo es …
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.
Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).
La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano
Universo cerrado
Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.
En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.
Universo abierto
Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.
Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”, dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.
Universo plano
Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría euclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.
Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamente a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón, proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein y la quasipartícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.
La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..
Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:
En todo sistema cerrado, la entropía tiende a aumentar continuamente, y, el Universo lo es. n todo proceso irreversible, la entropía del universo aumenta. “Los sistemas aislados al evolucionar, tienden a desordenarse, nunca a ordenarse”. La entropía entropía mide el grado de desorden o de orden del sistema y depende únicamente de los estados inicial y final de dicho sistema.
la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.
Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.
Jul
20
Varían las Constantes universales con el paso del tiempo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
No podemos descartar la idea ni abandonar la posibilidad de que algunas “constantes” tradicionales de la naturaleza pudieran estar variando muy lentamente durante el transcurso de los miles de millones de años de la historia del universo. Es comprensible por tanto el interés por los grandes números que incluyen las constantes de la naturaleza. Recordemos que Newton nos trajo su teoría de la Gravedad Universal, que más tarde mejora Einstein y que, no sería extraño, en el futuro mejorará algún otro con una nueva teoría más completa y ambiciosa que explique lo grande (el cosmos) y lo pequeño (el átomo), las partículas (la materia) y la energía por interacción de las cuatro fuerzas fundamentales.
¿Será la teoría de Supercuerdas ese futuro?
Me referiré ahora aquí a un físico extraño. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de datos astronómicos complicados o como diseñador de sofisticados instrumentos de medida.
Tenía los intereses científicos más amplios y diversos que imaginarse pueda. Él decía que al final del camino todos los conocimientos convergen en un solo punto, el saber.
Hasta el presente estos son los exóticos objetos que más Gravedad generan en el Universo
Así de curioso, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra para comprobar la idea de la constante gravitatoria variable de Dirac que podía ser sometida a una gran cantidad de pruebas observacionales, utilizando los datos de la geología, la paleontología, la astronomía, la física de laboratorio y cualquier otro que pudiera dar una pista sobre ello. No estaba motivado por el deseo de explicar los grandes números. Hacia mediados de la década de los 60 hubo una motivación adicional para desarrollar una extensión de la teoría de la gravedad de Einstein que incluye una G variable. En efecto, durante un tiempo pareció que las predicciones de Einstein no coincidían en lo referente o sobre el cambio de órbita de Mercurio que era distinta a las observaciones cuando se tenía en cuenta la forma ligeramente achatada del Sol.
Jul
14
Sometidos por los agujeros negros
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
XMM-Newton fue lanzado al espacio por el cohete europeo Ariane 5 el 10 de diciembre de 1999. Se situó en una órbita poco frecuente que da la vuelta a la Tierra cada 48 horas a altitudes que oscilan entre los 7000 y los 114 000 km. La misión se llamó XMM por su diseño provisto de múltiples espejos (X-ray Multi-Mirror).
El observatorio europeo de rayos X denominado XMM-Newton, fue lanzado al espacio a finales de 1999. Desde entonces, un complejo sistema de espejos cilíndricos que permiten enfocar la luz de alta energía ha estado observando numerosas fuentes luminosas de todo el Universo. Y, entre ellas, el misterioso conglomerado de materia que existe en el centro de la Vía Láctea. Los rayos X se generan en procesos muy energéticos, cuando la materia se somete a temperaturas de millones de grados o, también, cuando se aceleran partículas a temperaturas cercanas a la de la luz por la acción gravitatoria y de campos magnéticos. Algo muy violento está sucediendo en el centro de nuestra galaxia.
Agujeros negros binarios que caminan hacia su fusión
Seis exoplanetas con orbitas rítmicas que desconciertan a los astrónomos
Cada día se descubren nuevas cosas que antes ignorábamos, y, según se deduce de los hechos a lo largo de la historia.. La Ciencia está en un callejón sin salida, no puede hacer nada para evitarlo, y, lo único que le queda… ¡Es crecer u crecer! Lo que ayer no se sabía… ¡hoy se sabe! Cada día, los científicos del mundo en todas las ramas del saber humano avanzan y descubren nuevos secretos de la Naturaleza, del Universo en fin.
En el mismo centro de la Vía Láctea vive un monstruo llamado Sagitario A que, engulle toda la materia circundante y destruye las estrellas vecinas para hacerse más y más grande cada día. En octubre de 2002, un equipo de científicos del Instituto Max Planck de Astrofísica (Garching, Alemania), consiguió observar el movimiento de alguna de las estrellas que orbitan en torno al centro de nuestra galaxia y, calculando el periodo, tener una estimación directa de la masa del agujero negro central. El valor que obtuvo el equipo de Rainer Schoedel es de entre 2,6 y 3,7 millones de masas solares.
Comparación de los agujeros negros M87 y Sagitario A.
En abril de 2019, un equipo internacional de 200 investigadores mostró al mundo la primera imagen de un agujero negro . Situado en el centro de la galaxia Messier 87 , a 55 millones de años luz de distancia de la Tierra, este objeto masivo es equivalente a 7.000 millones soles y tiene un núcleo de 40.000 millones de kilómetros de diámetro. Fotografiarlo fue tan difícil como captar una naranja en la superficie de la Luna. Hicieron falta ocho telescopios repartidos por el planeta para recoger sus ondas de radio.
Entonces se intentó fotografiar también el agujero negro en el centro de nuestra galaxia, llamado Sagitario A* , pero no fue posible. No ha sido hasta hoy que hemos podido verlo por primera vez, gracias al mismo equipo científico del Event Horizon Telescope (EHT).
Pero, ¿por qué es tan difícil ver el agujero negro en el centro de nuestra galaxia? ¿Por qué hemos visto primero uno tan lejano, a 55 millones de años luz, si el de la Vía Láctea está a ‘solo’ a 25.000? La cuestión es que estar más cerca no significa necesariamente ser más fácil de fotografiar.
Precisamente, M 87 resultaba una mejor opción porque está muy lejos. Eso significa que tiene una posición más fija y no se mueve de su lugar en el cielo en comparación con Sagitario A*, mucho más cercano pero, con cuatro millones de masas solares, mucho más pequeño y débil. Por si fuera poco, tiene una característica única, unas llamaradas parpadeantes en el material que lo rodea que alteran el patrón de luz cada hora, lo que ha supuesto serios desafíos para los astrónomos.
Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genoma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…
Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.
Esa potentísima fuerza de gravedad que parece ubicarse en el centro de todas las galaxias mantiene a las estrellas unidas pero también es una fatal fuerza destructora.
Los científicos están cada vez más cerca de confirmar que todas las galaxias, esencialmente las espirales y elípticas, mantienen sus cientos de miles de millones o billones de estrellas unidas gracias a una potentísima fuerza de gravedad que se ubica en el centro de cada una de ellas.
Es de destacar que las estrellas de las galaxias espirales giran en torno al núcleo de la galaxia, donde se aglutina el mayor número de estrellas por unidad cúbica, pero parece insuficiente que este grupo constituido de millones de estrellas puedan mantener unidas y girando a su alrededor al resto de las estrellas componentes de una galaxia, en algunos casos, como la galaxia elíptica M 87, con más de un billón de estrellas. Hay algo más, justo en el centro de los núcleos de las galaxias que posee una fuerza superior y que además de mantener compacto el núcleo de la galaxia, mantiene estrellas girando a su alrededor a distancias de cientos de miles de años luz (un año luz equivale a 9,6 billones de km).
La galaxia elíptica M87 (también conocida como Galaxia Virgo A, Messier 87, M87, o NGC 4486) es una galaxia elíptica gigante fácil de ver con telescopios de aficionados. Se trata de la mayor y más luminosa galaxia de la zona norte del Cúmulo de Virgo, hallándose en el centro del subgrupo Virgo A.
Nuestra galaxia, la Vía Láctea, mide 100.000 años luz, es como un disco con brazos espirales, muy aplastada y fina, excepto hacia el centro, cuyo bulbo en forma de esfera mide 30.000 años luz de diámetro, pero dentro de esta enorme bola de estrellas viejas, se encuentra el núcleo, aún más denso y compacto, cuyas estrellas se amontonan en espesa multitud, concretamente unos 85 millones de estrellas, que determinó el telescopio de infrarrojos VISTA, un telescopio capaz de atravesar las inmensas nubes de polvo que hay entre nosotros y el núcleo galáctico que es invisible con telescopios ópticos normales. Mientras más nos acerquemos al núcleo galáctico, las estrellas estarán más cerca las unas de las otras.
Cuando comenzaron a formarse las galaxias, algunas estrellas supermasivas comenzaron a agotar su combustible nuclear. Estas estrellas decenas o cientos de veces más masivas que el Sol duran pocos millones de años; el Sol, 10.000 millones de años. Comenzaron a estallar y se convirtieron en brillantísimas supernovas. En todo el Cosmos las supernovas se sucedían y dieron paso a la formación de agujeros negros supermasivos.
La inmensa fuerza de gravedad de estos agujeros negros comenzó a atraer a las estrellas jóvenes en formación o con pocos millones de años de edad. Como si de vórtices se trataran, las estrellas comenzaron a girar alrededor de los agujeros negros, así dice una teoría que se agruparon las estrellas para formar las galaxias.
No es de extrañar. Se han encontrado agujeros negros en los núcleos de casi todas las galaxias, incluso agujeros negros dobles uno girando alrededor del otro. Aquellas galaxias que no suelen contener agujeros negros supermasivos en sus núcleos son galaxias irregulares, cuya estructura amorfa no obedece a las formas bellísimas de las galaxias espirales o elípticas, cuyos agujeros negros les dan la forma.
Los agujeros negros no sólo están en los núcleos de las galaxias, sino en diversas regiones de éstas, aunque estos no suelen ser muy masivos, varias veces la masa del Sol, como el descubrimiento de uno de ellos, de 10 masas solares, en uno de los brazos espirales de la vecina galaxia de Andrómeda, a 2,3 millones de años luz, descubierto gracias a que en ese momento estaba engullendo una estrella emitiendo una poderosa fuente de rayos X. La Vía Láctea posee varios agujeros negros detectados, quizás el más famoso sea Cygnus X-1, un agujero negro de unas 15 masas solares a cuyo alrededor gira una estrella supergigante a la que continuamente roba las capas más externas.
A. N. -Como sumideros cósmicos. Atrae y engulle la materia circundante aunque sean estrellas
Un agujero negro en una galaxia actúa casi de la misma forma que cuando quitamos el tapón del lavabo y el agua comienza a desaparecer formando una espiral. Los agujeros negros no tragan con tanta rapidez, a pesar de su poderosa fuerza de gravedad, las estrellas están muy distantes y van cayendo poco a poco, mientras que el resto de estrellas sometidas a la fuerza de gravedad del agujero negro supermasivo giran en torno a él esperando su turno.
Los agujeros negros son tan poderosos y dominantes que cuando la materia comienza a caer hacia ellos, se calientan y emiten tanta radiación que equivale a la energía de toda una galaxia de 100.000 millones de estrellas.
Objeto NGC 4845 está ubicado exactamente en el centro de la imagen
Astrónomos europeos tuvieron la ocasión de ver por primera vez cómo un agujero negro de 300.000 masas solares situado en la galaxia NGC 4845 a 47 millones de años luz, arrancaba las capas exteriores de un planeta 15 veces mayor que Júpiter, un planeta errante expulsado de su sistema solar, que ahora gira en torno al agujero negro. Solo el hecho de arrancarle el 10% de la masa puso en alerta a los investigadores, pues se produjo una importante emisión de rayos X.
Grandes emisiones de Rayos X
El agujero negro supermasivo de nuestra galaxia, de 4,5 millones de masas solares, posee una gran actividad. Prácticamente y a diario, se observan explosiones, aunque no extremas, ello indica que todos los días engulle algo. El telescopio espacial Herchel, ha comprobado que una nube de gas compacta, se dirige hacia nuestro agujero negro y probablemente caiga en él este mismo año. Por otro lado estrellas cercanas al mismo, giran a velocidades de vértigo y serán su próxima comida. El Sistema Solar que se encuentra a 28.000 años luz del agujero negro gira gracias a éste y alrededor de nuestra galaxia a una velocidad de 960.000 km/h.
Los agujeros negros, forman las galaxias, mantienen unidas a sus estrellas, pero a cambio, se nutren de ellas. ¿Será el destino de las galaxias acabar en el interior del agujero negro supermasivo que contienen?
Agujeros negros supermasivos distorsionan las galaxias, y emiten poderosos jets de energía y materia a cientos de miles de años luz de distancia, es el caso del agujero negro de la galaxia M 87 con 3.000 millones de masas solares. M 87 sigue engullendo otras galaxias menores y el agujero negro no para de alimentase. Los astrónomos creen que el límite de un agujero negro puede ser el de una masa de 50.000 millones de soles, es decir, la mitad de la masa de nuestra propia Galaxia. Un agujero negro de estas características no tendría límites y podría absorber una galaxia tranquilamente, por lo que se convertiría en el mayor destructor del Universo.
Pero, ¿Qué es un agujero negro?
Un agujero negro se produce cuando las estrellas muy masivas, a partir de 6/8 veces la masa solar, llegan al final de su vida, se detienen las reacciones termonucleares que hacen que la estrella se expanda y la gravedad se encarga de encoger a la estrella hasta el tamaño de la Tierra (enana blanca), si la gravedad consigue aplastar aún más a la estrella, se convertirá en una estrella de neutrones, del tamaño de una ciudad, donde un cm cúbico pesa millones de toneladas. Pero si no consigue pararse en ese tamaño, se aplastará aún más convirtiéndose en un objeto diminuto, pero con la masa de varias, decenas, cientos o miles de soles.
Si la Nave no alcanza esa velocidad de escape… ¡Volverá a caer al planeta!
Para escapar de la Tierra hace falta una velocidad de 11,2 km/s. Si no conseguimos alcanzarla caeremos otra vez a nuestro planeta. Pero un agujero negro posee tanta fuerza de gravedad, que ni siquiera la luz, que es lo más rápido y que viaja a 300.000 km/s podría escapar del agujero negro. Si nos pudiéramos poner en un agujero negro (vamos a imaginarlo porque no es muy probable) y encender una linterna, veríamos cómo la luz de la linterna intentaría escapar del agujero negro, pero se doblaría y volvería hacia nosotros. Así son los objetos más poderosos del Universo.
Los agujeros negros hunden el Espacio y distorsionan el Tiempo. En estudio está que estos objetos sean atajos espaciales que en un futuro nos lleven a lugares muy distantes del Universo sin que apenas pase el tiempo.
Emilio Silvera V.
Jul
6
Biología de las Estrellas, y, la Vida
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (2)
Han tenido que pasar miles de millones de años para hacer posible la existencia de imágenes como las que arriba podemos ver, Y, las estrellas, han estado fusionando elementos sencillas en otros más complejos para hacer posible la llegada de la Vida,
Nadie se atreve a negar la posible existencia de formas de vida en otros mundos, ya que, sabiendo que el Universo es igual en todas partes (por alejadas que puedan estar sus regiones), y, que en todas ellas está regido por las mismas leyes fundamentales y las mismas constantes universales… ¡Lo que pase “aquí” podrá pasar “allí”, y, salvo cambios singulares debidos al entorno (Gravedad, Atmósfera, Radiación…l), todas las formas de vida se deduce que estarán basadas en el Carbono (sin descartar), la posible existencia de otras que podrían estar basadas en elementos como el Silicito.
¿Es viejo el universo?
“Las cuatro edades del hombre: Lager, Aga, Saga y Gaga”.
Nebulosas donde nacen estrellas de segunda generación y planetas