Ene
6
Misterios del Universo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (1)
Astrónomos de Estados Unidos afirman que estas emisiones de milisegundos pero de gran potencia provienen de una estrella de neutrones situada a 3.000 millones de años luz, fuera de nuestra Galaxia.
La antenas del Very Large Array (VLA), en EE UU. Cordon Press
Un equipo de astrónomos ha conseguido localizar el origen de unas potentes señales de radio que llevan años intrigando a muchos expertos. Se trata de un fenómeno conocido como estallido rápido de radio (FRB en inglés), que libera en unas fracciones de segundo tanta energía como el Sol en varios días.
Radiotelescopio Parkes, en Australia
En 2007, David Narkevic, un estudiante de física y ciencias políticas en la Universidad de Virginia Occidental (EE UU), fue el primero en descubrir una de estas señales entre los datos recogidos seis años antes por el radiotelescopio Parkes, en Australia. Desde entonces se han detectado otros estallidos similares. Todos duran apenas milisegundos, por lo que ha sido muy difícil aclarar de dónde vienen y qué los produce. Esta incertidumbre ha dado lugar a todo tipo de teorías sobre su origen, desde algunas fundadas como que se trata de cataclismos como el colapso de estrellas de neutrones o la evaporación de agujeros negros, a otras menos probables, como que sean mensajes de civilizaciones alienígenas, ya que algunas parecen seguir una lógica matemática.
“Si nuestros ojos fueran sensibles a las ondas de radio, veríamos iluminarse el cielo [por estas señales] unas dos veces por minuto”, escribe el astrónomo de la Universidad Radboud Heino Falcke hoy en Nature, que le ha dedicado su portada esta semana a este descubrimiento. La dispersión de estas señales de radio a su paso por el espacio indica que los FRB vienen de fuera de la Vía Láctea y que, antes de alcanzar la Tierra, viajan por el universo durante miles de millones de años , lo que los convierte en las señales de radio “más distantes y brillantes, del universo conocido”, resalta Falcke.
Los FRB “han sido objeto de un gran misterio” durante los últimos 10 años que parece una “historia de detectives”, reconoce Joe Lazio, científico del Laboratorio de Propulsión a Chorro de la NASA. Lazio es uno de los 25 astrónomos que acaban de escribir el último capítulo de la saga al estudiar el FRB más enigmático de todos. Se detectó por primera vez en 2012 y, al contrario que el resto de las señales conocidas, que solo se producen una sola vez, esta se ha repetido en varias ocasiones, pero sin un patrón claro. La existencia de este tipo de estallido cuestiona la teoría de que su origen esté en eventos destructivos que suceden una sola vez.
La fuente de estos estallidos está en una galaxia enana y poco brillante
El equipo de Lazio usó la red de telescopios VLA de EE UU para intentar captar de nuevo la señal descubierta en 2012. Después de detectarla recurrieron a la red de telescopios europea VLBI y una similar en EE UU para situar su origen con más precisión que ningún otro estudio anterior. Sus resultados, publicados hoy en Nature y en Astrophysical Journal Letters, muestran que la fuente de estos estallidos está en una galaxia enana y poco brillante, nada parecido a un gran cataclismo cósmico
“Gracias al espectro medido con los telescopios Gemini [instrumentos ópticos], hemos comprobado que esta galaxia” está “a unos 3.000 millones de años luz de nosotros”, resalta Shami Chatterjee, astrónomo de la Universidad Cornell (EE UU) y coautor de los estudios. “Esto supone que estos estallidos son excepcionalmente potentes, y que han atravesado el medio intergaláctico durante 3.000 millones de años”, añade.
Los investigadores aún no saben qué objeto dentro de esta galaxia está produciendo las señales. “Posiblemente se trata de un fenómeno asociado con un núcleo de galaxia activo o, más probablemente, los enormes pulsos emitidos por un magnetar, una estrella de neutrones joven con un campo magnético extraordinario”, explica Chatterjee. En cualquier caso, “es enormemente improbable que se trate de señales artificiales”, añade. Su objetivo ahora es aclarar el origen exacto de los estallidos analizados y buscar una nueva fuente de FRB repetidos que ayude a zanjar las preguntas sobre el origen de estos fenómenos.
Fuente: El Pais
Ene
4
Plasma, Nebulosas, Gases, elementos, moléculas.
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
La materia en forma de plasma está presente por todo el Universo, las estrellas, los remanentes de supernovas, en púlsares y magnétares, en las estrellas, en las explosiones…
El Plasma, ese otro estado de la Materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la amteria que cantábamos en el patio del centro educativo durante el recreo, donde todos a una gritábamos como papagayos: “Sólido, líquido y gaseoso”. Nada nos decían del Plasma, ese estado que, en realidad, cubre el 99% del estado de la materia en nuestro Universo (bueno, hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos de Quarks y Leptones).
Según la energía de us partículas, los plasmas (como digo) constituyen el cuarto estado de agregación de la materia, tras los sólidos, liquidos y gases. Parqa cambiar de uno al otro, es necesario que se le aporte energía que aumente la temperatura. Si aumentamos de manera conasiderable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, obsorción de fotones, reacciones químicas o nucleares y otros procesos.
Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.
Un plasma es un gas muy ionizado, con igual número de cargas positivas y negativas.Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilinea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilineas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas, buenos conductores.
En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los electrones libres de un metal también pueden ser considerados como un plasma. La mayor parte del Universo está formado por materia en estado de plasma. La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera (ver trabajo más abajo), donde produce el fenómeno denominado aurora.
Así que, aunque escasos en la Tierra, el Plasma constituye la materia conocida más abundante del Universo, más del 99%. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas, sin embargo, lo son la mayoría de los cuerpos luminosos.
Bombilla de incandescencia
Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superándo las enormes fuerzas repulsivas internucleares, y lñograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.
Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.
Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.
Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.
El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto las moléculas orgánicas que son la llave para la vida en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.
En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.
En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.
En un número de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado pues no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pascales, inalcanzable por el hombre.
Lo que ocurre en las Nubes moleculares es tan fantástico que, llegan a conseguir los elementos necesarios para la vida prebiótica que, tras los parámetros adecuados dan lugar al surgir de la vida.
El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 150 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.
Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y Sistemas planetarios, en un proceso cíclico de miles de millones de años.
En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos.
El H₂ y otras moléculas diatómicas homonucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadrupolares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiativa del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.
Experimentos muy recientes de desorción programada sobre silicatos ultrafríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.
Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.
El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas intelestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.
La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.
La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la aprición de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.
Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que, captadas por el Hubble u otros telescopios, miramos asombrados maravilándonos de sus colores que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apurais un poco, también la vida.
emilio silvera
Dic
17
De estrella masiva a Agujero Negro
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (1)
Cuando hablamos de un agujero negro estamos hablando de algo con un campo gravitacional tan intenso que su velocidad de escape supera la velocidad de la luz. Los agujeros negros se forman cuando las estrellas masivas colapsan al final de sus vidas. Un objeto que se colapsa se convierte en un agujero negro cuando su radio se hace menor que un tamaño crítico, conocido como radio de Schwarzschild, y la luz no puede escapar de él.
La superficie que tiene este radio crítico se denomina horizonte de sucesos, y marca la frontera dentro de la cual esta atrapada toda la información. De esta forma, los acontecimientos dentro del agujero negro no pueden ser observados desde fuera. La teoría muestra que tanto el espacio como el tiempo se distorsionan dentro del horizonte de sucesos y que los objetos colapsan a un único punto del agujero, que se llama singularidad, situada en el propio centro del agujero negro. Los agujeros negros pueden tener cualquier masa.
Pueden existir agujeros negros supermasivos con cientos de miles de masas solares, verdaderos montruos, en los centros de las galaxias activas. En el otro extremo, miniagujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del Big Bang.
El proceso comienza al final de la vida de las estrellas que, dependiendo de sus masas, serán enanas blancas, estrella de neutrones, o, en último lugar, Agujeros Negros, los más masivos y densos. Se habla ahora de la existencia de las estrellas de Quarks que, de existir, estarían en el punto intermedio entre las de neutrones y los agujeros negros.
Nunca se ha observado directamente un agujero negro. Kart Schwarzschild (1.837 – 1.916), dedujo la existencia de agujeros negros a partir de las ecuaciones de Einstein de la relatividad general de 1.915 que, al ser estudiadas en 1.916, un año después de la publicación, encontró en estas ecuaciones que existían tales objetos supermasivos.
Antes, en la explicación sobre las estrellas, queriendo dejarlo para este momento, deje de explicar lo que hace el equilibrio en la vida de una estrella. La estrella está formada por una inmensa nube de gas y polvo que a veces tiene varios años luz de diámetro. Cuando dicho gas (sus moléculas) se va juntando se produce un rozamiento que ioniza los átomos de la nube de hidrógeno que se juntan y se juntan cada vez más, formando un remolino central que gira atrayendo al gas circundante, que poco a poco va formando una inmensa bola. En el núcleo, la fricción es muy grande y las moléculas apretadas al máximo por la fuerza de gravedad, por fin produce una temperatura de varios millones de grados K que es la causante de la fusión de los protones que forman esos átomos de hidrógeno. La reacción que se produce es una reacción en cadena; comienza la fusión que durará todo el tiempo de vida de la estrella. Así nacen las estrellas cuyas vidas están supeditadas al tiempo que tarde en ser consumido su combustible nuclear, el hidrógeno que mediante la fusión es convertido en helio.
Es estas regiones comienza la historia de lo que muchos millones de años más tarde, será un agujero negro. Estrellas nuevas supermasivas, azuladas y de intensa radiación ultravioleta (como esa que vemos abajo a la derecha), un día lejano en el tiempo llegará a su final y se convertirá en supernova, eyectará las capas exteriores de su masa al espacio interestelar y, el resto de la estrella, quedando libre de la fuerza de radiación que producía la fusión nuclear, quedará a merced de la fuerza de Gravedad que, haciendo su trabajo, la comprimirá hasta extremos insispechados convirtiéndola en un Agujero Negro. Si la masa es más pequeña (2 – 3 masas solares) será una estrella de neutrones, ya que, al ser comprimido los protones y electrones allí presentes, se fusionaran para convertirse en neutrones que, al sentirse estrechamente enpaquetados, se degenerarán e impedirán que la masa de la estrella siga comprimiéndose.
Las estrellas muy grandes, conocidas como supermasivas, son devoradoras de hidrógeno y sus vidas son mucho más cortas que el de las estrellas normales. Una vez que se produce la fusión termonuclear, se ha creado el equilibrio de la estrella; veamos como. La inmensa masa que se juntado para formar la estrella genera una gran cantidad de fuerza de gravedad que tiende a comprimir la estrella bajo su propio peso. La fusión termonuclear generada en el núcleo de la estrella, hace que la estrella tienda a expandirse. En esta situación, la fusión que expande y la gravedad que contrae, como son fuerzas similares, se contrarresta la una a la otra y así la estrella continua brillando en equilibrio perfecto.
Pero, ¿qué ocurre cuando se consume todo el hidrógeno?
Pues que la fuerza de fusión deja de empujar hacia fuera y la gravedad continúa (ya sin nada que lo impida) hasta conseguir que la masa de la estrella implosiones, es decir, caiga sobre sí misma contrayendose más y más hasta llegar a tener una demnsidad enorme y un radio mucho más pequeño que el original. El resultado final dependerá de la masa inicial y conforme a ella se produce la transición de fase hacia una u otra clase de estrella.
Según sean estrellas medianas como nuestro Sol, grandes o muy grandes, lo que antes era una estrella, cuando finaliza el derrumbe o implosión, cuando la estrella es aplastada sobre sí misma por su propio peso, tendremos una estrella enana blanca, una estrella de neutrones o un agujero negro.
Como si fuera una mariposa, esta estrella enana blanca comienza su vida envolviéndose en un capullo. Sin embargo, en esta analogía, la estrella sería más bien la oruga y el capullo de gas expulsado la etapa verdaderamente llamativa y hermosa. La nebulosa planetaria NGC 2440 contiene una de las enanas blancas conocidas más calientes. La enana blanca se ve como un punto brillante cerca del centro de la fotografía. Eventualmente, nuestro Sol se convertirá en una “mariposa enana blanca”, pero no en los próximos 5 mil millones de años. Las estrellas conocidas como “enanas blancas” pueden tener diámetros de sólo una centésima del Sol. Son muy densas a pesar de su pequeño tamaño.
Hermosas Nebulosas planetarias con una enana blanca en su centro
Sí, en el Universo son muchas las cosas que existen para nuestro asombro y, no pocas veces, nuestras mentes tienen que hacer un alto en el camino, para pensar profundamente, hasta llegar a comprender lo que allí existe y como llegó a poder formarse.
Alrededor del agujero negro puede formarse un disco de acreción cuando cae materia sobre él desde una estrella cercana que, para su mal, se atreve a traspasar el horizonte de sucesos. Es tan enorme la fuerza de gravedad que genera el agujero negro que, en tal circunstancias, literalmente hablando se come a esa estrella compañera próxima. En ese proceso, el agujero negro produce energía predominantemente en longitudes de onda de rayos X a medida que la materia está siendo engullida hacia la singularidad. De hecho, estos rayos X pueden ser detectados por satélites en órbita. Se ha localizado una enorme fuente de rayos X en el centro mismo de nuestra galaxia. En realidad han sido varias las fuentes localizadas allí, a unos 30.000 años luz de nosotros. Son serios candidatos a agujeros negros, siendo el más famoso Cygnus X-1.
Esta es una de las representaciones artísticas que nos hacen de Signus X-1. Es un ejemplo clásico de una Binaria de Rayos X, un sistema binario formado por un objeto compacto, que puede ser un agujero negro o una estrella de neutrones, y la estrella supergigante azul azul HDE 226868 de magnitud aparente 8,9. Como en toda binaria de rayos X, no es el agujero negro el que emite los rayos X, sino la materia que está a punto de caer en él. Esta materia (gas de plasma) forma un disco de acreción que orbita alrededor del agujero negro y alcanza temperaturas de millones de Kelvin que, quizás un día lejano aún en el futuro, podamos aprovechar como fuente de energía inagotable.
La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros supermasivos.
Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Nefro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.
(EUROPA PRESS)
Astrónomos que utilizan una red mundial de radiotelescopios han encontrado pruebas sólidas de que un potente chorro de materia o jet impulsado a la velocidad de la luz por el agujero negro central de la galaxia está soplando grandes cantidades de gas fuera de la galaxia. Este proceso está limitando el crecimiento del agujero negro y la tasa de formación de estrellas en la galaxia, por lo que es una clave para entender cómo se desarrollan las galaxias, según estos científicos.
En los núcleos de las galaxias se han detectado las radiaciones que son propias de la existencia allí de grandes agujeros negros que se tragan toda la materia circundante de gas y polvo e incluso de estrellas vecinas. El espacio a su alrededor se curva y el tiempo se distorsiona.
Agujeros negros en rotación. Cuando ambas rotaciones tienen lugar en el mismo sentido (imagen inferior), la “última órbita estable” coincide con el “radio … En la imagen de abajo se muestra cómo una característica de desplazamiento, llamada corona, puede crear una llamarada de rayos X alrededor de un agujero negro. La corona (característica representada en colores purpúreos) se reúne hacia adentro (izquierda), haciéndose más brillante, antes de disparar lejos del agujero negro (medio y derecho). Los astrónomos no saben por qué cambian las coronas, pero han aprendido que este proceso conduce a un brillo de la luz de rayos X que puede ser observada por los telescopios.
Existen varias formas teóricamente posibles de agujeros negros.
- Un agujero negro sin rotación ni carga eléctrica (Schwarzschild).
- Un agujero negro sin rotación con carga eléctrica (Reissner-Nordström).
En la práctica es más fácil que los agujeros negros estén rotando y que no tengan carga eléctrica, forma conocida como agujero negro de Kerr. Los agujeros negros no son totalmente negros; la teoría sugiere que pueden emitir energía en forma de radiación Hawking.
La estrella supermasiva, cuando se convierte en un agujero negro se contrae tanto que realmente desaparece de la vista, de ahí su nombre de “agujero negro”. Su enorme densidad genera una fuerza gravitatoria tan descomunal que la velocidad de escape supera a la de la luz, por tal motivo, ni la luz puede escapar de él. En la singularidad, dejan de existir el tiempo y el espacio; podríamos decir que el agujero negro está fuera, apartado de nuestro universo, pero en realidad deja sentir sus efectos ya que, como antes dije, se pueden detectar las radiaciones de rayos X que emite cuando engulle materia de cualquier objeto estelar que se le aproxime más allá del punto límite que se conoce como horizonte de sucesos.
Con la explicación anterior he querido significar que, de acuerdo con la relatividad de Einstein, cabe la posibilidad de que una masa redujera sin límite su tamaño y se autoconfinara en un espacio infinitamente pequeño y que, alrededor de esta, se forme una frontera gravitacional a la que se ha dado el nombre de horizonte de sucesos.
Puesto que el tamaño de un agujero negro depende de la energía absorbida por el mismo, cuanto mayor es la masa del agujero negro, tanto mayor es el radio de Schwarzschild, que viene dada por:
donde:
Una explicación algo más precisa sería: Siguiendo la fórmula de arriba de la imagen: M es la masa del agujero negro, G es la constante gravitacional de Newton, y c2 es la velocidad de la luz elevada al cuadrado. Así, el radio de Schwarzschil para el Sol que tiene un diámetro de 1.392.530 Km, sería de sólo tres kilómetros, mientras que el de la Tierra es de 1 cm: si un cuerpo con la masa de la Tierra se comprimiera hasta el extremo de convertirse en una singularidad, la esfera formada por su horizonte de sucesos tendría el modesto tamaño de una bolita o canica de niños. Por otro lado, para una estrella de unas 10 masas solares el radio de Schwarzschild es de unos 30 kilómetros. Que para nuestro Sol, como he dicho antes, se quedaría en sólo tres kilómetros, tal es su grado de encogimiento sobre sí mismo.
Por otra parte, los acontecimientos que ocurren fuera del horizonte de sucesos en un agujero negro, tienen un comportamiento como cualquier otro objeto cósmico de acuerdo a la masa que presente. Por ejemplo, si nuestro Sol se transformara en un agujero negro, la Tierra seguiría con los mismos patrones orbitales que antes de dicha conversión del Sol en agujero negro.
Ahora bien, y en función de la fórmula anteriormente descrita, el horizonte de sucesos se incrementa en la medida que crece la masa del agujero a medida que atrae masa hacia él y se la traga introduciéndola en la singularidad. Las evidencias observacionales nos invitan a pensar que en muchos centros de galaxias se han formado ya inmensos agujeros negros supermasivos que han acumulado tanta masa (absorciones de materia interestelar y estrellas) que su tamaño másico estaría bordeando el millón de masas solares, pero su radio de Schwarzschil no supera ni las 20 UA (unidad astronómica = 150 millones de Km), mucho menor que nuestro sistema solar.
La singularidad es el pico de abajo que llega a desaparecer de la vista, la densidad adquirida por la materia es tan inmensamente grande que, parece como si hubiera entrado en otro mundo. Sin embargo, su infinita fuerza de gravedad se deja sentir y atrae a todos aquellos objetos que, en las cercanias de sus dominios, osen traspasar el horixonte de sucesos, es decir, la línea de irás y no volverás.
Comprender lo que es una singularidad puede resultar muy difícil para una persona alejada de la ciencia en sí.
Es un asunto bastante complejo el de la singularidad en sí misma, y para los lectores más alejados de los quehaceres de la física, será casi imposible aceptarla. En el pasado, no fue fácil su aceptación, a pesar de las conclusiones radicales que expuso Kart Schwarzschild en su trabajo inspirado en la teoría y ecuaciones de Einstein. De hecho, hasta el mismo Einstein dudó de la existencia de tales monstruos cosmológicos. Incluso durante largo tiempo, la comunidad científica lo consideró como una curiosidad teórica. Tuvieron que transcurrir 50 años de conocimientos experimentales y observaciones astronómicas para empezar a creer, sin ningún atisbo de duda, que los agujeros negros existían realmente.
Sí, es posible que una vez que hayamos representado la singularidad mediante las matemáticas de la relatividad general, la única otra manera de hacerlo sea en el interior de nuestras mentes, imaginando lo que puede ser. Claro que, también la imagen pueda estar refiriéndose a que, nuestras mentes también son singularidades de la materia que han llegado a ser conscientes.
El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión. La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir. Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.
La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.
Un largo recorrido de estrella masiva a Agujero Negro
Estrellas de Neutrones que, con sus campos magnéticos influyen en todo el espacio circundante y, sus pulsos luminosos cuando se dejan ver como púlsares, son como los faros del cielo que avisan a seres de mundos lejanos, que maravillas como esa están ahí.
Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.
Oppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.
Alrededor de un agujero negro, y, en objetos cercanos a él, se pueden ver efectos extraordinarios que finalizan con su desaparición dentro del Agujero Negro que, los engulle y cada vez se hace más y más poderoso. Algunos son verdaderos monstruos del Universo y llegan a poseer miles de millones de masas solares. ¿Os imaginais dar un paseo por sus cercanias?
Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Malher (que los bautizó como agujeros negros), Roger Reyrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros, las cuestiones que de ellas se derivan y otras consecuencias de densidad, energía, gravedad, ondas gravitacionales, etc, que son deducidas a partir de estos fenómenos del cosmos.
Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca la singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:
- debe ser una superficie nula donde es pareja, generada por geodésicas nulas;
- contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
- el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.
Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espaciotiempo como el espaciotiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de Einstein y, como un tema que se relaciona con la entropía en los agujeros negros.
Las grandes masas determinan la geometría del Espacio-Tiempo
El espacio se distorsiona en presencia de grandes masas. ¿Qué transformaciones no sufrirá en presencia de un Agujero Negro?
No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.
Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de una singularidad como un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque esta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape
Para el caso de fotones u objeto sin masa, tales como neutrinos, se sustituye la velocidad de escape por la de la luz c2. Para otros objetos mayores como naves espaciales, hay que cumplir los requisitos exigidos por la Ley de la Gravedad que habrá que vencer para escapar del objeto o planeta del que queramos salir.
La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. El objeto que escapa puede ser cualquier cosa, desde una molécula de gas a una nave espacial. Como antes he reflejado está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo del que pretende escapar (del núcleo). Un objeto que se mueva a velocidad menor a la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica.
Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:
Objeto | Velocidad de escape |
La Tierra | ………….11,18 Km/s |
El Sol | ………….617,3 Km/s |
Júpiter | ……………59,6 Km/s |
Saturno……………35,6 Km/sVenus………….10,36 Km/sAgujero negro….+ de 299.000 Km/s
Ponernos a comentar sobre objetos y fenómenos que en el Universo están presentes, puede llegar a sar fascinante. A medida que nos sumergimos en las complejidades de las cosas, los procesos mediante los cuáles cambian para convertirse en otras diferentes de las que en un principio eran, los ritmos y energías, las fuerzas fundamentales que actúan sobre ellos…Es una maravilla.
emilio silvera
Nov
24
¿Estamos en peligro? No creo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Identificado el «coloso espacial» que está atrayendo a nuestra galaxia
Astrónomos creen saber qué puede tener la fuerza suficiente para mover 50 galaxias a la vez
La Vía Láctea – Archivo
Reportaje de ABC-Ciencia
La Vía Láctea, junto con el resto de los miembros que forman el grupo local de galaxias en que vivimos, está en continuo movimiento. De hecho, todo el grupo (unas 50 galaxias diferentes) parece estar siendo atraído hacia una misma dirección, arrastrado probablemente por la enorme gravedad de algún objeto enorme y desconocido. ¿Pero qué puede tener la fuerza suficiente para mover 50 galaxias a la vez? La respuesta ha sido, durante décadas, un misterio para los científicos.
Ahora, un equipo internacional de astrónomos cree haber descubierto, por fin, al culpable: un “supercúmulo” de galaxias, formado por varios cientos de miembros, que resulta estar bastante cerca de nosotros pero que había permanecido oculto a la vista por culpa de las nubes de gas, polvo y estrellas de nuestra propia galaxia. Si comparamos la Vía Láctea con un edificio, sería como intentar ver desde dentro y a través de las paredes los edificios vecinos.
Anteriores estudios sobre el movimiento del grupo local de galaxias ya predecían que debía de haber “algo” oculto detrás de la Vía Láctea. Otras investigaciones galácticas en la constelación de la Vela, a través del cual cruza el plano de nuestra galaxia, también sugerían que en esa zona había una densidad de galaxias superior a lo normal.
Ahora, y gracias a la combinación del gran Telescopio Surafricano, con su espejo de 10 metros, y el Telescopio Anglo Australiano, de 3,9 metros, los astrónomos han conseguido medir el corrimiento hacia el rojo de 4.500 galaxias en Vela, a ambos lados de la banda oscura de la Vía Láctea, y han confirmado que, efectivamente, existe una “superpoblación galáctica” en esa zona, a unos 800 millones de años luz de distancia. Los resultados de la investigación se acaban de publicar en Montly Notices of the Royal Astronomical Society.
Lo cual significa que en nuestro vecindario cósmico existe una segunda estructura gigante, algo más lejos del super cúmulo de Shapley, que ya se conocía, y del que se pensaba que era el único “coloso” que había en los alrededores. Recién bautizado como el supercúmulo de Vega, ese conjunto de galaxias está atrayendo hacia sí a todo nuestro grupo local, que se dirige hacia él a la nada desdeñable velocidad de 50 km. por segundo. Muy rápido a escala humana, pero muy lento en términos galácticos. Si la velocidad no varía, en efecto, llegaremos allí dentro de unos cinco billones de años.
Nov
18
Nuevos descubrimientos
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
El 15 de julio de 2015 la sonda New Horizons hizo historia al sobrevolar Plutón más cerca que nunca. Sus imágenes mostraron por primera la superficie de este planeta enano en las afueras del Sistema Solar, cubierta de volcanes de hielo y con una gran región con forma de corazón. Ahora, dos estudios han analizado el lóbulo izquierdo de esa zona y apuntan a que bajo ella hay un gran océano de agua líquida.
Hace miles de millones de años Plutón chocó contra un cometa de unos 200 kilómetros, 20 veces mayor que el asteroide que acabó con los dinosaurios. El impacto formó un enorme cráter que se fue llenando de hielo. Su acumulación, sumada al efecto gravitatorio de Caronte, la mayor luna de Plutón, acabó desplazando todo el planeta sobre su eje de rotación.
La depresión creada por la colisión, conocida como Sputnik Planitia, “estaba a unos 1.200 kilómetros de su situación actual”, explica James Keane, astrónomo de la Universidad de Arizona y coautor de un estudio publicado hoy en Nature que detalla este fenómeno. La cuenca se fue llenando de hielo de nitrógeno, metano y dióxido de carbono durante millones de años hasta que acabó reorientando a Plutón respecto a su luna, con la que está ancaldo y siempre se muestran la misma cara.
En el núcleo rocoso del planeta hay suficiente radioactividad como para derretir una capa de hielo de unos 100 kilómetros de grosor
La gran pregunta es de dónde puede salir tanto hielo como para mover un planeta entero, aunque sea enano. “La forma más obvia” es que “hubiera una gran masa de agua bajo el hielo de Sputnik Planitia”, explica Francis Nimmo, de la Universidad de California en Santa Cruz. “En el núcleo rocoso del planeta hay suficiente radioactividad como para derretir una capa de hielo de unos 100 kilómetros de grosor”, resalta. Tras el impacto, el agua fluyó al exterior llenando parte del cráter y desplazando todo el planeta, argumenta el equipo de Nimmo en un segundo estudio en Nature.
El océano de Plutón “está compuesto sobre todo por agua, pero probablemente también contiene amoniaco, que actúa como anticongelante”, por lo que “probablemente” sigue existiendo en la actualidad, señala Nimmo. “Tendría un volumen casi equivalente al de los océanos de la Tierra” y es “potencialmente habitable”, asegura.
Sarcófago de hielo
Es posible que haya vida en ese océano, pero no será fácil demostrarlo. La masa de agua estaría bajo un sarcófago de hielo de unos 150 kilómetros de grosor, mucho más que en las lunas Europa y Encélado, también con océanos habitables, o en los hielos del Ártico y la Antártida. “Si enviásemos una misión orbital, lo que puede llevar bastante tiempo, podríamos confirmar la existencia del océano buscando excesos de masa en Sputnik Planitia o con un radar que traspase la corteza de hielo”, explica.
El equipo de Keane ha basado su estudio en los grandes cañones de hielo que se observan en Plutón. Coincide en que “una de las formas más fáciles” de crear esas enormes grietas es por el empuje del océano que hay debajo al congelarse y aumentar de volumen, aunque podría haber otras explicaciones. En septiembre, otro equipo de astrónomos sugirió la existencia de este océano basándose en los accidentes geográficos fotografiados por New Horizons y un modelo térmico del interior del planeta.
La sonda de la NASA ha dejado atrás Plutón y se adentra ahora en el cinturón de Kuiper, compuesto por una miríada de pequeños mundos helados. “Probablemente otros objetos de tamaño similar a Plutón en el cinturón de Kuiper tengan estos océanos subterráneos”, señala Nimmo. Se espera que New Horizons.
Fuente: El País