viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un fino equilibrio que nos permite estar aquí

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Viento solar - Wikipedia, la enciclopedia libreViento solarEl viento solar pierde potencia, alcanza su mínimo en 50 años ...El viento solar mató a Marte" - YouTube

 

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad.  En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

 

Schiaparelli Hemisphere Enhanced.jpg

 

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar.  Poco a poco hemos llegado a apreciar cuán precaria es.  Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

 

Cinco causas de la contaminación de la Tierra | Ingredientes que Suman9 Formas inusuales que la contaminación del aire afecta tu saludEl plástico supone el 95% de los residuos del Mediterráneo ...Qué tan peligrosa es la basura espacial?Últimas noticias sobre Meteoritos | Cadena SERImpresionantes imágenes de la caída de meteorito en Argentina ...Las pandemias, entre los retos del Informe de Seguridad Nacional ...

 

Contaminamos nuestro entorno y ciudades, los océanos, incluso el Espacio exterior, y, estamos a merced de la posible caída de grandes pedruscos que podrían provocar grandes calamidades, no digamos de pandemias y otros terrores

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas.  Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

 

La extinción de los dinosaurios: las hipótesis para una incógnita ...Cómo resurgió la vida en la Tierra tras la extinción de los ...

 

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. Como se supone que pasó con aquellos grandes animales del Jurásico.

Leer más

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ANTARES - Módulo 3 - Unidad 3-04- Programa de Nuevas tecnologías - MEC -Abundancia Cósmica de los Elementos : Blog de Emilio Silvera V.

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

H, He, (Li, Be, B) C, N, O… Fe

 

Figura 1. La supernova SN 1987 después de que explotara en febrero de 1987 (izquierda) y una imagen de la misma zona dentro de la Nebulosa de la Tarántula en la Gran Nube de Magallanes antes de la explosión (derecha). Crédito: David Malin / Australian Astronomical Observatory.

La imagern de arriba, SN 1987A, es la descomunal explosión de supernova, cuando ocurrió, la potencia de miles de soles cambió, momentáneamente, la región del espacio conocida como Nube Mayor de Magallanes, a muchos años luz de la Tierra.

 

Figura 2. Esta imagen obtenida como composición de distintas placas fotográficas conseguidas a foco primario del Telescopio Anglo-Australiano (AAT) por el astrofísico David Malin (AAO) muestra la región de la Nebulosa de la Tarántula dentro de la Gran Nube de Magallanes. La parte central de este objeto se localiza en la esquina superior izquierda, mientras que la estrella que explotó como SN 1987A (que se puede identificar en la imagen de alta resolución) se encuentra en la esquina inferior derecha. Crédito: David Malin / Australian Astronomical Observatory.

 

¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente.

Leer más

En el centro de la Galaxia

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

 

 

Descubren extrañas partículas que parecen emanadas desde el Centro Galáctico están bombardeando la Tierra. Desde el Departamento de Física de la Universidad de  California se confirma que poderosos rayos Gamma están llegando  a nuestro planeta desde el mismo centro de la Galaxia.

 

Dibujo20130829 Zoom into the galactic center - supermassive black hole Sgr A emitting a broad spectrum of light from radio up to x-rays

 

Existen argumentos más que fundados para creer que, en el Centro de nuestra Galaxia, la Vía Láctea, habita un enorme Agujero Negro que según las observaciones y  mediciones efectuadas, puede tener 4 millones de veces la masa del Sol. Así lo avalan los 16 años de investigación y estudio de 28 estrellas allí situadas y, sobre todo, el comportamiento de la estrella designada con el nombre S2 de cuyo comportamiento al orbitar el Centro Galáctico, se han deducido estos números increíbles. Se utilizaron telescopios y cámaras muy sofisticadas que hicieron el seguimiento de S2, y, cuando estaba a 1 día-luz del Centro, pudieron comprobar de manera muy convincente los resultados de los efectos Gravitatorios que se produjeron en las cercanías de influencia del Agujero Negro Súpermasivo que, aunque invisible para nuestros aparatos, no lo es en cuanto a la Gravedad que genera se refiere.

Es un verdadero triunfo técnico el poder conseguir, desde una distancia de 27 000 a.l., el poder hacer comprobaciones como esta que nos dan las respuestas esperadas de ese lugar que hasta hace relativamente muy poco tiempo nos era totalmente misterioso.

 

 En el centro de la Vía Láctea

          Credit: ESO , Stefan Gillessen ( MPE ) En el Centro de la Galaxia

La Imagen nos muestra la acumulación de estrellas que existe en un radio de tres años-luz del centro de la Vía Láctea. Estamos contemplando una región altamente activa y donde están presentes enormes energías y ocurren sucesos que por nuestras latitudes no podemos contemplar como, por ejemplo,  fuertes emisiones de rayos X y Gamma como consecuencia del material que cae dentro del Agujero Negro y se produce la radiación Hawking.

En algunos lugares he podido leer que algo grande está pasando en aquel lugar, algo que los Astrónomos no alcanzan (aún) a explicar. El Fermi, el Telescopio Espacial de Rayos Gamma de la NASA que, pudo descubrir allí dos gigantes burbujas de energía en erupción con la fuente en el mismo Centro de la Galaxia. ¿Qué fuerzas se están generando allí? ¿Que vientos estelares no se producirán para que surjan esas burbujas?

El origen de las burbujas es,  de momento misterrioso, y el Jefe del equipo que estudia el fenómeno ha declarado que las burbujas se extienden a 25.000 años-luz hacia arriba y abajo de cada lado de la Galaxia y contiene energías equivalentes a 100.000 explosiones de supernovas.

 

 

 

Los efectos que pueden provocar las supernovas, no se limitan a su entorno cercano y, a muchos liles de millones de kilómetros del lugar de la explosión, se pueden llegar a sentir y sufrir sus efectos devastadores.

Se piensa que dichas burbujas energéticas han podido surgir como consecuencia de una ola de nacimientos de estrellas jovenes y masivas de intensa radiación ultravioleta. Otra opción que barajan los expertos es que pueden tener su origen en un erupto gigantesco del Agujero Negro super masivo ubicado en el mismo Centro Galáctico.

Está claro, como declaró algún miembro del equipo que estudio el acontecimiento que, el Universo, “nos tiene reservadas muchas sorpresas” que no podemos ni imaginar.

Como siempre suele ocurrir en estos casos, cuando no tenemos la certeza de dar una explicación coherente, algunos acuden a la “materia oscura” para tratar de explicar lo que, de momento, no tiene explicación. Nuestra Galaxia, la Vía Láctea, ha dado lugar a escritos que podrían llenar una gran Biblioteca y, desde los tiempos más remotos, sabios que gustaban de la contemplación de los cielos, dejaron sus impresiones escritas de una u otra manera. Mirando por ahí encuentro el párrafo siguiente:

 

 

“La Vía Láctea ha fascinado a muchos más. Se han tejido mitos y leyendas a su alrededor.  Los antiguos la conocieron por muchos nombres.  Anaxágoras y Aratos ( 500 a. de C. ) le llamaban To Gala : La Rueda Brillante  ¿Rueda?  ¿De dónde? A mí me pareció una sola franja.  Resulta que esa franja continuaba por debajo de mis pies (del otro lado de la Tierra) hasta cerrarse. Esa parte invisible para mí esa noche aparecería en las madrugadas de otoño.  ¡Vaya que los primeros astrónomos eran buenos observadores!  Y también tenían imaginación, una imaginación a veces predictiva: Demócrito, el padre del átomo, sugirió que La Vía Láctea estaba formada por una multitud de estrellas … ¡En el año 430 a. de C.! Eratóstenes, quien midió la circunferencia de la Tierra la llamó  “El círculo de la Galaxia” ó “ Círculo Galáctico “ ¡Wow! ¡Que avanzados! ¿Cómo sabían que la Vía Láctea era una Galaxia? No lo sabían.  Su interpretación del término “Galaxia”  era distinto a la actual.  Galaxia sólo había una y se refería a la lechosa luz que cruzaba  el cielo nocturno ( Nótese la similitud entre los términos Lácteo y Galaxia ) Hoy, cuando escuchamos la palabra “Galaxia” nos imaginamos un gran remolino de estrellas, nubes y polvo, con un centro brillante.  En aquel entonces “Galaxia” no era otra cosa que el nombre propio de nuestra Vía Láctea.  En al año 175 a. de C. Hiparco la llamó simplemente “La Galaxia”. Aún hoy, cuando vemos la palabra Galaxia -con mayúscula- sabemos que se refiere a la nuestra.”

 

 

En la parte interios del Brazo de Orión (señalada con la línea) está el Sistema Solar, a 27.000 años-luz del Centro Galáctico en una región bastente tranquila que nos permite contemplar (con nuestros ingenios) lo que que ocurre en otras regiones lejanas y las fuerzas desatadas que azotan aquellos lugares.

Otros veían la Galaxia como un gran río. Le llamaban “El Río del Cielo”.  Los árabes la conocían simplemente como “El Río”, los hebreos “El Río de Luz” Job la llamaba “La Serpiente Tortuosa”. Los chinos y japoneses veían también un río.  Los chinos la llamaban le llamaron “Tien Ho” es decir “El Río Celestial o Plateado”, y tenían una creencia muy singular (A mí me parece simpática).  Ellos decían que cuando los peces del río (las estrellas) veían aproximarse el anzuelo (una delgada Luna creciente) se ocultaban para no ser atrapados.  Las estrellas y la Vía Láctea no son  compatibles con la Luna.  En realidad, sucede que la resplandeciente Luna supera y opaca la débil luz de nuestra Galaxia.

Los armenios y los sirios le llamaban “El gran Vendaje”.  Los romanos (Plinio), al estilo de Erastótenes, le llamaban el “Círculo Lácteo” además de “El Cinturón Celestial” “Vía Celeste Regia”  y Vía Láctea”, como hoy la conocemos.

 

        Y la leche de Juno formó la Vía Láctea

 

¿De dónde salió tanta leche? Cuenta una leyenda que cuando el pequeño Hércules era amamantado por su madre,  mordió uno de sus pechos con tanta fuerza que ella terminó por derramar su leche por el cielo.(¡Que productiva!) De ahí a que Vía Láctea signifique “Camino de Leche” ó “Milky Way”  en inglés.  Además de que el significado se conserva en inglés y español, sucede lo mismo en francés, portugués, italiano, danés, ruso, alemán, etc.

Los indios norteamericanos y algunos pueblos de Noruega decían que la Vía Láctea era “El camino de los Fantasmas” por donde ascendían los espíritus de héroes y guerreros.  Los espíritus se detenían a descansar de vez en cuando y encendían fogatas, que son las estrellas más brillantes.

Los esquimales y algunos pueblos africanos veían en ella “El camino de las cenizas” que se elevaba sobre una gran pira.

En México nuestros abuelos o en los pueblitos la conocen  como “El Camino de San Lorenzo” o “El Camino de Santiago”.

 

 

“El camino” – Shirley MacLaine
“El camino de Santiago de Compostela es una peregrinación famosa en todo el mundo que lleva siglos haciéndose. Dicen que el Camino se encuentra directamente debajo de la Vía Láctea, y que sigue líneas que reflejan la energía de los sistemas estelares suspendidos encima de él… El Camino de Santiago ha sido recorrido durante cientos de años por santos, pecadores, militares, inadaptados, reyes y reinas. El viaje se hace con la intención de encontrar el más profundo significado espiritual del ser y tomar decisiones respecto a los conflictos interiores… Durante mi viaje hacia el oeste a lo largo del Camino, tuve la sensación de estar retrocediendo en el tiempo hasta el lugar donde empezaron las experiencias que han hecho de mí y de la raza humana aquello que somos ahora.”

 

Muchas son las Rutas que nos pueden llevar a Santiago, allí los peregrinos ven algo que les llena de paz. Todos los que han ido dicen que la experiencia es única y, así, llegan de todas partes del mundo. Pero vamos a lo que nos traemos entre manos.

Lo cierto es que, desde siempre, nos fascinó la inmensidad del cielo y de los objetos que lo pueblan. Pero, el enigma que más nos apasiona y la pregunta más frecuente que nos solemos hacer es, ¿estaremos sólos en tan vasto Universo? Para contestar a eso, mejor nos remitimos a lo que ya está más que estudiado:

“En 1961 el radioastrónomo Frank Drake, presidente del SETI (Instituto para la Búsqueda de Inteligencia Extra-Terrestre), concibió una fórmula para calcular la cantidad de civilizaciones extraterrestres en nuestra Galaxia.

 

 

 

Bueno, la Galaxia es grande, el Universo mucho más, y, si en nuestra pequeña Tierra está presente la vida Inteligente, ¿qué puede impedir que en otros mundos similares también lo esté?

 

                 Frank Drake

 

Él nos dejó su fórmula que es la siguiente: N = R * fp * ne * fl * fi * fc * L

Donde

  • R es el número de estrellas similares al Sol que se generan al año en la Vía Láctea
  • fp es la fracción de estas estrellas que tienen planetas en su órbita.
  • ne es la fracción de planetas a la distancia adecuada del Sol
  • fl es la fracción de esos planetas en los que se ha desarrollado la vida
  • fi es la fracción de esos planetas en los que se ha desarrollado la inteligencia
  • fc es la fracción de ellos que ha desarrollado una tecnología e intenta comunicarse
  • L es el número de años que puede existir una civilización inteligente.
(la fórmula ha sido refinada y mejorada)

 

La fórmula en sí es una fabulosa demostración de ingenio por parte de Frank Drake, por desgracia algunas de estas variables eran desconocidas en su época, lo siguen siendo y seguramente lo serán durante algún tiempo más. Sin embargo, no deja de ser una muestra de la inmensa imaginación que nos adorna, siempre digo que el Universo es, casi tan grande como nuestra imaginación.

 

 

En Astronomía todavía se trabaja mucho por aproximación, y se dice, por ejemplo: “… está situada entre unos 2. y 5 años-luz de nosotros…” Como si unos pocos años luz más o menos no tuvieran importancia. Con esto quiero decir que no todos nuestros aparatos nos dicen lo que queremos saber, necesitamos nuevas tecnologías más precisas, más fiables.

Por ejemplo, sabemos más o menos cuantas estrellas hay en la Vía Láctea, y sabemos más o menos cuantos años hace que se formó. Hemos hecho estadísticas sobre las edades de las estrellas y sabemos, más o menos a qué ritmo se han ido formando.

Pero la mayoría de los demás datos solo podemos suponerlos, y para ello solo disponemos de un único ejemplo: nuestro propio planeta.

Suponer que conocemos las reglas y las probabilidades de un hecho que solo ha podido ser observado una única vez es algo pretencioso y con toda seguridad equivocado. El método científico exige que podamos observar un fenómeno numerosas veces y en distintas condiciones antes de intentar imaginar una ley que lo explique, por lo que mientras no conozcamos más que un único planeta con vida inteligente en todo el universo no podremos aplicar el método científico, solo podremos hacer suposiciones y elucubraciones que intenten apelar a la lógica de lo que sabemos para poder suponer unas conclusiones que, por fuerza, serán casi imposibles de verificar en mucho tiempo.

 

 

            Protoestrellas, es decir, estrellas en formación

 

Cuando se forma una estrella deja a su alrededor unas nubes de polvo y gas que luego formarán los planetas al azar. Es como una ruleta, según su suerte sale uno u otro. Esta es la probabilidad de que se forme un planeta con vida.

No obstante podemos abordar este problema desde dos puntos de vista diferentes y ver a qué conclusiones nos lleva cada uno de estos puntos de partida.”

Bueno, una cosa está más que clara, la vida en cualquier planeta que orbita una estrella, sea o no parecida al Sol, tendrá que contar con ciertos requisitos que, iguales o parecidos a los que se dan aquí en la Tierra, posibiliten la presencia de seres vivos y, para ello, la distancia del planeta a su estrella, una atmósfera adecuada, la existencia de agua corriente, y otros elementos que, como en la Tierra, faciliten la química biológica para el surgir de la vida.

 

“Pero ya que estamos hablando de enigmáticos objetos galácticos con emisiones gamma, el telescopio espacial de rayos gamma INTEGRAL de la ESA, descubrió en el 2003 lo que parece ser una nueva clase de objeto astronómico. Se trata de un grueso capullo de frío gas que aloja en su interior a un sistema binario que, probablemente, incluya a u agujero negro o a una estrella de neutrones. Hasta ahora, el objeto ha seguido siendo invisible para el resto de los telescopios.

 

Preoort2

El INTEGRAL detectó al extraño objeto, el 29 de enero de 2003, y se le denominó como IGRJ16318-4848. Aunque los astrónomos no sabían su distancia, estaban seguros que se hallaba en nuestra galaxia. También, y después de estudiar y analizar las evidencias que había recogido el satélite, los investigadores concluyeron que el nuevo objeto podría ser un sistema binario que abarcaba un objeto compacto, tal como una estrella de neutrones o un agujero negro, acompañado orbitalmente por una muy masiva estrella como compañero.”

 

 

 

        Nuestro Centro Galáctico, ¡ese lugar misterioso!

Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Negro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.

Y, a todo esto, yo me pregunto: Si esas emisiones de rayos Gamma que llegan a la Tierra provienen del Centro de la Galaxia, habrá que deducir que, salieron de allí hace ahora unos 30.000 años. ¡Qué Locura!

 

Emilio Silvera

Si es así o no, nosotros, nunca lo sabremos.

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Némesis: monstruo estelar

 

Resultado de imagen de Némesis: monstruo estelar

 

 

Consideremos este cuento: Hay otro sol en el cielo, un sol oscuro, demoníaco, que no podemos ver. Hace mucho tiempo, mucho antes de que nacieran nuestros abuelos, ese sol demoníaco atacó a nuestro Sol. Los cometas cayeron sobre la Tierra y un invierno terrible se apoderó del mundo. La mayoría de los seres vivos murió. El sol demoníaco nos ha atacado otras veces antes y volverá a atacarnos.

 

Imagen relacionadaImagen relacionada

Imagen relacionada

Si un antropólogo de otra generación hubiese escuchado esta historia de un grupo de estudio, la hubiese considerado “primitiva” o “pre-científica”, aunque no queda duda de la fuerza de la idea, que fácilmente —de no haber sido presentada en esta época y por científicos reconocidos— podría estar entre las leyendas más temibles de la humanidad.

Los registros fósiles de la vida terrestre han mostrado que se repiten extinciones masivas a un promedio de entre 26 y 30 millones de años. Según una teoría, esto podría ocurrir a causa del acercamiento cíclico en su órbita de una estrella compañera del Sol. La teoría fue ideada por Richard A. Muller, físico de la Universidad de California en Berkeley, luego de una conversación circunstancial con un profesor sobre un paper científico. El artículo de Muller que presentó la teoría de Némesis fue publicado por primera vez en la revista científica Nature (vol 308, pp 715-717, 1984). Los autores del paper fueron el propio Muller y otros dos científicos que lo ayudaron en el modelo, Marc Davis, de Princeton, y Piet Hut, del Institute for Advanced Study de Princeton. Existe, además, un libro llamado “Nemesis”, escrito por Richard Muller (Weidenfeld & Nicolson, 1988).

 

Hubo otro grupo que publicó algo similar en 1985, formado por Daniel P. Whitmire y John J. Matese, de la Universidad de Southern Lousiana. Este grupo incluye la idea de que la estrella compañera podría ser un agujero negro.

La teoría y la estrella fueron bautizadas con el nombre de Némesis, que es la diosa griega de la venganza, aunque más que nada representa a una justicia que devuelve los golpes, algo así como la diosa del “ojo por ojo, diente por diente”. Sin la información científica que la respalda, consideraríamos que es una historia de fantasía. Asimov escribió una novela llamada Némesis (Nemesis, Plaza & Janés, 1989), pero no trata exactamente sobre esta estrella. La película que se está produciendo sobre Star Trek, la número 10, se llama Star Trek: Némesis, pero no trata sobre esta estrella, sino sobre un personaje que se enfrenta a Picard.

 

 

Némesis: “Aquella de la que nada puede escapar”

 

De acuerdo con la teoría de Némesis, nuestro sol tendría una estrella compañera, a la que han bautizado Némesis. Poseería una amplia órbita que la llevaría a una distancia del Sol que varía entre 20.000 y 90.000 unidades astronómicas (entre 0,3 y 1,4 años luz). Hay que tener en cuenta que es una distancia

muy grande: Plutón, el planeta más externo del Sistema Solar, está a una distancia del Sol “sólo” 39 unidades astronómicas.

 

 

 

 

Resultado de imagen de El Sistema solar

 

El Sistema Solar es muy complejo y no sólo lo componen los planetas y sus lunas. Desde las 30 unidades astronómicas de distancia desde el Sol hasta más o menos 1.000 unidades astronómicas se extiende la llamada franja de Kuiper, en la que orbitan millones de desechos cósmicos. Más allá, ocupando un anillo ubicado entre las 10.000 y las 30.000 unidades astronómicas desde centro del Sistema Solar, hay otra acumulación de objetos celestes a la que se ha bautizado como Nube de Oort. Esta nube, compuesta principalmente de cometas, cubre más o menos medio año luz alrededor del Sol.
Némesis, la hipotética compañera del Sol, sería una estrella oscura (una enana marrón o negra) o quizás muy poco brillante, y por esta razón no habría sido reconocida por los astrónomos hasta hoy, aunque sí podría figurar en los catálogos sin que nadie haya notado nada peculiar. Una estrella tan cercana mostraría un detectable desplazamiento de su posición con respecto al resto de las estrellas, producido en muy poco tiempo.

El período orbital de Némesis sería de alrededor de los 30 millones de años (las mediciones no son exactas: dan entre 26 y 34 millones de años), y a este ritmo pasaría por las afueras del Sistema Solar, produciendo una perturbación en los cometas de la Nube de Oort. Al agitar miles —incluso millones— de objetos hasta desplazarlos de sus órbitas con su fuerza gravitatoria, causaría que muchos se dirijan hacia el interior del Sistema Solar. Algunos de estos objetos podrían caer a la Tierra, impactando como bombas nucleares, y produciendo daños y terribles cambios en el clima, tales como lluvias de polvo, oscurecimiento masivo, enfriamientos extremos y pérdida de ozono. La catástrofe no sería puntual: una vez iniciada, esa lluvia de cometas podría durar entre 100.000 a 2 millones de años, con un promedio de por lo menos diez impactos, en intervalos de hasta 50.000 años.

Pique para ampliar Al comienzo del 2000, dieciséis años después de su nacimiento, la teoría de Némesis ganó terreno cuando un equipo de distinguidos astrónomos de los Estados Unidos calcularon que la estrella oscura, si es que existe, podría ser un enana marrón. Ese mismo año John Matese, de la Universidad de Lousiana, estudió las órbitas de ochenta y dos cometas de la nube de Oort. De acuerdo a Matese, sus órbitas tienen algunos elementos en común que sólo se pueden explicar si estos cometas han sido influenciados por la atracción gravitacional de un objeto de varias veces el tamaño de Júpiter.

La teoría de Némesis ofrece una explicación para la periodicidad curiosamente regular que se observa en las extinciones masivas de seres vivos que ha sufrido la historia de nuestro planeta. Esta periodicidad fue evidenciada por un estudio científico publicado en 1984, poco tiempo antes de la aparición de la teoría de Némesis. Fue su inspirador.

Los dinosaurios, extinguidos 65 millones de años atrás, parecen haber sido afectados seriamente por el impacto de un gran asteroide en la Tierra. Se detectaron señales en el área de la península de Yucatán que indican la existencia de un gigantesco cráter. Luis Alvarez, profesor emérito de física en la Universidad de California en Berkeley y ganador del Premio Nobel, fue quien observó y comunicó el hecho a la comunidad científica en la década del setenta. Curiosamente, en un principio se opuso de inmediato al paper de 1984 que presentaba el estudio estadístico de la periodicidad de las extinciones: él creía en los asteroides, pero cayendo azarosamente. Una discusión entre Alvarez y Muller inspiró la idea de la existencia de Némesis en este último, y ése fue el nacimiento de la teoría.
Parecería ser que el impacto de Yucatán fue el que produjo la desaparición de un noventa y cinco por ciento de las especies en la era de los dinosaurios. Luego hubo otros.

La última extinción ocurrió hace unos 11 millones de años, de modo que la próxima se debería producir dentro de más o menos 15 millones de años.

 

Evidencias que dan pie a la teoría de Némesis

Resultado de imagen de Regularidad en el registro de las extincionesResultado de imagen de Regularidad en el registro de las extinciones

 

Regularidad en el registro de las extinciones

La base de la teoría implica la aceptación de una regularidad en las extinciones masivas producidas en el registro de formas de vida de nuestro planeta. Quienes notaron esto fueron Dave Raup y Jack Sepkoski, dos respetados paleontólogos, cuando reunieron gran cantidad de datos de las extinciones que se detectan en el registro de los seres vivos (estratos de fósiles con enorme contenido de material) y obtuvieron la curva que se observa abajo.

 

Las f

 

Estas fechas se han dibujado cada 26 millones de años. Como se puede observar, coinciden con la mayoría de los picos de extinción. Los dos períodos en los que no hubo extinciones podrían haberse dado porque, por azar, ninguno de los cometas desplazados en esos ciclos dio en la Tierra. El pequeño icono representando un dinosaurio marca el fin de la era de los grandes saurios. El artículo científico original que analiza la desaparición de familias de fósiles marinos fue publicado en Proceedings of the National Academy of Science USA, vol 81, páginas 801-805 (1984).

 

Iridio en las capas fósiles

 

Resultado de imagen de Iridio en las capas fósiles

 

Otra evidencia de grandes impactos sobre el planeta es dada por el hallazgo de grandes concentraciones de iridio en las rocas fosilíferas. El iridio no es común en la corteza terrestre, pero sí lo es en los objetos extraterrestres como los cometas. Se han encontrado rastros de iridio en más de veinticinco sitios paleontológicos alrededor del mundo. Está presente en el registro de fines del Cretáceo y principios de la era Terciaria, que marca la época de la extinción de los dinosaurios. En la zona de piedra caliza fosilífera llamada “divisoria K/T” se puede encontrar una capa de arcilla roja que es 600 veces más rica en iridio que las todas rocas adyacentes. Esta capa fue encontrada en veinticinco sitios y se ha demostrado que proviene de un mismo origen, midiendo la concentración de otros elementos que acompañan al iridio, tales como renio, oro y platino. La concentración en todos los sitios de estos elementos es tan uniforme que sólo puede explicarse como proveniente del impacto un único asteroide o cometa.
Del estudio de estas concentraciones de elementos, se ha deducido que la cantidad de iridio presente provendría de un asteroide de unos 10 kilómetros de diámetro que se estrelló en la Tierra. Un impacto de esta magnitud produciría una enorme cantidad de polvo muy fino que se extenderían por la estratósfera, produciendo oscurecimiento y, además y como consecuencia, un fuerte enfriamiento del planeta, condición que crearía un entorno inhabitable para la mayoría de las criaturas de la época.

 

Análisis de los meteoritos

Resultado de imagen de Analisis de los meteoritos

 

Otra línea de evidencia, no relacionada con efectos terrestres, se basa en la exposición a los rayos cósmicos que sufren los meteoritos en el espacio. Se puede determinar si un cuerpo ha estado expuesto a estas radiaciones midiendo la cantidad presente de cierto tipo de isótopos, como el Neón 21. Usando esta medición, se puede saber cuánto tiempo ha estado un meteorito en el Sistema Solar. Y se ha encontrado que los meteoritos creados por impacto de cometas han caído a la Tierra aproximadamente al mismo tiempo que las tres últimas extinciones masivas. Los meteoritos que han sufrido el impacto de un cometa tienen un alto contenido de hierro en forma de chronditas H. El hierro que contienen proviene del núcleo de asteroides o planetas que han sido golpeados por cometas. Se ha encontrado una correlación entre la presencia de chronditas H y las extinciones masivas.

 

Inversiones del campo magnético

 

Resultado de imagen de Inversiones del campo magnético de la Tierra Imagen relacionada

 

Con el descubrimiento del paleomagnetismo, se ha agregado otra prueba a las evidencias que presenta la teoría de Némesis. Se ha analizado la hipótesis de que, al hacer impacto un cometa en la superficie de la Tierra, las altas temperaturas de la catástrofe evaporan gran cantidad de agua que luego, al producirse el enfriamiento masivo del planeta, se congelan en los polos. Debido a la conservación del momento angular, esta redistribución de masa es una agitación suficiente como para alterar el campo magnético terrestre. Se han producido inversiones geomagnéticas doscientos noventa y seis veces, cada aproximadamente treinta millones de años. Lo cual coincide con la teoría de la estrella mortal.

 

Descenso del nivel del mar

Resultado de imagen de Descenso del Nivel del Mar

Otro efecto del congelamiento de grandes masas de agua es el descenso del nivel de los océanos. Se ha demostrado que esto ocurrió en la divisoria K/T.

 

Las estrellas binarias son comunes

Resultado de imagen de Estrellas binarias en imagen GIFs

Más del 50 % de las estrellas de nuestra galaxia son parte de un sistema binario, lo cual ayuda a apoyar la posibilidad de que nuestro Sol posea una estrella compañera, que posiblemente sea una enana marrón.

 

Qué se dice en oposición a la teoría de Némesis

Vulcanismo

 

Imagen relacionadaResultado de imagen de Incremento de la actividad volcánica imagen GIPs

 

Para explicar el enfriamiento masivo y repentino del clima del planeta causado por un oscurecimiento debido a la presencia de polvo en la estratosfera, se ha apelado a un hipotético incremento de la actividad volcánica. Sin embargo, no se explica de este modo la periodicidad detectada en las extinciones ni la existencia de capas de alto contenido de iridio en los registros fósiles.

 

Otra causa del desplazamiento de cometas

 

Resultado de imagen de Desplazamientos de cometasResultado de imagen de Desplazamientos de cometas

Resultado de imagen de Desplazamientos de cometasResultado de imagen de Desplazamientos de cometas

 

Aceptando que se hayan apartado grandes masas de su órbita en la nube de Oort y que éstas finalmente hayan impactado en la Tierra, se ha presentado una hipótesis alternativa según la cual nuestro Sistema Solar pasaría, en su movimiento alrededor del centro de la galaxia, por nubes gigantes de polvo molecular que podrían producir los desplazamientos orbitales. Sin embargo, este tipo de nubes están en un estado demasiado alto de dispersión como para que se produzca una fuerza gravitatoria suficiente.

El planeta X

Imagen relacionadaImagen relacionada

Imagen relacionada  Imagen relacionada

Otra teoría introduce la existencia de un décimo planeta en el Sistema Solar, el llamado “planeta X”, pero esta idea requiere la existencia de un disco interior en la nube de Oort, y los cálculos indican que esto no sería posible por problemas de estabilidad.

 

Velocidad de la extinción

 

Resultado de imagen de Extinción de los DinosauriosResultado de imagen de Extinción de los Dinosaurios

Resultado de imagen de Extinción de los DinosauriosResultado de imagen de Extinción de los Dinosaurios

 

Algunas personas argumentan que los dinosaurios no se extinguieron tan rápido como parece señalar la teoría de Némesis. Las especies fueron declinando lentamente, y no de repente, en una catástrofe. Sin embargo, la teoría de Némesis no implica necesariamente una extinción inmediata de la vida, ya que la teoría implica la existencia de varios impactos, y de distintos tamaños de cometas, de modo que algunas formas de vida podrían haber sobrevivido a los primeros golpes, pero no a los que les siguieron más tarde.

 

Órbita inestable

 

Imagen relacionada

Si una estrella se acerca a un objeto masivo tiende a fundirse con él

Otros hacen notar que la órbita elíptica que se propone para Némesis no podía mantenerse en el tiempo y que la estrella compañera se habría apartado para siempre, y hace mucho, del Sistema Solar. Pero los investigadores que han desarrollado la teoría de Némesis han dicho desde el primer momento que su órbita no se ha mantenido constante a lo largo del tiempo, y que esta estrella estaba antes más cerca del Sol. Otros objetos galácticos, una estrella errante, quizás, pueden haber producido una distorsión de la órbita de Némesis, haciéndola más amplia y menos estable. Una clara demostración de que esto es posible y que la órbita puede mantenerse por otros mil millones de años más fue publicada por Piet Hut en Nature, vol 311, pp. 636-640 (1984).

 

Variación del ritmo estadístico

 

Resultado de imagen de Variación del ritmo estadístico de lA ORBITA DE UNA ESTRELLA

 

Otro argumento en contra es que las extinciones, si bien son regulares, han tenido un ritmo que presenta un rango de variación de unos 4 millones de años, ya que el registro de las extinciones masivas tiene separaciones no absolutamente exactas, que varían entre los 26 y los 30 millones de años. Sin embargo, este aparente problema en la teoría se puede explicar por desviaciones breves de la amplia órbita de la estrella Némesis producidas por encuentros con otras estrellas errantes o con las nubes galácticas.

 

Encontrar a Némesis

 

Resultado de imagen de eNCONTRAR A nÉMESIS LA eSTRELLA ERRANTEResultado de imagen de eNCONTRAR A nÉMESIS LA eSTRELLA ERRANTE

Resultado de imagen de eNCONTRAR A nÉMESIS LA eSTRELLA ERRANTEImagen relacionada

 

Muchas estrellas conocidas y registradas podrían ser Némesis, que debería ser visible con un pequeño telescopio e incluso con binoculares. Prácticamente todas las estrellas con las características de la hipotética compañera del Sol ya han sido catalogadas, pero se ha medido la distancia de muy pocas de ellas.
La búsqueda de Némesis se lleva a cabo en el observatorio Leuschner, ubicado en Lafayette, California, Estados Unidos. Se utiliza un telescopio automático, que fotografía campos de estrellas y compara la imagen con una nueva fotografía tomada entre dos y seis meses después. Una estrella cercana que se mueva en la cercanía mostrará un desplazamiento notable, mientras que las estrellas lejanas quedarán casi en el mismo lugar. Lo más probable es que Némesis sea una enana roja, con una magnitud entre 7 y 12. Se cree que será hallada en la constelación de Hydra.

 

Resultado de imagen de LA CONSTELACIÓN DE HIDRA

Parece curioso que no se haya detectado aún a Némesis, pero hay que tener en cuenta que los investigadores que la buscan no tienen los recursos que quisieran. Debido a que el telescopio de Leuschner no es del todo adecuado para este trabajo, han estado trabajando en la construcción de un nuevo proyecto llamado Large Aperture Synoptic Survey que, espera Richard Muller, terminará de una vez por todas con la discusión sobre la existencia o no de Némesis. “Si el telescopio funciona, encontraremos Némesis o probaremos que no existe. Esto me hace sentir bien”, dice Muller. “Si no existe, podemos olvidar esto y buscar otra explicación”. Pero agrega: “Soy optimista: creo que la encontraremos.”

Texto extraído de Axxon

¡El Universo! ¿Cuando lo podremos conocer?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Las estrellas y las galaxias y otros objetos cosmológicos surgieron cientos de millones de años más tarde

 

La inflación cósmica es una explicación popular para la fase más temprana de la evolución del Universo. ¿Puede descartarse?

Alguno estudios quieren pinchar el globo del Big Bang, cuestionan la teoría y creen que no es eso lo que pasó. Sin embargo, cuando se niega alguna cosa hay que tener argumentos que avalen tal negación, exponerlos y convencer.

En el universo primigenio no había cuerpos celestes tal y como los conocemos hoy día, sino que todo el cosmos se hallaba repleto de radiación y partículas subatómicas. Esa primera etapa recibe el nombre de era de la radiación y abarca desde la Gran Explosión hasta unos 300 000 años tras ella.

 

Big Bang: la teoría que explica el origen, y evolución del universo

Por el momento, es el Big Bang la Teoría más aceptada, y, encaja con la observación y los datos obtenidos en estudios realizados al efecto. Los cosmólogos han dividido en Eras las etapas por las que el Universo ha pasado, y, en cada una de ellas, se explica lo que evolucionó el universo en cada etapa y el nivel alcanzado.

La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

Si la teoría del Bing Bang es correcta (como parece que lo es -al menos de momento-, debe de existir alguna fuerza desconocida, quizá la misma gravedad que no hemos llegado a entender totalmente y tenga alguna parte que se nos escapa, o,  una gran proporción de “materia oscura” en forma no bariónica, quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.700 millones de años que es la edad del universo.

 

                  http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

 

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”. Bueno, también podrían ser las “cuerdas cósmicas”, o, ¿por qué no? la sustancia que los griegos clásicos llamaban Ylem, o… ¡vaya usted a saber que es, lo que produce el efecto de expansión de nuestro universo!

                                            Viaje hacia la Quinta Dimensión, cada cual se despacha a su gusto

Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura (si finalmente existe), está situada en la quinta dimensión (es decir, fuera de nuestra vista), y nos llegan sus efectos a través de fluctuaciones del “vacío” donde residen inmensas energías que rasgan el espacio-tiempo y que, de alguna manera, deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea.

 

没有照片描述。

Martinus, ese gran Físico, decía:

“La materia oscura es la alfombra bajo la cual, los cosmólogos barren su ignorancia”

Claro que mi pensamiento es eso, una conjetura más de las muchas que circulan. A veces me sorprendo al escuchar como algunos astrofísicos de reconocido nombre, sin pudor alguno, dogmatizan hablando de estas cuestiones sobre las que no tienen la menor certeza. Podemos hablar de la energía y materia oscura pero, siempre, dejando claro que son teorías de lo que podría ser y que, más o menos probables, aún no han sido confirmadas.

 

Podríamos tener la clave para ver la materia oscura: la antimateria |  Computer Hoy

Sin saber como podría estar estructurada (si es que existe), se atreven a poner imágenes y debajo de ellas textos que explican (o tratan de explicar), algo de lo que no saben absolutamente nada. Le dan prestaciones, la describen como invisible (es que, acaso no es materia física), al menos no emite radiación, y, sin embargo (o, contradicción), si genera Gravedad… Parece que estamos perdiendo el Norte.

De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia. ¿Cómo podemos poner nombre a algo que ni sabemos si existe en realidad. Se buscó esta solución para poder cuadrar las cuentas. Las observaciones astronómicas dejaron claro que, las galaxias, se alejaban las unas de las otras a velocidades cada vez mayores y que, de seguir así, llegaría un día en el futuro en el que, las únicas galaxias cercanas serían las del Grupo Local. Que cada vez el espacio “vacío” entre galaxias será mayor. ¿Qué fuerza desconocida empujaba a las galaxias a expandirse hacia el exterior? La materia bariónica no era la causante. Así que, se inventí la materia oscura y, de esa manera, el problema quedó zanjado. Claro que, no solucionado.

 

 

Mecánica cuántica - Wikipedia, la enciclopedia libreFile:Átomo de Oro.gif - Wikimedia CommonsGenoma - Wikipedia, la enciclopedia libreAgujero negro - Wikipedia, la enciclopedia libreLa constante cosmológica - YouTubeLa CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!

 

Mecánica cuántica, relatividad, átomos, el genoma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas pero, la materia oscura, al sernos desconocida, no sabemos como puede ser y no podemos tener una imagen de lo que la materia oscura es (si es que es), así que hablamos y hablamos de ella sin cesar pero también sin, saber.

Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta, o, nos sacará del error, al demostrar que la dichosa materia oscura, nunca existió y que es, otra fuerza, la que produce los efectos observados en la expansión acelerada del Universo.

Claro que nos falta mucho…

 

Viajar por el hiper-espacio seria posible. – NeoTeo

Si encontramos la manera de abrir la “puerta” del Hiperespacio…. ¡Podremos viajar a las estrellas!

Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado instantáneo de materia viva a lugares distantes, dominar toda una galaxia, etc, tendrán que transcurrir algunos eones de tiempo para que, algunos de estos sueños se haga realidad y, si ocurren algunas de esas cosas en el futuro…¿La haremos nosotros? ¿O, quizá para entonces sean otros los que habrán cogido la antorcha de nuestros sueños?

 

                             

                                       No creo que tarden mucho en trabajar codo con codo con nosotros

Cada vez se avanza más en menos tiempo. Y, llegará el momento, cuando dentro de algunos milenios, estemos preparados para viajar a las estrellas que, estarán aquí presentes con nosotros los inevitables Robots. Según una serie de cálculos y profundos pensamientos, no podremos seguir adelante llegados a un punto de no retorno, y, nos veremos obligados a fabricar robots muy sofisticados que harán trabajos espaciales y de colonización de Planetas para preparar la posterior llegada de los Humanos. Es inevitable pero, ¿será una buena idea?

Acordaos de que hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados. De la misma manera pero mucho más acelerada, serán las décadas venideras y, para dentro de los próximos cien años (a finales del presente siglo), si lo pudiéramos ver, quedaríamos tan asombrados como lo estarían nuestros bisabuelos si pudieran abrir los ojos y ver el mundo actual.

¿Qué maravillas tendremos dentro de 200 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Sabremos más sobre el origen de la vida? ¿Qué estadio de saber habrá alcanzado la Fisica, y, si para entonces hemos verificado la Teoría de cuerdas, qué nuevas teorías estarán en boga? ¿Habremos convertido Marte en una segunda Tierra (terraformarla) al proporcionarle una atmósfera y un escudo magnético?

                                      El plan para dotar a Marte de una magnetosfera artificial

                               La verdad es que, científicamente hablando, no habría problema alguno

Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el universo. Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias. La Relatividad General de Einstein, nos dice cómo la materia determina la geometría del Universo.

 

Relatividad General cumple 100 años | Conexión causalCerebro Digital - Las ecuaciones de campo de Einstein son la representación  matemática de la curvatura del espacio tiempo ocasionada por materia y  energía. Están formadas por una serie de 10 ecuaciones

                           Un universo que se curva sobre sí mismo en presencia de la materia

Einstein nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa.  Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espacio-tiempo. Es decir, Einstein nos dijo que la materia, es la que determina la geometría del Universo.

 

Relatividad General Agujeros negrosQué es el horizonte de sucesos de un agujero negro?

 

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

 

 

Como podemos imaginar un objeto pesado o masivo colocado en el centro de una superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste.

Al espacio le ocurre igual.

De la misma manera se puede considerar que el espacio tridimensional dentro y alrededor de un agujero negro está distorsionado dentro de un espacio plano de dimensión más alta (a menudo llamado hiperespacio), igual que la lámina bidimensional está distorsionada como describo en la imagen anterior.

 

 

Qué pasa si caes en un agujero negro? – Enséñame de Ciencia

 

Lo más intrigante de los agujeros negros es que, si caemos en uno, no tendremos manera alguna de salir o enviar señales a los que están fuera esperándonos. Pensemos que la masa de la Tierra que es de 5’974X1024 Kg  (densidad de 5’52 gramos por cm3), requiere una velocidad de escape de 11’18 Km/s, ¿cuál no será la masa y densidad de un agujero negro si pensamos que ni la luz que viaja a 299.792’458 Km/s puede escapar de su fuerza de gravedad?

 

Gravedad: La fuerza que no nos acompaña: el caso de Einstein contra los  Jedi | Vacío Cósmico | EL PAÍSQué es la gravedad? | Explora | UnivisionGrounding: conoce los beneficios de poner los pies en la tierra | Ladera Sur

Mantiene unidas a las Galaxias, a los objetos del Sistema solar, nuestros pies pegados a la superficie de la Tierra…

 

Ondas gravitacionales en el cosmos: NANOGrav detecta el «zumbido» del  Universo

                                     La Gravedad, presente en el Universo…,  ¡de tantas maneras!

Es tanta la densidad que no sólo distorsiona el espacio, sino que también distorsiona el tiempo según las ecuaciones de Einstein: el flujo del tiempo se frena cerca del agujero, y en un punto de no retorno (llamado el “horizonte” del agujero, o límite), el tiempo está tan fuertemente distorsionado que empieza a fluir en una dirección que normalmente sería espacial; el flujo de tiempo futuro está dirigido hacia el centro del agujero. Nada  puede moverse hacia atrás en el tiempo1, insisten las ecuaciones de Einstein; de modo que  una vez dentro del agujero, nos veremos arrastrados irremisiblemente hacia abajo con el flujo del tiempo, hacia una “singularidad” escondida en el corazón del agujero; en ese lugar de energía y densidad infinitas, el tiempo y el espacio dejan de existir.

 

Sinc

 

Como he apuntado antes en alguna parte de este mismo trabajo, la descripción relativista del agujero negro procede de la obra de Kart Schwarzschil. En 1.916, apenas unos meses después de que Einstein formulara sus famosas ecuaciones, Schwarzschild fue capaz de resolver exactamente las ecuaciones de Einstein y calcular el campo gravitatorio de una estrella masiva estacionaria.

 

 

Así, Históricamente la primera solución importante fue obtenida por Schwarzschild en 1916, esta solución conocida posteriormente como métrica de Schwarzschild, representa el campo creado por un astro estático y con simetría esférica. Dicha solución constituye una muy buena aproximación al campo gravitatorio dentro del sistema solar, lo cual permitió someter a confirmación experimental la teoría general de la relatividad explicándose hechos previamente no explicados como el avance del perihelio de Mercurio y prediciendo nuevos hechos más tarde observados como la deflexión de los rayos de luz de un campo gravitatorio. Además las peculiaridades de esta solución condujeron al descubrimiento teórico de la posibilidad de los agujeros negros, y se abrió todo una nueva área de la cosmología relacionada con ellos. Lamentablemente el estudio del colapso gravitatorio y los agujeros negros condujo a la predicción de las singularidades espacio-temporales,  deficiencia que revela que la teoría de la relatividad general es incompleta. Quizá la teoría de cuerdas, en la que subyace ésta, nos complete el cuadro.

File:Schwarzchild-metric.jpg

Geometría aparente del plano de la eclíptica en un sistema cuyo astro central es un agujero negro de Schwarzschild. La solución de Schwarzschild tiene varias características interesantes:

La solución de Schwarzschild permitió aplicar los postulados de la relatividad general a disciplinas como la mecánica celeste y la astrofísica, lo cual supuso una verdadera revolución en el estudio de la cosmología: Apenas seis años después de la publicación de los trabajos de Einstein, el físico ruso Aleksander Fridman introdujo el concepto de singularidad espacio-temporal, definido como un punto del espacio-tiempo en el que confluyen todas las geodésicas de las partículas que habían atravesado el horizonte de sucesos de un agujero negro. En condiciones normales, la curvatura producida por la masa de los cuerpos y las partículas es compensada por la temperatura o la presión del fluido y por fuerzas de tipo electromagnético, cuyo estudio es objeto de la física de fluidos y del estado sólido. Sin embargo, cuando la materia alcanza cierta densidad, la presión de las moléculas no es capaz de compensar la intensa atracción gravitatoria. La curvatura del espacio-tiempo y la contracción del fluido aumentan cada vez a mayor velocidad: el final lógico de este proceso es el surgimiento de una singularidad, un punto del espacio-tiempo donde la curvatura y la densidad de tetra-momentum son infinitas.

  • En primer lugar, una línea de no retorno rodea al agujero negro: cualquier objeto que se acerque a una distancia menor que este radio será absorbido inevitablemente en el agujero.
  • En segundo lugar, cualquiera que cayera dentro del radio de Schwarzschild será consciente de un “universo especular”  al “otro lado” del espacio-tiempo.

 

 

Incluso surgieron agujeros de gusano que nos podían trasladar a puntos distantes tanto en el tiempo como en el espacio.

Einstein no se preocupaba por la existencia de este extraño universo especular porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya dije antes, ni la luz podría escapar a dicha fuerza, e igualmente, las ondas de radio electromagnéticas también estarían prisioneras en el interior de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. Además, para penetrar en el universo alternativo, la sonda debería ir más rápida que la velocidad de la luz, lo que no es posible; c es la velocidad límite del universo.

Así pues, aunque este universo especular es matemáticamente necesario para dar sentido a la solución de Schwarzschild, nunca podría ser observado físicamente (al menos por el momento). En consecuencia, el famoso puente de Einstein-Rosen que conecta estos dos universos fue considerado un artificio matemático.

 

Interpretación Artística de la Teoría del Puente Einstein-Rosen

Aquí podría estar la solución para viajar a las estrellas, burlando a la velocidad de la luz, no ganándole

Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

Las cosas comenzaron a cambiar con la solución que el trabajo matemático presentado por el neozelandés Roy Kerr, presentado en 1.963, encontró otra solución exacta de las ecuaciones de Einstein. Kerr supuso que cualquier estrella colapsante estaría en rotación. Así pues, la solución estacionaria de Schwarzschild para un agujero negro no era la solución físicamente más relevante de las ecuaciones de Einstein.

1: Agujero Negro de Kerr Caracterizado por la Masa y el Espin, Extraido...  | Download Scientific Diagram2: Descripción de un Agujero Negro de Kerr con su Singularidad,... |  Download Scientific DiagramNASA presenta gifs hipnóticos de la rotación de un agujero negro

 

La solución de Kerr de un agujero negro en rotación causó sensación en el campo de la relatividad cuando fue propuesta. El astrofísico Subrahmanyan Chandrasekhar llegó a decir:

La  experiencia que ha dejado más huella en mi vida científica, de más de cuarenta años, fue cuando comprendí que una solución exacta de las ecuaciones de Einstein de la relatividad general, descubierta por el matemático Roy Kerr, proporciona la representación absolutamente exacta de innumerables agujeros negros masivos que pueblan el universo. Este estremecimiento ante lo bello, este hecho increíble de que un descubrimiento motivado por una búsqueda de la belleza en matemáticas encontrará su réplica exacta en la naturaleza, es lo que me lleva a decir que la belleza es aquello a lo que lleva la mente humana en su nivel más profundo“.

 

Pin on Vida

 

Un agujero negro de Kerr o agujero negro en rotación es una región de agujero negro presente en el espacio-tiempo de Kerr, cuando el objeto másico tiene un radio inferior a cierta magnitud, por encima de este radio el universo de Kerr no presenta región de agujero negro. Un agujero negro de Kerr es una región no isótropa que queda delimitada por un horizonte de sucesos y una ergoesfera presentando notables diferencias con respecto al agujero negro de Schwarzschild. Esta nueva frontera describe una región donde la luz aun puede escapar pero cuyo giro induce altas energías en los fotones que la cruzan. Debido a la conservación del momento angular, este espacio forma un elipsoide, en cuyo interior se encuentra un solo horizonte de sucesos con su respectiva singularidad, que debido a la rotación tiene forma de anillo.

La solución de Kerr de un agujero negro giratorio permite que una nave espacial pase a través del centro del agujero por el eje de rotación y sobrevivir al viaje a pesar de los enormes pero finitos campos gravitatorios en el centro, y seguir derecha hacia el otro universo especular sin ser destruida por la curvatura infinita.

 

Fondos de Pantalla Nave espacial Agujero negro Fantasía descargar imagenes

Para nosotros, teniendo el concepto que tenemos de lo que un agujero negro es, es tan difícil imaginar que una nave pueda entrar en él y poder salir más tarde, como imaginar que, en mundos extraños como el de arriba, puedan existir criaturas inteligentes como en la Tierra.

El universo, como todos sabemos, abarca a todo lo que existe, incluyendo el espacio y el tiempo y, por supuesto, toda la materia está en la forma que esté constituida. El estudio del universo se conoce como cosmología. Si cuando escribimos Universo nos referimos al conjunto de todo, al cosmos en su conjunto, lo escribimos con mayúscula, el universo referido a un modelo matemático de alguna teoría física, ese se escribe con minúscula.

El universo real está constituido en su mayoría por espacios aparentemente vacíos, existiendo materia concentrada en galaxias formadas por estrellas y gas (también planetas, quásares, púlsares, cometas, estrellas enanas blancas y marrones, estrella de neutrones, agujeros negros y otros muchos objetos espaciales). El universo se esta expandiendo, las galaxias se alejan continuamente los unas de las otras. Existe una evidencia creciente de que existe una materia oscura invisible, no bariónica, que puede constituir muchas veces la masa total de las galaxias visibles. El concepto más creíble del origen del universo es la teoría del Big Bang de acuerdo con la cual el universo se creó a partir de una singularidad infinita de energía y densidad a inmensas temperaturas de millones de grados K, hace ahora unos 15.000 millones de años.

Emilio Silvera V.