Astronomía: Reportaje en El Español
IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
Descubren extrañas partículas que parecen emanadas desde el Centro Galáctico están bombardeando la Tierra. Desde el Departamento de Física de la Universidad de California se confirma que poderosos rayos Gamma están llegando a nuestro planeta desde el mismo centro de la Galaxia.
Existen argumentos más que fundados para creer que, en el Centro de nuestra Galaxia, la Vía Láctea, habita un enorme Agujero Negro que según las observaciones y medidicones efectuadas, puede tener 4 millones de veces la masa del Sol. Así lo avalan los 16 años de investigación y estudio de 28 estrellas allí situadas y, sobre todo, el comportamiento de la estrella designada con el nombre S2 de cuyo comportamiento al orbitar el Centro Galáctico, se han deducido estos números increibles. Se utilizaron telescopios y cámaras muy sofisticadas que hicieron el siguimiento de S2, y, cuando estaba a 1 dia-luz del Centro, pudieron comprobar de manera muy convincente los resultados de los efectos Gravitatorios que se produjeron en las cercanias de influencia del Agujero Negro Supermasivo que, aunque invisible para nuestros aparatos, no lo es en cuanto a la Gravedad que genera se refiere.
Es un verdadero triunfo técnico el poder conseguir, desde una distancia de 27 000 a.l., el poder hacer comprobaciones como esta que nos dan las respuestas esperadas de ese lugar que hasta hace relativamente muy poco tiempo nos era totalmente misterioso.
Credit: ESO , Stefan Gillessen ( MPE ) En el Centro de la Galaxia
La Imagen nos muestra la acumulación de estrellas que existe en un radio de tres años-luz del centro de la Vía Láctea. Estamos contemplando una región altamente activa y donde están presentes enormes energías y ocurren sucesos que por nuestras latitudes no podemos contemplar como, por ejemplo, fuertes emisiones de rayos X y Gamma como consecuencia del material que cae dentro del Agujero Negro y se produce la radiación Hawking.
En algunos lugares he podido leer que algo grande está pasando en aquel lugar, algo que los Astrónomos no alcanzan (aún) a explicar. El Fermi, el Telescopio Espacial de Rayos Gamma de la NASA que, pudo descubrir allí dos gigantes burbujas de energía en erupción con la fuente en el mismo Centro de la Galaxia. ¿Qué fuerzas se están generando allí? ¿Que vientos estelares no se producirán para que surjan esas burbujas?
El origen de las burbujas es, de momento misterrioso, y el Jefe del equipo que estudia el fenómeno ha declarado que las burbujas se extienden a 25.000 años-luz hacia arriba y abajo de cada lado de la Galaxia y contiene energías equivalentes a 100.000 explosiones de supernovas.
Los efectos que pueden provocar las supernovas, no se limitan a su entorno cercano y, a muchos liles de millones de kilómetros del lugar de la explosión, se pueden llegar a sentir y sufrir sus efectos devastadores.
Se piensa que dichas burbujas energéticas han podido surgir como consecuencia de una ola de nacimientos de estrellas jovenes y masivas de intensa radiación ultravioleta. Otra opción que barajan los expertos es que pueden tener su origen en un erupto gigantesco del Agujero Negro super masivo ubicado en el mismo Centro Galáctico.
Está claro, como declaró algún miembro del equipo que estudio el acontecimiento que, el Universo, “nos tiene reservadas muchas sorpresas” que no podemos ni imaginar.
Como siempre suele ocurrir en estos casos, cuando no tenemos la certeza de dar una explicación coherente, algunos acuden a la “materia oscura” para tratar de explicar lo que, de momento, no tiene explicación. Nuestra Galaxia, la Vía Láctea, ha dado lugar a escritos que podrían llenar una gran Biblioteca y, desde los tiempos más remotos, sabios que gustaban de la contemplación de los cielos, dejaron sus impresiones escritas de una u otra manera. Mirando por ahí encuentro el párrafo siguiente:
“La Vía Láctea ha fascinado a muchos más. Se han tejido mitos y leyendas a su alrededor. Los antiguos la conocieron por muchos nombres. Anaxágoras y Aratos ( 500 a. de C. ) le llamaban To Gala : La Rueda Brillante ¿Rueda? ¿De dónde? A mí me pareció una sola franja. Resulta que esa franja continuaba por debajo de mis pies (del otro lado de la Tierra) hasta cerrarse. Esa parte invisible para mí esa noche aparecería en las madrugadas de otoño. ¡Vaya que los primeros astrónomos eran buenos observadores! Y también tenían imaginación, una imaginación a veces predictiva: Demócrito, el padre del átomo, sugirió que La Vía Láctea estaba formada por una multitud de estrellas … ¡En el año 430 a. de C.! Eratóstenes, quien midió la circunferencia de la Tierra la llamó “El círculo de la Galaxia” ó “ Círculo Galáctico “ ¡Wow! ¡Que avanzados! ¿Cómo sabían que la Vía Láctea era una Galaxia? No lo sabían. Su interpretación del término “Galaxia” era distinto a la actual. Galaxia sólo había una y se refería a la lechosa luz que cruzaba el cielo nocturno ( Nótese la similitud entre los términos Lácteo y Galaxia ) Hoy, cuando escuchamos la palabra “Galaxia” nos imaginamos un gran remolino de estrellas, nubes y polvo, con un centro brillante. En aquel entonces “Galaxia” no era otra cosa que el nombre propio de nuestra Vía Láctea. En al año 175 a. de C. Hiparco la llamó simplemente “La Galaxia”. Aún hoy, cuando vemos la palabra Galaxia -con mayúscula- sabemos que se refiere a la nuestra.”
En la Otros veían la Galaxia como un gran río. Le llamaban “El Río del Cielo”. Los árabes la conocían simplemente como “El Río”, los hebreos “El Río de Luz” Job la llamaba “La Serpiente Tortuosa”. Los chinos y japoneses veían también un río. Los chinos la llamaban le llamaron “Tien Ho” es decir “El Río Celestial o Plateado”, y tenían una creencia muy singular (A mí me parece simpática). Ellos decían que cuando los peces del río (las estrellas) veían aproximarse el anzuelo (una delgada Luna creciente) se ocultaban Los armenios y los sirios le llamaban “El gran Vendaje”. Los romanos (Plinio), al estilo de Erastótenes, le llamaban el “Círculo Lácteo” además de “El Cinturón Celestial” “Vía Celeste Regia” y Vía Láctea”,
Y la leche de Juno formó la Vía Láctea
¿De dónde salió tanta leche? Los indios norteamericanos y algunos pueblos de Noruega decían que la Vía Láctea era “El camino de los Fantasmas” por donde ascendían los espíritus de héroes y guerreros. Los espíritus se detenían a descansar de vez en Los esquimales y algunos pueblos africanos veían en ella “El camino de las cenizas” que se elevaba sobre una gran pira.
En México nuestros abuelos o en los pueblitos la conocen
Muchas son las Rutas que nos pueden llevar a Santiago, allí los peregrinos ven algo que les llena de paz. Todos los que han ido dicen que la experiencia es única y, así, llegan de todas partes del mundo. Pero vamos a lo que nos traemos Lo cierto es que, “En 1961 el radioastrónomo Frank Drake, presidente del SETI (Instituto
Bueno, la Galaxia es grande, el Universo mucho más, y, si en nuestra pequeña Tierra está presente la vida Inteligente, ¿qué
Frank Drake
Él nos dejó su fórmula que es la siguiente: N = R * fp * ne * fl * fi * fc * L
Donde
En Astronomía todavía se trabaja mucho por aproximación, y se dice, por ejemplo: “… está situada Por ejemplo, sabemos más o Pero la mayoría de los demás Suponer que conocemos las reglas y las probabilidades de un hecho que solo ha podido ser observado una única vez es algo pretencioso y con toda seguridad equivocado. El método científico exige que podamos observar un fenómeno numerosas veces y en distintas
Imágenes de protoestrellas, es decir, estrellas en formación
Cuando se forma una estrella deja a su alrededor unas nubes de polvo y gas que luego formarán los planetas al azar. Es como una No obstante podemos abordar este problema Bueno, una cosa está más que clara, la vida en cualquier planeta que orbita una estrella, sea o no parecida al Sol, tendrá que contar con ciertos requisitos que, iguales o parecidos a los que se dan aquí en la Tierra, posibiliten la presencia de seres vivos y,
“Pero ya que estamos hablando de enigmáticos objetos galácticos con emisiones gamma, el telescopio espacial de rayos gamma INTEGRAL de la ESA, descubrió en el 2003 lo que parece ser una nueva clase de objeto astronómico. Se trata de un grueso capullo de frío gas que aloja en su interior a un sistema binario que, probablemente, incluya a u agujero negro o a una estrella de neutrones. Hasta
Etiqueta IGRJ16318-4848
El INTEGRAL detectó al extraño objeto, el 29 de enero de 2003, y se le denominó como IGRJ16318-4848. Aunque los astrónomos no sabían su distancia, estaban seguros que se hallaba en nuestra galaxia. También, y después de estudiar y analizar las evidencias que había recogido el satélite, los investigadores concluyeron que el neutrones o un agujero negro
, acompañado orbitalmente por una muy masiva estrellaNuestro Centro Galáctico, ¡ese lugar misterioso!
Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Negro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz Y, a todo esto, yo me pregunto: Si esas emisiones de rayos Gamma que llegan a la Tierra provienen del Centro de la Galaxia, habrá que deducir que, salieron de allí hace emilio silvera
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
Demuestran el origen cosmológico de las señales FRB
Una de las señales de radio cósmicas que han desconcertado a los astrónomos desde su detección hace 10 años ha sido finalmente ligada a una fuente: una vieja galaxia enana a 3.000 millones de años luz.
Las ráfagas rápidas de radio (FRB), que parpadean sólo unos pocos milisegundos, crearon un revuelo entre los astrónomos porque parecían venir de fuera de nuestra galaxia, lo que significa que tendrían que ser muy poderosas para ser vistas desde la Tierra y porque ninguna de las primeros en ser observadas fueron vistas nuevamente.
Una explosión repetitiva fue descubierta en 2012, sin embargo, brindando la oportunidad a un equipo de investigadores de monitorear repetidamente su área del cielo con el telescopio Karl Jansky Very Large Array (VLA) en Nuevo México y el de Arecibo en Puerto Rico, con la esperanza de identificar su ubicación.
Gracias al desarrollo de datos de alta velocidad y software de análisis de datos en tiempo real por un astrónomo de la Universidad de California, Berkeley, el año pasado VLA detectó un total de nueve ráfagas durante un período de un mes, suficiente para localizarlo dentro de un décimo de un arcosegundo. Posteriormente, las matrices de interferómetro de radio europeas y americanas más grandes lo localizaron a un centésimo de un arcosegundo, dentro de una región de aproximadamente 100 años luz de diámetro.
Imágenes profundas de esa región tomadas con el Telescopio Gemini Norte en Hawai revelaron una galaxia enana ópticamente débil que el VLA posteriormente descubrió también que emite continuamente ondas de radio de bajo nivel, típico de una galaxia con un núcleo activo quizás indicativo de un agujero negro central supermasivo. La galaxia tiene una baja abundancia de elementos distintos del hidrógeno y el helio, sugestivos de una galaxia que se formó durante la edad media del universo.
El origen de una explosión de radio rápida en este tipo de galaxias enanas sugiere una conexión a otros eventos energéticos que se producen en galaxias enanas similares, dijo el coautor y astrónomo de la UC Berkeley, Casey Law, quien dirigió el desarrollo del sistema de adquisición de datos y creó el Software de análisis para buscar FRB’s únicas.
En este tipo de galaxias también se producen estrellas explosivas extremadamente brillantes, llamadas supernovas superluminosas, y rayos gamma largos, y ambos están hipotéticamente asociados con estrellas de neutrones masivas, altamente magnéticas y de rotación rápida llamadas magnetares. Las estrellas de neutrones son objetos densos y compactos creados en explosiones de supernova, vistos principalmente como pulsares, porque emiten pulsos de radio periódicos mientras giran.
“Todos estos hilos apuntan a la idea de que en este ambiente, algo genera estos magnetares”, dijo en un comunicado Law. “Podría ser creado por una supernova superluminosa o una explosión de rayos gamma larga, y luego más tarde, a medida que evoluciona y su rotación se ralentiza un poco, produce estos ráfagas de radio rápidas, así como emisión de radio continua impulsado por ese freno en la rotación. Se parece a los magnetares que vemos en nuestra galaxia, que tienen campos magnéticos extremadamente fuertes pero giran más como los pulsares ordinarios “.
En esa interpretación, dijo, las ráfagas rápidas de radio son como los berrinches de un niño pequeño. Sin embargo, esto es sólo una teoría. Hay muchos otras, aunque los nuevos datos descartan varias explicaciones sugeridas para la fuente de estas ráfagas.
“Somos los primeros en demostrar que esto es un fenómeno cosmológico, no es algo en nuestro patio trasero, y somos los primeros en ver dónde está sucediendo esta cosa, en esta pequeña galaxia, que creo que es una sorpresa”, dijo Law. “Ahora nuestro objetivo es averiguar por qué sucede eso.”
Shami Chatterjee, de la Universidad de Cornell y otros astrónomos del equipo, presentaron sus hallazgos en la reunión de la American Astronomical Society en Grapevine, Texas, en la revista científica Nature, y en dos artículos complementarios que aparecerán en Astrophysical Journal Letters.
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
La supervivencia del universo depende de las reservas de gas. Los astrónomos han podido descubrir el mecanismo que está acabando con ellas.
Nuestro universo se apaga. Por supuesto, su sombrío y gélido final no llegará hasta dentro de muchos miles de millones de años, sin embargo el camino hacia la oscuridad ya está en marcha y se puede constatar en la luz, cada vez más roja y antigua, que nos llega de las galaxias.
“Las galaxias son sistemas que van reciclando gas”, explica Miguel Santander, investigador en el Grupo de Astrofísica molecular del ICMM, “ese gas se acumula, se va condensando y finalmente forma estrellas. Pasa el tiempo y cuando esos soles mueren, devuelven gran parte del gas al medio, que una vez más se utiliza para formar nuevas estrellas, y así sucesivamente… mientras haya reservas de gas, las galaxias seguirán formando estrellas pero cuando se agoten esas reservas de gas, dejarán de formar estrellas y entonces podemos decir que son galaxias muertas”
Entonces, ¿se puede decir que las galaxias también mueren?
“No es un término científico, pero sí. Los astrofísicos decimos coloquialmente que una galaxia ha muerto cuando ha perdido la capacidad de formar nuevas estrellas”, aclara el investigador. “La galaxia pasa entonces a tener colores más apagados, al no surgir nuevos repuestos, las estrellas que tiene cada vez serán más viejas y su luz irá pasando del azul, al amarillo, al rojo… galaxias dominadas por antiguas estrellas rojas, que paulatinamente se irán apagando y que ya no serán reemplazadas por otras más jóvenes”.
Los astrofísicos saben desde hace años que la formación estelar en el universo primitivo, (hace 10.000 millones de años o más), era mucho mayor que hoy en día. Las galaxias que vemos cercanas, que son más jóvenes y actuales, presentan mucha menos formación estelar que las galaxias lejanas. Esto nos lleva a la triste conclusión de que el universo se está apagando progresivamente y hasta ahora no sabíamos exactamente por qué las galaxias actuales tenían menos capacidad para generar nuevas estrellas.
“Conocemos varios mecanismos que impiden formar nuevas estrellas”, explica Miguel Santander. “Por ejemplo, un gas cuanto más frío está, más se condensa. Así, una posibilidad para impedir que una galaxia forme nuevas estrellas sería calentar el gas… Lo calientas, aumenta la presión y entonces se opone a la acción de la gravedad que hace que ese gas se condense y forme nuevas estrellas”. Sin embargo, en un universo cada vez más frío esta posibilidad no parece una buena pista.
También existen colisiones de galaxias en las que una de ellas se queda con el gas de la otra. Aquí tenemos otro posible fenómeno que puede apagar una galaxia. Pero tampoco parece ser el caso que nos ocupa puesto que nuestras galaxias víctimas no presentan “signos de colisión”.
Así pues, si planteamos el asunto como un caso de detectives, debemos concluir que ha de existir algún otro mecanismo que esté robando el gas frío de las galaxias, impidiendo que formen nuevas estrellas, y haciendo por tanto que, tarde o temprano, terminen como galaxias muertas.
La imagen superior corresponde a una de las víctimas. Se trata de la galaxia ESO 137-001 y se está desplazando hacia el centro de un gigantesco cúmulo galáctico conocido como Norma Cluster o Abell 3627.
En su viaje interestelar hacia el centro del cúmulo está pasando de un medio con pocas partículas a otro medio mucho más denso. Esa diferencia de densidad hace que las partículas más ligeras, como el gas frío, se escapen de la galaxia y formen largas colas, igual que lo haría un cometa.
“Se les conoce como galaxias medusa (Jellyfish galaxies) y para ver más claramente a qué nos referimos, en la imagen se ha coloreado artificialmente de azul el gas que van perdiendo en su viaje hacia el centro del cúmulo”. Casi podríamos decir que la galaxia se desangra lenta y sigilosamente, dejando atrás el gas frío que necesita para formar estrellas.
Bajo el sugerente título de Galaxy murder mistery investigadores del International Centre for Radio Astronomy Research (ICRAR) en Australia han publicado esta semana una posible solución al enigma que está apagando estas galaxias. Y precisamente en Australia se encuentra el investigador español, Ángel R. López-Sánchez, astrofísico multifrecuencia en el Australian Astronomical Observatory y la Universidad de Macquarie (Sídney), quien finalmente nos desvela el misterio: “El gran sospechoso es un mecanismo conocido como Ram-pressure stripping... que traducido sería algo así como expulsión de gas por la presión de arrastre”.
Cada galaxia se mueve por el espacio y se siente atraída gravitatoriamente por los objetos masivos que encuentra a su paso, tales como grandes cúmulos u otras galaxias. Cuando esa galaxia, que originariamente se estaba moviendo en un medio que casi era vacío, se aproxima a estos cúmulos muy masivos, empieza a desplazarse en un medio que es más denso.
“Es entonces, cuando la galaxia se adentra en un medio más denso, pierde sus componentes más livianos, en este caso el gas frío, mediante este mecanismo de Ram-pressure stripping, y al decir adiós a esas reservas de gas, pierde también la capacidad de formar nuevas estrellas”, señala López-Sánchez.
“Este fenómeno de Ram-pressure stripping se había comprobado en numerosos cúmulos de galaxias”, indica el astrofísico, “teníamos constancia de que ocurría en estas gigantescas agrupaciones en donde las galaxias que estaban más próximas al centro suelen tener mucho menos gas que las galaxias que están en las regiones más exteriores. Al desplazarse dentro del cúmulo, las galaxias que se adentran en un medio más denso ven como el gas frío se queda atrás”.
Hasta ahora sabíamos que este mecanismo afectaba a galaxias que se desplazaban en grandes cúmulos con más de 100 galaxias, en los que además existen grandes cantidades de materia oscura que también influían gravitatoriamente en su desplazamiento.
Sin embargo, el artículo publicado por los investigadores de ICRAR amplía el modus operandi de nuestro asesino, no solo a grandes cúmulos galácticos sino también a pequeñas galaxias fuera de esas regiones. El estudio ha utilizado métodos estadísticos con miles de galaxias y han encontrado que la pérdida de gas frío es mayoritaria.
El estudio ha utilizado datos en óptico del cartografiado SLOAN (que tiene datos de millones de galaxias) y con el que han analizado el color y magnitud de las galaxias. En paralelo, y es lo que tiene un valor extra, han usado también datos en radio del cartografiado ALFALFA, realizado por el gran telescopio de Arecibo. “Con estos dos tipos de datos (óptico y radio) han analizado más de 10.000 galaxias diferentes y han podido correlacionar estadísticamente dónde se encuentra la galaxia, qué ritmo de formación estelar tiene, qué color tiene (lo que además nos indica la edad de la galaxia) y qué cantidad de gas posee” aclara López-Sánchez. “De esta manera a cada galaxia de SLOAN le dan un valor de hidrógeno (el gas frío más común para formar estrellas) extraído del cartografiado ALFALFA”.
¿Qué han encontrado? La solución es que un alto porcentaje de las galaxias analizadas están perdiendo gas. Son galaxias que aún están formando estrellas, sí, pero que apenas tienen gas frío para continuar renovándose. El mecanismo de Ram-pressure stripping las está “asfixiando“, haciendo que el combustible necesario para renovar sus estrellas se escape fuera de ellas y consiguiendo que, lenta y sigilosamente, se conviertan en galaxias muertas.
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos de las cosas y se convierten en otra distinta, es un proceso irreversible.
En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.
Cuando están a punto de ser estrellas verdaderas, pero aún no lo son, se llaman estrellas T Tauri. Son un tipo de estrellas variables irregulares nombradas a partir del objeto prototípico del grupo, la estrella T Tauri. Son estrellas jóvenes que aún no han entrado en la Secuencia Principal (estrellas pre-secuencia principal). Se encuentran cerca de nubes moleculares y se identifican por su variabilidad estelar y la presencia de líneas intensas en su cromosfera.
Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.
Tanto la descripción del espacio-tiempo como de la materia que hacen las teorías científicas, no pueden describir la singularidad.
Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.
La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s.
Salir de la Gravedad terrestre requiere gran energía
Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.
La luz se esparce isotrópicamente cuando es eyectada por los astros.
La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.793’458 km/s.
Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.
Las singularidades ocurren en el Big Bang, en los agujeros negros y en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin que será el nuevo comienzo).
Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.
La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Wehleer.
Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.
En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.
Después de todo, la velocidad de la luz, la máxima del universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre.
En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?
Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros.
Llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad.
Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.
Al final del camino toda la materia del Universo irá a parar a un enorme agujero negro que será lo único que quedará de todo este inmenso Cosmos. El Tiempo pasa, las estrellas mueren, cada vez son más agujeros negros los que ocupan las galaxias, la fuerza de gravedad que generan irán enguyendo la materia, todos se fusionaran en un sólo agujero negro enorme y de descomunal fuerza… La imaginación es libre ¿quién la puede parar?
Esa reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch.
Antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol.
Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.
Carl Sagan pinta el cuadro siguiente:
El Sol engullirá Mercurio y Venus y, la Tierra…
“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”
En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.
Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“.
Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil. Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque para más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.
Por todas estas catástrofes anunciadas por la ciencia, científicos como Kip S. Thorne y Stephen Hawking sugieren viajar a otros universos paralelos a través de agujeros de gusano en el hiperespacio. Sería la única puerta de salida para que la Humanidad no se destruyera.
Si al final conseguimos abrir ese camino, será lejos en el futuro
Si lo alcanzaremos o no, es imposible de contestar, no tenemos los datos necesarios para ello. Incluso se podría decir que aparte de estas catástrofes futuras que sabemos a ciencia cierta que ocurrirán, seguramente existan otras que están ahí latentes en la incertidumbre de si finalmente ocurren o no, sólo pendiente de decidir lo uno o lo otro por parámetros ocultos que no sabemos ni que puedan existir.
En esta situación de impotencia, de incapacidad física e intelectual, nos tenemos que dar cuenta y admitir que, verdaderamente, comparados con el universo y las fuerzas que lo rigen, somos insignificantes, menos que una mota de polvo flotando en el haz de luz que entra, imparable, por la ventana entre-abierta de la habitación.
Descomposición molecular aquí y reconstrucción allí ¿Qué forma de viajar! Claro que, todo lo que podamos imaginar, algún día, será realidad.
Sin embargo, tampoco es así. Que se sepa, no existe ningún otro grupo inteligente que esté capacitado para tratar de todas estas cuestiones. Que la especie humana sea consciente de dónde vino y hacia dónde va, en verdad tiene bastante mérito, y más, si consideramos que nuestro origen está a partir de materia inerte evolucionada y compleja que, un día, hace probablemente miles de millones de años, se fraguó en estrellas muy lejanas.
“En el año 1919, leyó un trabajo que lo conmocionó y que fue escrito por el matemático Kaluza. Sugería agregar una dimensión extra a las 4 existentes y reformuló la TGR en 5 dimensiones, logrando en pocas líneas hacer aparecer las ecuaciones de Einstein junto a las de Maxwell! En palabras simples, las ecuaciones de Maxwell se podían deducir como ondas viajando en la quinta dimensión. Otra forma de verlo era que si se extendía la TGR a 5 dimensiones, la teoría de Maxwell estaba escondida detrás de la teoría de Einstein.” (Publicado el abril 17, 2011 por Guillote).
Suzuki Veneziano
Ya he comentado que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y Suzuki, y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”. Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto como las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría“.
Sin que nadie las llame, cuando los físicos de cuerdas trabajan con las ecuaciones de campo de esa teoría, sin que nadie las llame, allí aparecen, las ecuaciones de campo de Einsten de su relatividad general que, subyacen dentro de la teoría de cuerdas… ¿Por qué será?
La característica más notable de la teoría de cuerdas (como ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.
Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas“.
No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de forma diferente.
Las vibraciones en el sentido de las agujas de reloj viven en un espacio de diez dimensiones. Las vibraciones de sentido contrario viven en un espacio de veintiséis dimensiones, de las que dieciséis han sido compactificadas (recordemos que en la teoría pentadimensional Kaluza-Klein, la quinta dimensión se compactificaba curvándose en un circulo). La cuerda heterótica debe su nombre al hecho de que las vibraciones en el sentido de las agujas de reloj y en el sentido contrario viven en dos dimensiones diferentes pero se combinan para producir una sola teoría de supercuerdas. Esta es la razón de que se denomine según la palabra griega heterosis, que significa “vigor híbrido”.
En conclusión, las simetrías que vemos a nuestro alrededor, desde el arcoiris a las flores y a los cristales (en el copo de nieve -última imagen- Cuando el agua se congela las fuerzas de interacción entre moléculas de H2O ganan a las fuerzas derivadas del movimiento térmico y forman un conjunto rígido que presenta su estado más estable), pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia.
La teoría de cuerdas, a partir del descubrimiento Veneziano-Suzuki, estaba evolucionando hacia atrás buscando las huellas de Faraday, Riemann, Maxwell y Einstein para poder construir una teoría de campos de cuerdas. De hecho, toda la física de partículas estaba basada en teoría de campos. La única teoría no basada en teoría de campos era la teoría de cuerdas.
De la teoría de cuerdas combinada con la supersimetría dio lugar a la teoría de supercuerdas. La cuerda es un objeto unidimensional que en esta nueva teoría se utiliza remplazando la idea de la partícula puntual de la teoría cuántica de campos. La cuerda se utiliza en la teoría de partículas elementales y en cosmología y se representa por una línea o lazo (una cuerda cerrada). Los estados de una partícula pueden ser producidos por ondas estacionarias a lo largo de esta cuerda.
En esta teoría se trata de unificar a todas las fuerzas fundamentales incorporando simetría y en la que los objetos básicos son objetos unidimensionales que tienen una escala de 10-35 metros y, como distancias muy cortas están asociadas a energías muy altas, para este caso la escala de energía requerida es del orden de 1019 GeV, que está muy por encima de la que hoy en día pueda alcanzar cualquier acelerador de partículas.
Como antes expliqué, las cuerdas asociadas con los bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquella asociadas con los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Ya se ha explicado antes que las dimensiones extras, además de las normales que podemos constatar, tres de espacio y una de tiempo, como la teoría de Kaluza-Klein, están enrolladas en una distancia de Planck. De momento, inalcanzables.
Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones (las partículas que transportan la gravedad y que aún no se han podido localizar). Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la interacción gravitacional. Se piensa que las supercuerdas, al contrario que ocurre con otras teorías (entre ellas el Modelo Estándar), están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero se está a la búsqueda de la prueba definitiva.
Aunque no hay evidencia directa de las supercuerdas, algunas características de las supercuerdas son compatibles con los hechos experimentales observados en las partículas elementales, como la posibilidad de que las partículas no respeten paridad*, lo que en efecto ocurre en las interacciones débiles.
Estoy convencido de que la teoría de supercuerdas será finalmente corroborada por los hechos y, para ello, se necesitará algún tiempo; no se puede aún comprobar ciertos parámetros teóricos que esas complejas matemáticas a las que llaman topología nos dicen que son así.
Habrá que tener siempre a mano las ecuaciones de Einstein, las funciones modulares de Ramanujan y el Supertensor métrico de ese genio matemático que, al igual que Ramanujan, fue un visionario llamado Riemann.
Las historias de estos dos personajes, en cierto modo, son muy parecidas. Tanto Riemann como Ramanujan murieron antes de cumplir los 40 años y, también en ambos casos, en condiciones difíciles. Estos personajes desarrollaron una actividad matemática sólo comparable al trabajo de toda la vida de muchos buenos matemáticos.
¿Cómo es posible que, para proteger la simetría conforme original por su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas, que precisamente son las identidades de la función modular de Ramanujan?
En este trabajo he expresado que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debo corregir algo esta afirmación, y para decirlo correctamente debería decir: las leyes de la naturaleza se simplifican cuando se expresan coherentemente en dimensiones más altas. Al añadir la palabra coherentemente hemos señalado un punto crucial. Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez de dimensiones del espacio-tiempo. Esto a su vez, puede facilitarnos la clave decisiva para explicar el origen del universo.
emilio silvera
* Paridad: Símbolo P. Propiedad de la función de ondas que determina su comportamiento cuando todas sus coordenadas espaciales son invertidas.
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (1)
Astrónomos de Estados Unidos afirman que estas emisiones de milisegundos pero de gran potencia provienen de una estrella de neutrones situada a 3.000 millones de años luz, fuera de nuestra Galaxia.
La antenas del Very Large Array (VLA), en EE UU. Cordon Press
Un equipo de astrónomos ha conseguido localizar el origen de unas potentes señales de radio que llevan años intrigando a muchos expertos. Se trata de un fenómeno conocido como estallido rápido de radio (FRB en inglés), que libera en unas fracciones de segundo tanta energía como el Sol en varios días.
Radiotelescopio Parkes, en Australia
En 2007, David Narkevic, un estudiante de física y ciencias políticas en la Universidad de Virginia Occidental (EE UU), fue el primero en descubrir una de estas señales entre los datos recogidos seis años antes por el radiotelescopio Parkes, en Australia. Desde entonces se han detectado otros estallidos similares. Todos duran apenas milisegundos, por lo que ha sido muy difícil aclarar de dónde vienen y qué los produce. Esta incertidumbre ha dado lugar a todo tipo de teorías sobre su origen, desde algunas fundadas como que se trata de cataclismos como el colapso de estrellas de neutrones o la evaporación de agujeros negros, a otras menos probables, como que sean mensajes de civilizaciones alienígenas, ya que algunas parecen seguir una lógica matemática.
“Si nuestros ojos fueran sensibles a las ondas de radio, veríamos iluminarse el cielo [por estas señales] unas dos veces por minuto”, escribe el astrónomo de la Universidad Radboud Heino Falcke hoy en Nature, que le ha dedicado su portada esta semana a este descubrimiento. La dispersión de estas señales de radio a su paso por el espacio indica que los FRB vienen de fuera de la Vía Láctea y que, antes de alcanzar la Tierra, viajan por el universo durante miles de millones de años , lo que los convierte en las señales de radio “más distantes y brillantes, del universo conocido”, resalta Falcke.
Los FRB “han sido objeto de un gran misterio” durante los últimos 10 años que parece una “historia de detectives”, reconoce Joe Lazio, científico del Laboratorio de Propulsión a Chorro de la NASA. Lazio es uno de los 25 astrónomos que acaban de escribir el último capítulo de la saga al estudiar el FRB más enigmático de todos. Se detectó por primera vez en 2012 y, al contrario que el resto de las señales conocidas, que solo se producen una sola vez, esta se ha repetido en varias ocasiones, pero sin un patrón claro. La existencia de este tipo de estallido cuestiona la teoría de que su origen esté en eventos destructivos que suceden una sola vez.
La fuente de estos estallidos está en una galaxia enana y poco brillante
El equipo de Lazio usó la red de telescopios VLA de EE UU para intentar captar de nuevo la señal descubierta en 2012. Después de detectarla recurrieron a la red de telescopios europea VLBI y una similar en EE UU para situar su origen con más precisión que ningún otro estudio anterior. Sus resultados, publicados hoy en Nature y en Astrophysical Journal Letters, muestran que la fuente de estos estallidos está en una galaxia enana y poco brillante, nada parecido a un gran cataclismo cósmico
“Gracias al espectro medido con los telescopios Gemini [instrumentos ópticos], hemos comprobado que esta galaxia” está “a unos 3.000 millones de años luz de nosotros”, resalta Shami Chatterjee, astrónomo de la Universidad Cornell (EE UU) y coautor de los estudios. “Esto supone que estos estallidos son excepcionalmente potentes, y que han atravesado el medio intergaláctico durante 3.000 millones de años”, añade.
Los investigadores aún no saben qué objeto dentro de esta galaxia está produciendo las señales. “Posiblemente se trata de un fenómeno asociado con un núcleo de galaxia activo o, más probablemente, los enormes pulsos emitidos por un magnetar, una estrella de neutrones joven con un campo magnético extraordinario”, explica Chatterjee. En cualquier caso, “es enormemente improbable que se trate de señales artificiales”, añade. Su objetivo ahora es aclarar el origen exacto de los estallidos analizados y buscar una nueva fuente de FRB repetidos que ayude a zanjar las preguntas sobre el origen de estos fenómenos.
Fuente: El Pais