Abr
11
Si es así o no, nosotros, nunca lo sabremos.
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (2)
Némesis: monstruo estelar
Consideremos este cuento: Hay otro sol en el cielo, un sol oscuro, demoníaco, que no podemos ver. Hace mucho tiempo, mucho antes de que nacieran nuestros abuelos, ese sol demoníaco atacó a nuestro Sol. Los cometas cayeron sobre la Tierra y un invierno terrible se apoderó del mundo. La mayoría de los seres vivos murió. El sol demoníaco nos ha atacado otras veces antes y volverá a atacarnos.
Si un antropólogo de otra generación hubiese escuchado esta historia de un grupo de estudio, la hubiese considerado “primitiva” o “pre-científica”, aunque no queda duda de la fuerza de la idea, que fácilmente —de no haber sido presentada en esta época y por científicos reconocidos— podría estar entre las leyendas más temibles de la humanidad.
Los registros fósiles de la vida terrestre han mostrado que se repiten extinciones masivas a un promedio de entre 26 y 30 millones de años. Según una teoría, esto podría ocurrir a causa del acercamiento cíclico en su órbita de una estrella compañera del Sol. La teoría fue ideada por Richard A. Muller, físico de la Universidad de California en Berkeley, luego de una conversación circunstancial con un profesor sobre un paper científico. El artículo de Muller que presentó la teoría de Némesis fue publicado por primera vez en la revista científica Nature (vol 308, pp 715-717, 1984). Los autores del paper fueron el propio Muller y otros dos científicos que lo ayudaron en el modelo, Marc Davis, de Princeton, y Piet Hut, del Institute for Advanced Study de Princeton. Existe, además, un libro llamado “Nemesis”, escrito por Richard Muller (Weidenfeld & Nicolson, 1988).
Hubo otro grupo que publicó algo similar en 1985, formado por Daniel P. Whitmire y John J. Matese, de la Universidad de Southern Lousiana. Este grupo incluye la idea de que la estrella compañera podría ser un agujero negro.
La teoría y la estrella fueron bautizadas con el nombre de Némesis, que es la diosa griega de la venganza, aunque más que nada representa a una justicia que devuelve los golpes, algo así como la diosa del “ojo por ojo, diente por diente”. Sin la información científica que la respalda, consideraríamos que es una historia de fantasía. Asimov escribió una novela llamada Némesis (Nemesis, Plaza & Janés, 1989), pero no trata exactamente sobre esta estrella. La película que se está produciendo sobre Star Trek, la número 10, se llama Star Trek: Némesis, pero no trata sobre esta estrella, sino sobre un personaje que se enfrenta a Picard.
Némesis: “Aquella de la que nada puede escapar”
De acuerdo con la teoría de Némesis, nuestro sol tendría una estrella compañera, a la que han bautizado Némesis. Poseería una amplia órbita que la llevaría a una distancia del Sol que varía entre 20.000 y 90.000 unidades astronómicas (entre 0,3 y 1,4 años luz). Hay que tener en cuenta que es una distancia
muy grande: Plutón, el planeta más externo del Sistema Solar, está a una distancia del Sol “sólo” 39 unidades astronómicas.
El Sistema Solar es muy complejo y no sólo lo componen los planetas y sus lunas. Desde las 30 unidades astronómicas de distancia desde el Sol hasta más o menos 1.000 unidades astronómicas se extiende la llamada franja de Kuiper, en la que orbitan millones de desechos cósmicos. Más allá, ocupando un anillo ubicado entre las 10.000 y las 30.000 unidades astronómicas desde centro del Sistema Solar, hay otra acumulación de objetos celestes a la que se ha bautizado como Nube de Oort. Esta nube, compuesta principalmente de cometas, cubre más o menos medio año luz alrededor del Sol.
Némesis, la hipotética compañera del Sol, sería una estrella oscura (una enana marrón o negra) o quizás muy poco brillante, y por esta razón no habría sido reconocida por los astrónomos hasta hoy, aunque sí podría figurar en los catálogos sin que nadie haya notado nada peculiar. Una estrella tan cercana mostraría un detectable desplazamiento de su posición con respecto al resto de las estrellas, producido en muy poco tiempo.
El período orbital de Némesis sería de alrededor de los 30 millones de años (las mediciones no son exactas: dan entre 26 y 34 millones de años), y a este ritmo pasaría por las afueras del Sistema Solar, produciendo una perturbación en los cometas de la Nube de Oort. Al agitar miles —incluso millones— de objetos hasta desplazarlos de sus órbitas con su fuerza gravitatoria, causaría que muchos se dirijan hacia el interior del Sistema Solar. Algunos de estos objetos podrían caer a la Tierra, impactando como bombas nucleares, y produciendo daños y terribles cambios en el clima, tales como lluvias de polvo, oscurecimiento masivo, enfriamientos extremos y pérdida de ozono. La catástrofe no sería puntual: una vez iniciada, esa lluvia de cometas podría durar entre 100.000 a 2 millones de años, con un promedio de por lo menos diez impactos, en intervalos de hasta 50.000 años.
Al comienzo del 2000, dieciséis años después de su nacimiento, la teoría de Némesis ganó terreno cuando un equipo de distinguidos astrónomos de los Estados Unidos calcularon que la estrella oscura, si es que existe, podría ser un enana marrón. Ese mismo año John Matese, de la Universidad de Lousiana, estudió las órbitas de ochenta y dos cometas de la nube de Oort. De acuerdo a Matese, sus órbitas tienen algunos elementos en común que sólo se pueden explicar si estos cometas han sido influenciados por la atracción gravitacional de un objeto de varias veces el tamaño de Júpiter.
La teoría de Némesis ofrece una explicación para la periodicidad curiosamente regular que se observa en las extinciones masivas de seres vivos que ha sufrido la historia de nuestro planeta. Esta periodicidad fue evidenciada por un estudio científico publicado en 1984, poco tiempo antes de la aparición de la teoría de Némesis. Fue su inspirador.
Los dinosaurios, extinguidos 65 millones de años atrás, parecen haber sido afectados seriamente por el impacto de un gran asteroide en la Tierra. Se detectaron señales en el área de la península de Yucatán que indican la existencia de un gigantesco cráter. Luis Alvarez, profesor emérito de física en la Universidad de California en Berkeley y ganador del Premio Nobel, fue quien observó y comunicó el hecho a la comunidad científica en la década del setenta. Curiosamente, en un principio se opuso de inmediato al paper de 1984 que presentaba el estudio estadístico de la periodicidad de las extinciones: él creía en los asteroides, pero cayendo azarosamente. Una discusión entre Alvarez y Muller inspiró la idea de la existencia de Némesis en este último, y ése fue el nacimiento de la teoría.
Parecería ser que el impacto de Yucatán fue el que produjo la desaparición de un noventa y cinco por ciento de las especies en la era de los dinosaurios. Luego hubo otros.
La última extinción ocurrió hace unos 11 millones de años, de modo que la próxima se debería producir dentro de más o menos 15 millones de años.
Evidencias que dan pie a la teoría de Némesis
Regularidad en el registro de las extinciones
La base de la teoría implica la aceptación de una regularidad en las extinciones masivas producidas en el registro de formas de vida de nuestro planeta. Quienes notaron esto fueron Dave Raup y Jack Sepkoski, dos respetados paleontólogos, cuando reunieron gran cantidad de datos de las extinciones que se detectan en el registro de los seres vivos (estratos de fósiles con enorme contenido de material) y obtuvieron la curva que se observa abajo.
Las f
Estas fechas se han dibujado cada 26 millones de años. Como se puede observar, coinciden con la mayoría de los picos de extinción. Los dos períodos en los que no hubo extinciones podrían haberse dado porque, por azar, ninguno de los cometas desplazados en esos ciclos dio en la Tierra. El pequeño icono representando un dinosaurio marca el fin de la era de los grandes saurios. El artículo científico original que analiza la desaparición de familias de fósiles marinos fue publicado en Proceedings of the National Academy of Science USA, vol 81, páginas 801-805 (1984).
Iridio en las capas fósiles
Otra evidencia de grandes impactos sobre el planeta es dada por el hallazgo de grandes concentraciones de iridio en las rocas fosilíferas. El iridio no es común en la corteza terrestre, pero sí lo es en los objetos extraterrestres como los cometas. Se han encontrado rastros de iridio en más de veinticinco sitios paleontológicos alrededor del mundo. Está presente en el registro de fines del Cretáceo y principios de la era Terciaria, que marca la época de la extinción de los dinosaurios. En la zona de piedra caliza fosilífera llamada “divisoria K/T” se puede encontrar una capa de arcilla roja que es 600 veces más rica en iridio que las todas rocas adyacentes. Esta capa fue encontrada en veinticinco sitios y se ha demostrado que proviene de un mismo origen, midiendo la concentración de otros elementos que acompañan al iridio, tales como renio, oro y platino. La concentración en todos los sitios de estos elementos es tan uniforme que sólo puede explicarse como proveniente del impacto un único asteroide o cometa.
Del estudio de estas concentraciones de elementos, se ha deducido que la cantidad de iridio presente provendría de un asteroide de unos 10 kilómetros de diámetro que se estrelló en la Tierra. Un impacto de esta magnitud produciría una enorme cantidad de polvo muy fino que se extenderían por la estratósfera, produciendo oscurecimiento y, además y como consecuencia, un fuerte enfriamiento del planeta, condición que crearía un entorno inhabitable para la mayoría de las criaturas de la época.
Análisis de los meteoritos
Otra línea de evidencia, no relacionada con efectos terrestres, se basa en la exposición a los rayos cósmicos que sufren los meteoritos en el espacio. Se puede determinar si un cuerpo ha estado expuesto a estas radiaciones midiendo la cantidad presente de cierto tipo de isótopos, como el Neón 21. Usando esta medición, se puede saber cuánto tiempo ha estado un meteorito en el Sistema Solar. Y se ha encontrado que los meteoritos creados por impacto de cometas han caído a la Tierra aproximadamente al mismo tiempo que las tres últimas extinciones masivas. Los meteoritos que han sufrido el impacto de un cometa tienen un alto contenido de hierro en forma de chronditas H. El hierro que contienen proviene del núcleo de asteroides o planetas que han sido golpeados por cometas. Se ha encontrado una correlación entre la presencia de chronditas H y las extinciones masivas.
Inversiones del campo magnético
Con el descubrimiento del paleomagnetismo, se ha agregado otra prueba a las evidencias que presenta la teoría de Némesis. Se ha analizado la hipótesis de que, al hacer impacto un cometa en la superficie de la Tierra, las altas temperaturas de la catástrofe evaporan gran cantidad de agua que luego, al producirse el enfriamiento masivo del planeta, se congelan en los polos. Debido a la conservación del momento angular, esta redistribución de masa es una agitación suficiente como para alterar el campo magnético terrestre. Se han producido inversiones geomagnéticas doscientos noventa y seis veces, cada aproximadamente treinta millones de años. Lo cual coincide con la teoría de la estrella mortal.
Descenso del nivel del mar
Otro efecto del congelamiento de grandes masas de agua es el descenso del nivel de los océanos. Se ha demostrado que esto ocurrió en la divisoria K/T.
Las estrellas binarias son comunes
Más del 50 % de las estrellas de nuestra galaxia son parte de un sistema binario, lo cual ayuda a apoyar la posibilidad de que nuestro Sol posea una estrella compañera, que posiblemente sea una enana marrón.
Qué se dice en oposición a la teoría de Némesis
Vulcanismo
Para explicar el enfriamiento masivo y repentino del clima del planeta causado por un oscurecimiento debido a la presencia de polvo en la estratosfera, se ha apelado a un hipotético incremento de la actividad volcánica. Sin embargo, no se explica de este modo la periodicidad detectada en las extinciones ni la existencia de capas de alto contenido de iridio en los registros fósiles.
Otra causa del desplazamiento de cometas
Aceptando que se hayan apartado grandes masas de su órbita en la nube de Oort y que éstas finalmente hayan impactado en la Tierra, se ha presentado una hipótesis alternativa según la cual nuestro Sistema Solar pasaría, en su movimiento alrededor del centro de la galaxia, por nubes gigantes de polvo molecular que podrían producir los desplazamientos orbitales. Sin embargo, este tipo de nubes están en un estado demasiado alto de dispersión como para que se produzca una fuerza gravitatoria suficiente.
El planeta X
Otra teoría introduce la existencia de un décimo planeta en el Sistema Solar, el llamado “planeta X”, pero esta idea requiere la existencia de un disco interior en la nube de Oort, y los cálculos indican que esto no sería posible por problemas de estabilidad.
Velocidad de la extinción
Algunas personas argumentan que los dinosaurios no se extinguieron tan rápido como parece señalar la teoría de Némesis. Las especies fueron declinando lentamente, y no de repente, en una catástrofe. Sin embargo, la teoría de Némesis no implica necesariamente una extinción inmediata de la vida, ya que la teoría implica la existencia de varios impactos, y de distintos tamaños de cometas, de modo que algunas formas de vida podrían haber sobrevivido a los primeros golpes, pero no a los que les siguieron más tarde.
Órbita inestable
Si una estrella se acerca a un objeto masivo tiende a fundirse con él
Otros hacen notar que la órbita elíptica que se propone para Némesis no podía mantenerse en el tiempo y que la estrella compañera se habría apartado para siempre, y hace mucho, del Sistema Solar. Pero los investigadores que han desarrollado la teoría de Némesis han dicho desde el primer momento que su órbita no se ha mantenido constante a lo largo del tiempo, y que esta estrella estaba antes más cerca del Sol. Otros objetos galácticos, una estrella errante, quizás, pueden haber producido una distorsión de la órbita de Némesis, haciéndola más amplia y menos estable. Una clara demostración de que esto es posible y que la órbita puede mantenerse por otros mil millones de años más fue publicada por Piet Hut en Nature, vol 311, pp. 636-640 (1984).
Variación del ritmo estadístico
Otro argumento en contra es que las extinciones, si bien son regulares, han tenido un ritmo que presenta un rango de variación de unos 4 millones de años, ya que el registro de las extinciones masivas tiene separaciones no absolutamente exactas, que varían entre los 26 y los 30 millones de años. Sin embargo, este aparente problema en la teoría se puede explicar por desviaciones breves de la amplia órbita de la estrella Némesis producidas por encuentros con otras estrellas errantes o con las nubes galácticas.
Encontrar a Némesis
Muchas estrellas conocidas y registradas podrían ser Némesis, que debería ser visible con un pequeño telescopio e incluso con binoculares. Prácticamente todas las estrellas con las características de la hipotética compañera del Sol ya han sido catalogadas, pero se ha medido la distancia de muy pocas de ellas.
La búsqueda de Némesis se lleva a cabo en el observatorio Leuschner, ubicado en Lafayette, California, Estados Unidos. Se utiliza un telescopio automático, que fotografía campos de estrellas y compara la imagen con una nueva fotografía tomada entre dos y seis meses después. Una estrella cercana que se mueva en la cercanía mostrará un desplazamiento notable, mientras que las estrellas lejanas quedarán casi en el mismo lugar. Lo más probable es que Némesis sea una enana roja, con una magnitud entre 7 y 12. Se cree que será hallada en la constelación de Hydra.
Parece curioso que no se haya detectado aún a Némesis, pero hay que tener en cuenta que los investigadores que la buscan no tienen los recursos que quisieran. Debido a que el telescopio de Leuschner no es del todo adecuado para este trabajo, han estado trabajando en la construcción de un nuevo proyecto llamado Large Aperture Synoptic Survey que, espera Richard Muller, terminará de una vez por todas con la discusión sobre la existencia o no de Némesis. “Si el telescopio funciona, encontraremos Némesis o probaremos que no existe. Esto me hace sentir bien”, dice Muller. “Si no existe, podemos olvidar esto y buscar otra explicación”. Pero agrega: “Soy optimista: creo que la encontraremos.”
Texto extraído de Axxon
Feb
17
¡El Universo! ¿Cuando lo podremos conocer?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Las estrellas y las galaxias y otros objetos cosmológicos surgieron cientos de millones de años más tarde
Alguno estudios quieren pinchar el globo del Big Bang, cuestionan la teoría y creen que no es eso lo que pasó. Sin embargo, cuando se niega alguna cosa hay que tener argumentos que avalen tal negación, exponerlos y convencer.
En el universo primigenio no había cuerpos celestes tal y como los conocemos hoy día, sino que todo el cosmos se hallaba repleto de radiación y partículas subatómicas. Esa primera etapa recibe el nombre de era de la radiación y abarca desde la Gran Explosión hasta unos 300 000 años tras ella.
Por el momento, es el Big Bang la Teoría más aceptada, y, encaja con la observación y los datos obtenidos en estudios realizados al efecto. Los cosmólogos han dividido en Eras las etapas por las que el Universo ha pasado, y, en cada una de ellas, se explica lo que evolucionó el universo en cada etapa y el nivel alcanzado.
La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.
Si la teoría del Bing Bang es correcta (como parece que lo es -al menos de momento-, debe de existir alguna fuerza desconocida, quizá la misma gravedad que no hemos llegado a entender totalmente y tenga alguna parte que se nos escapa, o, una gran proporción de “materia oscura” en forma no bariónica, quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.700 millones de años que es la edad del universo.
Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.
Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”. Bueno, también podrían ser las “cuerdas cósmicas”, o, ¿por qué no? la sustancia que los griegos clásicos llamaban Ylem, o… ¡vaya usted a saber que es, lo que produce el efecto de expansión de nuestro universo!
Viaje hacia la Quinta Dimensión, cada cual se despacha a su gusto
Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura (si finalmente existe), está situada en la quinta dimensión (es decir, fuera de nuestra vista), y nos llegan sus efectos a través de fluctuaciones del “vacío” donde residen inmensas energías que rasgan el espacio-tiempo y que, de alguna manera, deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea.
Martinus, ese gran Físico, decía:
“La materia oscura es la alfombra bajo la cual, los cosmólogos barren su ignorancia”
Claro que mi pensamiento es eso, una conjetura más de las muchas que circulan. A veces me sorprendo al escuchar como algunos astrofísicos de reconocido nombre, sin pudor alguno, dogmatizan hablando de estas cuestiones sobre las que no tienen la menor certeza. Podemos hablar de la energía y materia oscura pero, siempre, dejando claro que son teorías de lo que podría ser y que, más o menos probables, aún no han sido confirmadas.
Sin saber como podría estar estructurada (si es que existe), se atreven a poner imágenes y debajo de ellas textos que explican (o tratan de explicar), algo de lo que no saben absolutamente nada. Le dan prestaciones, la describen como invisible (es que, acaso no es materia física), al menos no emite radiación, y, sin embargo (o, contradicción), si genera Gravedad… Parece que estamos perdiendo el Norte.
De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia. ¿Cómo podemos poner nombre a algo que ni sabemos si existe en realidad. Se buscó esta solución para poder cuadrar las cuentas. Las observaciones astronómicas dejaron claro que, las galaxias, se alejaban las unas de las otras a velocidades cada vez mayores y que, de seguir así, llegaría un día en el futuro en el que, las únicas galaxias cercanas serían las del Grupo Local. Que cada vez el espacio “vacío” entre galaxias será mayor. ¿Qué fuerza desconocida empujaba a las galaxias a expandirse hacia el exterior? La materia bariónica no era la causante. Así que, se inventí la materia oscura y, de esa manera, el problema quedó zanjado. Claro que, no solucionado.
Mecánica cuántica, relatividad, átomos, el genoma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas pero, la materia oscura, al sernos desconocida, no sabemos como puede ser y no podemos tener una imagen de lo que la materia oscura es (si es que es), así que hablamos y hablamos de ella sin cesar pero también sin, saber.
Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta, o, nos sacará del error, al demostrar que la dichosa materia oscura, nunca existió y que es, otra fuerza, la que produce los efectos observados en la expansión acelerada del Universo.
Claro que nos falta mucho…
Si encontramos la manera de abrir la “puerta” del Hiperespacio…. ¡Podremos viajar a las estrellas!
Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado instantáneo de materia viva a lugares distantes, dominar toda una galaxia, etc, tendrán que transcurrir algunos eones de tiempo para que, algunos de estos sueños se haga realidad y, si ocurren algunas de esas cosas en el futuro…¿La haremos nosotros? ¿O, quizá para entonces sean otros los que habrán cogido la antorcha de nuestros sueños?
No creo que tarden mucho en trabajar codo con codo con nosotros
Cada vez se avanza más en menos tiempo. Y, llegará el momento, cuando dentro de algunos milenios, estemos preparados para viajar a las estrellas que, estarán aquí presentes con nosotros los inevitables Robots. Según una serie de cálculos y profundos pensamientos, no podremos seguir adelante llegados a un punto de no retorno, y, nos veremos obligados a fabricar robots muy sofisticados que harán trabajos espaciales y de colonización de Planetas para preparar la posterior llegada de los Humanos. Es inevitable pero, ¿será una buena idea?
Acordaos de que hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados. De la misma manera pero mucho más acelerada, serán las décadas venideras y, para dentro de los próximos cien años (a finales del presente siglo), si lo pudiéramos ver, quedaríamos tan asombrados como lo estarían nuestros bisabuelos si pudieran abrir los ojos y ver el mundo actual.
¿Qué maravillas tendremos dentro de 200 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Sabremos más sobre el origen de la vida? ¿Qué estadio de saber habrá alcanzado la Fisica, y, si para entonces hemos verificado la Teoría de cuerdas, qué nuevas teorías estarán en boga? ¿Habremos convertido Marte en una segunda Tierra (terraformarla) al proporcionarle una atmósfera y un escudo magnético?
La verdad es que, científicamente hablando, no habría problema alguno
Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el universo. Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias. La Relatividad General de Einstein, nos dice cómo la materia determina la geometría del Universo.
Un universo que se curva sobre sí mismo en presencia de la materia
Einstein nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espacio-tiempo. Es decir, Einstein nos dijo que la materia, es la que determina la geometría del Universo.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.
Como podemos imaginar un objeto pesado o masivo colocado en el centro de una superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste.
Al espacio le ocurre igual.
De la misma manera se puede considerar que el espacio tridimensional dentro y alrededor de un agujero negro está distorsionado dentro de un espacio plano de dimensión más alta (a menudo llamado hiperespacio), igual que la lámina bidimensional está distorsionada como describo en la imagen anterior.
Lo más intrigante de los agujeros negros es que, si caemos en uno, no tendremos manera alguna de salir o enviar señales a los que están fuera esperándonos. Pensemos que la masa de la Tierra que es de 5’974X1024 Kg (densidad de 5’52 gramos por cm3), requiere una velocidad de escape de 11’18 Km/s, ¿cuál no será la masa y densidad de un agujero negro si pensamos que ni la luz que viaja a 299.792’458 Km/s puede escapar de su fuerza de gravedad?
Mantiene unidas a las Galaxias, a los objetos del Sistema solar, nuestros pies pegados a la superficie de la Tierra…
La Gravedad, presente en el Universo…, ¡de tantas maneras!
Es tanta la densidad que no sólo distorsiona el espacio, sino que también distorsiona el tiempo según las ecuaciones de Einstein: el flujo del tiempo se frena cerca del agujero, y en un punto de no retorno (llamado el “horizonte” del agujero, o límite), el tiempo está tan fuertemente distorsionado que empieza a fluir en una dirección que normalmente sería espacial; el flujo de tiempo futuro está dirigido hacia el centro del agujero. Nada puede moverse hacia atrás en el tiempo1, insisten las ecuaciones de Einstein; de modo que una vez dentro del agujero, nos veremos arrastrados irremisiblemente hacia abajo con el flujo del tiempo, hacia una “singularidad” escondida en el corazón del agujero; en ese lugar de energía y densidad infinitas, el tiempo y el espacio dejan de existir.
Como he apuntado antes en alguna parte de este mismo trabajo, la descripción relativista del agujero negro procede de la obra de Kart Schwarzschil. En 1.916, apenas unos meses después de que Einstein formulara sus famosas ecuaciones, Schwarzschild fue capaz de resolver exactamente las ecuaciones de Einstein y calcular el campo gravitatorio de una estrella masiva estacionaria.
Así, Históricamente la primera solución importante fue obtenida por Schwarzschild en 1916, esta solución conocida posteriormente como métrica de Schwarzschild, representa el campo creado por un astro estático y con simetría esférica. Dicha solución constituye una muy buena aproximación al campo gravitatorio dentro del sistema solar, lo cual permitió someter a confirmación experimental la teoría general de la relatividad explicándose hechos previamente no explicados como el avance del perihelio de Mercurio y prediciendo nuevos hechos más tarde observados como la deflexión de los rayos de luz de un campo gravitatorio. Además las peculiaridades de esta solución condujeron al descubrimiento teórico de la posibilidad de los agujeros negros, y se abrió todo una nueva área de la cosmología relacionada con ellos. Lamentablemente el estudio del colapso gravitatorio y los agujeros negros condujo a la predicción de las singularidades espacio-temporales, deficiencia que revela que la teoría de la relatividad general es incompleta. Quizá la teoría de cuerdas, en la que subyace ésta, nos complete el cuadro.
Geometría aparente del plano de la eclíptica en un sistema cuyo astro central es un agujero negro de Schwarzschild. La solución de Schwarzschild tiene varias características interesantes:
La solución de Schwarzschild permitió aplicar los postulados de la relatividad general a disciplinas como la mecánica celeste y la astrofísica, lo cual supuso una verdadera revolución en el estudio de la cosmología: Apenas seis años después de la publicación de los trabajos de Einstein, el físico ruso Aleksander Fridman introdujo el concepto de singularidad espacio-temporal, definido como un punto del espacio-tiempo en el que confluyen todas las geodésicas de las partículas que habían atravesado el horizonte de sucesos de un agujero negro. En condiciones normales, la curvatura producida por la masa de los cuerpos y las partículas es compensada por la temperatura o la presión del fluido y por fuerzas de tipo electromagnético, cuyo estudio es objeto de la física de fluidos y del estado sólido. Sin embargo, cuando la materia alcanza cierta densidad, la presión de las moléculas no es capaz de compensar la intensa atracción gravitatoria. La curvatura del espacio-tiempo y la contracción del fluido aumentan cada vez a mayor velocidad: el final lógico de este proceso es el surgimiento de una singularidad, un punto del espacio-tiempo donde la curvatura y la densidad de tetra-momentum son infinitas.
- En primer lugar, una línea de no retorno rodea al agujero negro: cualquier objeto que se acerque a una distancia menor que este radio será absorbido inevitablemente en el agujero.
- En segundo lugar, cualquiera que cayera dentro del radio de Schwarzschild será consciente de un “universo especular” al “otro lado” del espacio-tiempo.
Incluso surgieron agujeros de gusano que nos podían trasladar a puntos distantes tanto en el tiempo como en el espacio.
Einstein no se preocupaba por la existencia de este extraño universo especular porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya dije antes, ni la luz podría escapar a dicha fuerza, e igualmente, las ondas de radio electromagnéticas también estarían prisioneras en el interior de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. Además, para penetrar en el universo alternativo, la sonda debería ir más rápida que la velocidad de la luz, lo que no es posible; c es la velocidad límite del universo.
Así pues, aunque este universo especular es matemáticamente necesario para dar sentido a la solución de Schwarzschild, nunca podría ser observado físicamente (al menos por el momento). En consecuencia, el famoso puente de Einstein-Rosen que conecta estos dos universos fue considerado un artificio matemático.
Aquí podría estar la solución para viajar a las estrellas, burlando a la velocidad de la luz, no ganándole
Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.
Las cosas comenzaron a cambiar con la solución que el trabajo matemático presentado por el neozelandés Roy Kerr, presentado en 1.963, encontró otra solución exacta de las ecuaciones de Einstein. Kerr supuso que cualquier estrella colapsante estaría en rotación. Así pues, la solución estacionaria de Schwarzschild para un agujero negro no era la solución físicamente más relevante de las ecuaciones de Einstein.
La solución de Kerr de un agujero negro en rotación causó sensación en el campo de la relatividad cuando fue propuesta. El astrofísico Subrahmanyan Chandrasekhar llegó a decir:
“La experiencia que ha dejado más huella en mi vida científica, de más de cuarenta años, fue cuando comprendí que una solución exacta de las ecuaciones de Einstein de la relatividad general, descubierta por el matemático Roy Kerr, proporciona la representación absolutamente exacta de innumerables agujeros negros masivos que pueblan el universo. Este estremecimiento ante lo bello, este hecho increíble de que un descubrimiento motivado por una búsqueda de la belleza en matemáticas encontrará su réplica exacta en la naturaleza, es lo que me lleva a decir que la belleza es aquello a lo que lleva la mente humana en su nivel más profundo“.
Un agujero negro de Kerr o agujero negro en rotación es una región de agujero negro presente en el espacio-tiempo de Kerr, cuando el objeto másico tiene un radio inferior a cierta magnitud, por encima de este radio el universo de Kerr no presenta región de agujero negro. Un agujero negro de Kerr es una región no isótropa que queda delimitada por un horizonte de sucesos y una ergoesfera presentando notables diferencias con respecto al agujero negro de Schwarzschild. Esta nueva frontera describe una región donde la luz aun puede escapar pero cuyo giro induce altas energías en los fotones que la cruzan. Debido a la conservación del momento angular, este espacio forma un elipsoide, en cuyo interior se encuentra un solo horizonte de sucesos con su respectiva singularidad, que debido a la rotación tiene forma de anillo.
La solución de Kerr de un agujero negro giratorio permite que una nave espacial pase a través del centro del agujero por el eje de rotación y sobrevivir al viaje a pesar de los enormes pero finitos campos gravitatorios en el centro, y seguir derecha hacia el otro universo especular sin ser destruida por la curvatura infinita.
Para nosotros, teniendo el concepto que tenemos de lo que un agujero negro es, es tan difícil imaginar que una nave pueda entrar en él y poder salir más tarde, como imaginar que, en mundos extraños como el de arriba, puedan existir criaturas inteligentes como en la Tierra.
El universo, como todos sabemos, abarca a todo lo que existe, incluyendo el espacio y el tiempo y, por supuesto, toda la materia está en la forma que esté constituida. El estudio del universo se conoce como cosmología. Si cuando escribimos Universo nos referimos al conjunto de todo, al cosmos en su conjunto, lo escribimos con mayúscula, el universo referido a un modelo matemático de alguna teoría física, ese se escribe con minúscula.
El universo real está constituido en su mayoría por espacios aparentemente vacíos, existiendo materia concentrada en galaxias formadas por estrellas y gas (también planetas, quásares, púlsares, cometas, estrellas enanas blancas y marrones, estrella de neutrones, agujeros negros y otros muchos objetos espaciales). El universo se esta expandiendo, las galaxias se alejan continuamente los unas de las otras. Existe una evidencia creciente de que existe una materia oscura invisible, no bariónica, que puede constituir muchas veces la masa total de las galaxias visibles. El concepto más creíble del origen del universo es la teoría del Big Bang de acuerdo con la cual el universo se creó a partir de una singularidad infinita de energía y densidad a inmensas temperaturas de millones de grados K, hace ahora unos 15.000 millones de años.
Emilio Silvera V.
Feb
1
¡Aquellos primeros momentos!
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
¡El Universo!
La primera interacción que puede ser considerada era la constante aniquilación y producción de electrones y positrones. Uno de los descubrimientos más famosos del siglo XX es la equivalencia entre la masa y la energía (E= m c2): bajo condiciones adecuadas, la energía se puede convertir en materia y viceversa. La conversión de energía en materia no se observa comúnmente en nuestro entorno porque éste es demasiado frío y no hay presión suficiente. Pero con las densidades y temperaturas que reinaban en el universo primitivo, esta conversión era el pan de cada día. Los fotones (g) se convertían en electrones (e–) y positrones (e+) (proceso conocido como producción de pares). Estos fotones no podían producir partículas más pesadas (como nucleones por ejemplo) por no poseer suficiente energía. Los electrones y positrones terminarían por colisionar con sus respectivas antipartículas y convertirse de nuevo en fotones (a lo que nos referiremos como aniquilación).
“En el principio”, debido a la alta densidad de energía, las colisiones entre las partículas ocurrían de forma tan rápida que las reacciones de conversión de protones en neutrones y viceversa se equilibraban de tal manera, que su número, aunque pequeño, era muy aproximadamente el mismo. Pero esa igualdad se rompió casi inmediatamente debido a que los neutrones son ligeramente más pesados que los protones. Por tanto, se necesita un poco más de energía para cambiar de un protón a un neutrón que viceversa. Al principio esto no tenía ninguna influencia porque había gran cantidad de energía en los alrededores. Pero como esta densidad de energía decrecía continuamente con la expansión, cada vez había menos energía disponible para cada colisión. Este hecho empezó a inclinar la balanza hacia la formación de protones, por lo que en número de protones empezó a ser mayor que el de neutrones y a medida que bajaba la temperatura la diferencia fue cada vez más notable.
Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo, no hay núcleos atómicos estables. El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.
Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos. Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos. Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.
Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias
Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase. Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).
En menos de un siglo, el neutrino pasó de ser una partícula fantasma propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958), a explicar el balance de energía en una forma de radioactividad, el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.
Proto-cúmulos galácticos en el universo primitivo captados por los telescopios Planck y Herschel
De esa manera, oleadas de neutrinos liberados en un segundo después del Big Bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.
Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.
A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de estructura que puede existir se hace cada vez más rudimentario.
Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones. El Universo es un océano de quarks libres y otras partículas elementales.
Si nos tomamos el de contarlos, hallaremos que por cada mil millones de anti-quarks existen mil millones y un quark. asimetría es importante. Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-anti-quark formaran todos los átomos de materia del Universo del último día. Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.
Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.
La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil. hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.
Estas partículas – las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil – son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles. En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.
Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia. Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido. Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.
En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas. Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes. Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.
En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacciona, producían calor y formaron las primeras estrellas.
Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.
Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé. Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.
Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.
La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos
Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.
emilio silvera
Ene
13
La complejidad del Universo
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (1)
Cuando pensamos en la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de Tiempo y Espacio como años, kilómetros o años-luz. Como ya hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.
La jerarquía del Universo: A mayor tamaño, menor densidad
A medida que examinamos volúmenes cada vez mayores del Universo, la densidad de material que encontramos sigue disminuyendo hasta que salimos de las dimensiones de los cúmulos de galaxias. Cuando llegamos a dicha escala, la acumulación de materia empieza a desvanecerse y se parece cada vez más a una minúscula perturbación aleatoria de un mar uniforme de materia, con una densidad de aproximadamente un átomo por cada metro cúbico.
Cúmulos de galaxias 051280×800: La Jerarquía del Universo a mayor tamaño, menor densidad
A medida que buscamos en las mayores dimensiones visibles del Universo, encontramos que las desviaciones de la uniformidad perfecta de la materia y la radiación se quedan en un bajo nivel de sólo una parte en cien mil. Esto nos muestra que el Universo no es lo que se ha llegado a conocerse como un fractal, en donde la acumulación de materia en cada escala parece una imagen ampliada de la escala superior siguiente.
Ene
8
Ese fino equilibrio
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (2)
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.
Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.