lunes, 10 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Futuro: Athena explorará el Universo caliente

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El Athena será lanzado al espacio en 2028 y costará 1.300 millones de euros

 (El Pais)

       Ilustración de una galaxia con un agujero negro en su centro. / ESA/AOES Medialab

zado, Athena, capaz de observar con mayor profundidad que la formación de grandes estructuras cósmicas o el crecimiento de agujeros negros gigantes, será lanzado al espacio en 2028. Será el mayor y más potente observatorio de rayos X, para la materia y los fenómenos celestes más calientes. La misión se integra en el programa de Ciencia y Exploración Robótica de la Agencia Europea del Espacio (ESA) y ha sido aprobada con un de mil millones de euros, a los que se añadirán otros 300, a cargo de las instituciones de investigación de los países que desarrollen y construyan los instrumentos científicos del telescopio. futuro instrumento científico será el heredero del XMM- Newton, actual observatorio de rayos X de la ESA.

 

Ilustración del futuro telescopio espacial de rayos X Athena. / IFCA

 

“Athena, combinando el hecho de ser un gran telescopio de rayos X con los instrumentos científicos más avanzados, abordará cuestiones clave de la astrofísica: y por qué la materia ordinaria se junta formando galaxias y grupos de galaxias que vemos hoy en el cielo y los agujeros negros crecen e influyen en su entorno”, explica la ESA en un comunicado. “Los científicos creen que en el centro de casi todas las galaxias hay agujeros negros desempeñando un papel fundamental en su formación y evolución. Para investigar esta conexión, Athena observará las emisiones muy calientes de materia justo antes de ser tragada por un agujero negro”.

El futuro observatorio ha sido propuesto por un equipo internacional liderado por siete científicos europeos, incluido Xavier Barcons, investigador del Instituto de Física de Cantabria IFCA (CSIC– Universidad de Cantabria), según informa esa institución.

Athena a una distancia de un millón y medio de kilómetros de la Tierra, en torno al punto de equilibrio gravitatorio Lagrange-2, donde están, entre otros, los telescopios Herschel, Planck y Gaia de la ESA y a donde se enviará el James Webb, futuro sustituto del telescopio espacial Hubble.

“Agujeros negros, cúmulos de galaxias, estrellas de neutrones, restos de supernovas, estrellas activas o incluso atmósferas de planetas del Sistema Solar estarán en el punto de mira de Athena”, resume el IFCA.

Esta misión nueva de la ESA, inscrita en el programa Cosmic Visions. “Su elección asegura que el éxito de Europa en el campo de la astronomía de rayos X se mantendrá más allá de la vida útil de nuestro observatorio insignia XMM-Newton”, ha declarado Álvaro Giménez, director de Ciencia y Exploración Robótica de la ESA.

A partir de ahora los científicos y los ingenieros deben abordar los retos tecnológicos del nuevo telescopio, incluida la óptica del mismo y la refrigeración, ya que uno de los detectores funcionará a solo 50 milésimas de grado sobre el cero absoluto (273 grados bajo cero). Todavía está en discusión la posible participación en Athena de socios internacionales, como la NASA y la agencia espacial japonesa JAXA, según informa el IFCA.

¿Universos múltiples? Es lo más probable

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                Incluso algunos dicen que interactuan entre ellos

El cine nos da la posibilidad de plantear universos imposibles en los que las fuerzas de la Naturaleza actúan de manera diferente o no actuan

Hoy,  contaremos aquí alguna teoría sobre el Universo que, como otras muchas, trata de bucear en las posibilidades que podrían ser. En pensamientos surgidos de la Mente Humana, esa máquina compleja que contiene tantas neuronas como estrellas una galaxia, en la que se fraguan pensamientos sin fin, donde se construyen castillos en el aire, ese lugar que tiene el poder de “construir” mundos intangibles y universos múltiples, y, en fin, la materia hecha imaginación forjadora de ideas que, aunque nos parezcan descabelladas muchas veces, no siempre están desencaminadas y, de vez en cuando, hasta aciertan en sus predicciones hechas de pensamientos.

                                                                           Universos múltiples

¿Quién no conoce al cosmólogo Stephen Hawking que, privado de sus cuerdas vocales, incapaz de sujetar un lápiz, utiliza dispositivos mecánicospara comunicarse y exponer sus complejas ideas sobre el Universo y los exóticos objetos que en él habitan, obteniendo resultados asombrosos de sus ideas científicas a las que llega mediante la más profunda meditación mental, en ese lugar en el que hace difíciles ecuaciones para llegar al resultado final.

Pues, este señor en sillita de ruedas no sólo lleva a la práctica un intenso programa de investigación, sino que, además, le queda tiempo libre. No importa que ocupe actualmente el sillón  Newton de una de las universidades más famosas del mundo, donde imparte clases de física, sino que además, se dedica a escribir libros y dar conferencias.

Hawking, junto con su amigo Kip S. Thorne, es uno de los mayores expertos mundiales en el conocimiento de la relatividad general y de los agujeros negros. Sin embargo, úlñtimamente nos ha salido diciendo que los Agujeros Negros no existen… ¡Cómo evolucionan algunos! Me gustaría preguntsrle en qué se convierte una estrella supermasiva “muere” al acabar su ciclo de fusión en la secuencia principal.

 

Si a un pobre planeta se le ocurriera traspasar la linea de seguridad marcada por el horizonte de sucesos, el futuro sería fatal él, y se vería lo que la imagen de arriba nos muestra, y, a partir de ese momento o fase, el planeta sufriría el efecto espagueti y se alargaría en grandes tubulares de materia que sería engullida por el agujero enviándolas hacia la singularidad en un de irás y no volverás.

Tampoco Stephen Hawking, antes le ocurrió a Einstein, ha podido resistir la tentación de embarcarse en la mayor búsqueda jamás soñada por un físico, la unificación final de la teoría de la gravedad de Einstein y la teoría cuántica. Como resultado, también él se ha sentido maravillado por la coherencia de la teoría decadimensional, y de hecho cierra su conocido libro con un análisis de la misma.

 

Es una lástima que aún no hayamos podido llegar a las cercanías de un agujero negro, y, lo que podemos agujero negro es una especie de realidad-fantasía que nos lleva a llenar cientos, miles de páginas con los pormenores que dentro y fuera de un objeto así podrían estar presentes y, muchos de esos sucesos que describimos, no siempre estarán con la realidad que presentimos que, ¡podría ser tan diferente!

Hawking ya no dedica el grueso de su energía creativa al campo que le hizo mundialmente famoso: los agujeros negros, que Einstein. Hawking, partiendo un puro relativista clásico más que como un teórico cuántico, enfoca el problema Einstein, y luego ¡cuantizan el universo entero!

 

¿Quién dar una explicación clara y precisa de lo que es la gravedad cuántica y la cosmología cuántica? ¿No se contradicen ambas? La primera trata del universo de lo muy pequeño y, la segunda, sin embargo, se refiere a lo muy grande. Sin embargo, el hombre elucubra sin cesar y llega a rincones del pensamiento que, no pocas veces parecen alejados de la lógica y la razón.

Hawking es uno de los fundadores de una nueva disciplina científica, denominada cosmología cuántica. A primera vista, esto parece una contradicción en los términos. La palabra cuántico se aplica al mundo infinitesimalmente pequeño de los quarks y los neutrinos, mientras que cosmología significa la extensión casi ilimitada del espacio exterior. Sin embargo, Hawking y otros creen Recordemos que el punto de partida de la teoría cuántica está en el cuanto de acción de Planck, h, que más tarde desarrollaron Werner Heisenberg, con su principio de incertidumbre, y Schrödinger, con su función de ondas, Y, que describe todos los diversos estados posibles de una partícula. Cuanto más grande y oscuro es el nubarrón, mayor es la concentración de vapor de agua y polvo en el lugar en el que está situada la nube, con lo cual, podemos estimar rápidamente la probabilidad de encontrar grandes concentraciones de agua y polvo en ciertas partes del cielo.

 File:2D Wavefunction (1,2) Surface Plot.png

Función de onda una partícula bidimensional encerrada en una caja. Las líneas de nivel sobre el plano inferior están relacionadas con la probabilidad de presencia. La función de onda del Universo de Schrödinger que nos dice la probabilidad que tenemos de saber donde se encuentra una partícula determinada. A partir del Principio de Incertidumbre de Heisenberg, surgió la ecuación de Schrödinger para paliar, en El nubarrón puede compararse a una sola función de onda electrónica.Al igual que el nubarrón, electrón. Así mismo, las funciones de onda pueden estar asociadas con objetos grandes, como personas. mismo, que estoy sentado en mi sillón de la mesa del despacho que tengo en mi casa para escribir sobre ciencia, sé que tengo una función de onda de probabilidad de Schrödinger. Si de algún modo pudiera ver mi función de onda, se parecería a una nube con una forma muy aproximada a la de mi cuerpo. Sin embargo, algo de la nube se extenderá por todo el espacio, más allá de Júpiter e incluso más allá del Sistema Solar, aunque allí sea prácticamente nula. Esto significa que existe una probabilidad muy grande de que yo esté, de hecho, sentado en mi sillón y no en el planeta Júpiter. Aunque parte de mi función de onda se extienda incluso más allá de la Vía Láctea, hay sólo una posibilidad infinitesimal de que yo este sentado en otra galaxia.

 

    ¿Qué no La nueva idea de Hawking consistía en tratar el universo entero Según algunas imágenes que han sido creadas,  la función de onda del universo se extiende sobre todos los universos posibles.

 

El objetivo al que se enfrentan los cosmólogos cuánticos es verificar matemáticamente todo esto y, si tomamos a Hawking en serio, ello significa que debemos empezar nuestro análisis con un profundo estudio de la función de onda que está presente en el universo y que nos hablaría de… ¡tántas cosas!

 

La cosmología cuántica de Hawking también supone que la función de onda del universo permite que estos universos colisionen. Pueden desarrollarse agujeros de gusano que unan estos universos. Sin embargo, estos agujeros de gusano no son como los que describí antes viajar en el tiempo según dice Thorne y que conectan diferentes partes dentro del mismo espacio tetradimensional. Los nuevos agujeros de gusano conectan universos sí.

El físico Alan Harvey Guth dice francamente: “El principio antrópico es algo que la gente propone si no pueden pensar en algo mejor que .”

Para Richard Feynman, el objetivo de un físico teórico es “demostrarse a sí mismo que está equivocado en cuanto sea posible”. Sin embargo, el principio antrópico es estéril y no ser refutado. Weinberg dijo: “aunque la ciencia es claramente imposible sin científicos, no está claro que el universo sea imposible sin ciencia.”

El debate sobre el principio antrópico estuvo en letargo muchos años, aunque fue reactivado recientemente por la función de onda del universo de Hawking. Si Hawking está en lo cierto, entonces existen en realidad un universo en el que los protones se desintegran con demasiada rapidez, o las estrellas no pueden fabricar los elementos pesados por encima del hierro, o el Big Crunch lugar demasiado deprisa porque su densidad crítica sobrepasa en mucho a la ideal y no da tiempo a que pueda comenzar la germinación de la vida, y así sucesivamente. De hecho, un universo diferente al nuestro podría existir, toda vez que, al igual que existen diferentes mundos, galaxias y estrellas, de la misma manera, deben existir universos distintos.

 

Diferencias-entre-agujeros-negros-y-agujeros-de-gusano-2.jpg

                                                      ¿Cómo se pasará de un universo al otro?

En tal universo paralelo (el nuestro), las leyes de la física eran compatibles con la vida que conocemos. La prueba es que nosotros estamos aquí para tratar La segunda controversia estimulada por la función de onda del universo de Hawking es mucho más profunda y, de hecho, aun está sin resolver. Se denomina el Gato de Schrödinger.

La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo. La teoría cuántica afirma también que nunca se conoce realmente elpunto en el que está situada una partícula o bien la dirección hacia la que se dirige. La incertidumbre está en todas partes.

 

Cuando Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?”, le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un Einstein con ironía. Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación.

 

Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe. Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.

 

                        En segundo lugar podríamos recordar…

El físico Richard Feynman dijo en cierta ocasión: “Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado. Nadie sabe como puede ser eso”. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor esa que se explica bien.  Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucha acogida. I. B. S. Haldane nos decía: “La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer.”

Lo mismo llevaba razón.

emilio silvera

Biología de las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Es viejo el Universo?

Nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

A lo menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.

La edad actual del Universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el Universo es un reflejo del hecho de que:

Densidad actual del Universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.

¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el Universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

   Zeta Oph, una colosal estrella cuyo viento estelar deja una huella espectacular en el espacio circundante.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.

                                             Credit: Emily Lakdawalla/Ted Stryk

La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran número de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una serie y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier clase de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto.

emilio silvera

Cosas de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pilares de luz sobre Alaska

 

¿Que está pasando detrás de estas casas? No son auroras sino pilares de luz, un fenómeno cercano que parece lejano. En la mayoría de lugares de la Tierra, un observador con suerte puede ver un pilar de Sol, una columna de luz que parece extenderse desde el Sol causada por cristales de hielo planos que reflejan la luz solar de la atmósfera superior. Normalmente, estos cristales de hielo se evaporan antes de llegar al suelo. Durante las temperaturas de congelación, sin embargo, los cristales de hielo se pueden originar cerca de la tierra en forma de nieve ligera, conocida a veces como niebla de vidrio. Entonces, estos cristales de hielo pueden reflejar las luces de la tierra en columnas no muy diferentes a los pilares de Sol. La fotografía se hizo en Fort Wainwright, cerca de Fairbanks (Alaska central).

Fuente: Astronomía Picture Of The Day

Cosas que ocurren en el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
               Descubierta la supernova más brillante de la historia

Una red de telescopios detecta la mayor explosión estelar jamás registrada. Sucedió hace 3.800 millones de años y los astrónomos no pueden explicar su origen

 

Reconstrucción de la supernova ASASSN15lh, vista desde un exoplaneta que estuviera a 10.000 años luz de la estrella.

Reconstrucción de la supernova ASASSN15lh, vista desde un exoplaneta que estuviera a 10.000 años luz de la estrella. / Wayne Rosing

El 14 de junio de 2015, dos telescopios en Cerro Tololo (Chile) detectaron una potente fuente de luz en el cielo nocturno. Estos instrumentos pertenecen al Censo Automatizado de Supernovas de Cielo Completo (ASAS-SN), un proyecto liderado por EE UU que cartografía toda la bóveda celeste cada pocos días en busca de nuevos fenómenos astronómicos. Desde aquella noche, multitud de telescopios terrestres y espaciales se han lanzado a la carrera por observar ese mismo destello, pues, según los primeros análisis, y para sorpresa de los astrónomos, se trata de la explosión estelar más potente jamás registrada.

El equipo internacional de ASAS-SN explica hoy en un estudio publicado por Science todo lo que ha podido averiguar sobre esta enigmática supernova, bautizada como ASASSN15lh. Lo primero que les ha sorprendido es que no se parece a ninguna de las más de 200 supernovas que han descubierto desde 2014. Es dos veces más brillante que cualquier otra explosión estelar registrada y 20 veces más luminosa que todas las estrellas de nuestra galaxia juntas. De hecho, este monstruo es tan raro, tan inclasificable, que sus descubridores aún no pueden explicar cómo puede liberar tanta energía sin violar leyes fundamentales de la física.

Destacada con barras rojas, la galaxia que alberga la supernova observada antes y después de su estallido. / The Dark Energy Survey, B. Shappee, ASAS-SN

Tras las primeras observaciones, el astrónomo José Prieto, que trabaja en el Instituto Milenio de Astrofísica y la Universidad Diego Portales de Chile y es miembro del equipo de ASAS-SN, fue el primero en proponer una explicación. “Pensé que una posibilidad es que fuera una supernova superluminosa, una clase de objetos muy poco frecuentes”, explica. Estas supernovas se descubrieron hace apenas dos décadas y aún no está claro qué tipo de estrellas las producen cuando implosionan al final de sus vidas.

El equipo utilizó sus propios instrumentos y otros telescopios para averiguar la composición química y la lejanía de la estrella. Los resultados han confirmado la corazonada de Prieto e indican que está a 3.800 millones de años luz, es decir, el destello captado el 14 de junio tuvo lugar cuando todos los terrícolas eran simples microbios.

Сверхновая, взрыв, свет, галактика, энергия, звезды

Hasta ahora, los astrónomos creían que estas supernovas las producen estrellas que, al explotar, forman en su núcleo una estrella de neutrones que gira sobre sí misma tan rápido que crea un potente campo magnético. Se las conoce como magnetares. Tras el derrumbe de sus capas más externas, estas caen hacia el núcleo y salen despedidas formando una supernova. Si a eso se le suma la energía del campo magnético en el núcleo, el resultado es uno de los mayores estallidos de energía que puedan observarse en el universo.

Pero la supernova recién descubierta es más potente incluso que el mayor magnetar que pueda concebirse. “La energía que ha radiado hasta ahora es tan grande que quiebra este modelo, el magnetar tendría que rotar demasiado rápido y no se sostendría, se rompería, por así decirlo”, explica Prieto. Así las cosas, un humilde Subo Dong, autor principal del estudio, reconoce: “La respuesta sincera es que no sabemos de dónde viene la energía de ASASSN15lh”.

Aunque no es visible a simple vista debido a su lejanía, la supernova sigue brillando, no se sabe hasta cuándo. Sus descubridores planean usar ahora el telescopio espacial Hubble para intentar desvelar su secreto.

Fuente: El Pais